JPH0215578A - Solid electrolytic pipe for sodium-sulfur battery - Google Patents

Solid electrolytic pipe for sodium-sulfur battery

Info

Publication number
JPH0215578A
JPH0215578A JP63139635A JP13963588A JPH0215578A JP H0215578 A JPH0215578 A JP H0215578A JP 63139635 A JP63139635 A JP 63139635A JP 13963588 A JP13963588 A JP 13963588A JP H0215578 A JPH0215578 A JP H0215578A
Authority
JP
Japan
Prior art keywords
solid electrolyte
alumina
electrolyte tube
tube
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63139635A
Other languages
Japanese (ja)
Other versions
JPH0668975B2 (en
Inventor
Mikio Nakagawa
幹夫 中川
Kaichiro Kato
加藤 嘉一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63139635A priority Critical patent/JPH0668975B2/en
Publication of JPH0215578A publication Critical patent/JPH0215578A/en
Publication of JPH0668975B2 publication Critical patent/JPH0668975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3918Sodium-sulfur cells characterised by the electrolyte
    • H01M10/3927Several layers of electrolyte or coatings containing electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To enhance the mechanical strength of a solid electrolytic pipe made from beta-alumina and formed in a single construction so as to enhance reliability in its durability, by integrally sintering onto the outer surface of its main body an outer covering layer made from beta-alumina the shrinkage rate of which is higher than that of the main body during burning and cooling thereof. CONSTITUTION:On the inner and outer surfaces, particularly on the outer surface, of the main body 4 (a) of a solid electrolytic pipe made from beta-alumina and formed in a single construction is integrally sintered an outer covering layer 4b made from beta-alumina the shrinkage rate of which is higher than that of the beta-alumina of the main body 4 (a) during burning and cooling thereof. The main body 4 (a) of the solid electrolytic pipe may thus be compressed by shrinkage force of the outer covering layer 4 (b) without deteriorating ion conduction resistance thereof, so that its mechanical strength can be enhanced to control breakage of the solid electrolytic pipe during assembly of a battery and/or during rise and fall of temperature under operation of the battery for enhancing reliability on its durability.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はナトリウム−硫黄電池用の固体電解質管に係わ
り、さらに詳しくは固体電解質管の機械的強度を向上し
て電池組み立て時や電池運転の昇降温時の耐久(δ頓性
を向上し、かつイオン伝導抵抗を低減して電池容量を向
上することができる固体電解質管の構造に関するもので
ある。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a solid electrolyte tube for a sodium-sulfur battery, and more specifically, it improves the mechanical strength of the solid electrolyte tube to improve battery assembly and battery operation. This article relates to the structure of a solid electrolyte tube that can improve durability during temperature increases and decreases (δ stability), reduce ionic conduction resistance, and improve battery capacity.

(従来の技術) 最近、電気自動車用、夜間電力貯蔵用の二次電池として
性能面及び経済面の両面において優れ、300〜350
℃で作動する高温型のナトリウム−硫黄電池の研究開発
が進められている。
(Prior art) Recently, as a secondary battery for electric vehicles and nighttime power storage, it has been developed to be excellent in both performance and economical aspects.
Research and development is progressing on high-temperature sodium-sulfur batteries that operate at ℃.

このナトリウム−硫黄電池として、従来、第7図に示す
ように陽極活物質である溶融硫黄Sを含浸したカーボン
マット等の陽極用導電材Mを収納する円筒状の陽極容器
1と、該陽極容2″i1の上端部に対し、α−アルミナ
製の絶縁リング2を介して連結され、かつ溶融金属ナト
リウムNaを貯留する陰極容器3と、前記絶縁リング2
の内周部に固着され、かつ陰極活物質であるナトリウム
イオン(Na”)を選択的に透過させる機能を有する有
底円筒状の多結晶β−アルミナ製の固体電解質管4とか
らなっている。
As shown in FIG. 7, this sodium-sulfur battery conventionally includes a cylindrical anode container 1 that houses a conductive material M for the anode, such as a carbon mat impregnated with molten sulfur S, which is an anode active material, and A cathode container 3 which is connected to the upper end of 2"i1 via an insulating ring 2 made of α-alumina and stores molten metal Na, and the insulating ring 2
A solid electrolyte tube 4 made of polycrystalline β-alumina is fixed to the inner periphery of the tube and has a cylindrical shape with a bottom and a function of selectively transmitting sodium ions (Na''), which is a cathode active material. .

又、陰極容器3の上部蓋の中央部には、該陰極容器3を
通して固体電解質管4底部まで延びた細長い陰極管5が
貫通支持されている。
Further, an elongated cathode tube 5 extending through the cathode container 3 to the bottom of the solid electrolyte tube 4 is supported through the center of the upper lid of the cathode container 3 .

そして、放電時には次のような反応によってナトリウム
イオンが固体電解質管4を透過して陽極容器1内の硫黄
Sと反応し、多硫化ナトリウムを生成する。
During discharge, sodium ions pass through the solid electrolyte tube 4 and react with the sulfur S in the anode container 1 to produce sodium polysulfide through the following reaction.

2Na+XS→Na2 Sx 又、充電時には放電時とは逆の反応が起こり、ナトリウ
ムNa及び硫黄Sが生成される。
2Na+XS→Na2Sx Also, during charging, a reaction opposite to that during discharging occurs, and sodium Na and sulfur S are generated.

上記のように構成されたナトリウム−硫黄電池の固体電
解質管4は、酸化アルミニウム、酸化ナトリウム、酸化
リチウム、あるいは酸化マグネシウム等を適当に配合し
てラバープレス成形した後、電気炉中にて加熱して焼結
形成される。この固体電解質管4は前述したように絶縁
リング2に嵌合するとともに、陽極用導電材Mに嵌合し
て使用されるので、高い機械的強度が要求され、かつナ
トリウムイオンの伝専抵抗を低下することが要求される
The solid electrolyte tube 4 of the sodium-sulfur battery configured as described above is formed by rubber press molding a mixture of aluminum oxide, sodium oxide, lithium oxide, or magnesium oxide, etc., and then heated in an electric furnace. It is sintered and formed. As described above, this solid electrolyte tube 4 is used by fitting into the insulating ring 2 and also fitting into the conductive material M for the anode, so it is required to have high mechanical strength and has low transmission resistance for sodium ions. required to decrease.

(発明が解決しようとする課題) 前述した単一構造からなる従来の固体電解質管4は、安
定化剤としての酸化リチウム(LizO)又は酸化マグ
ネシウム(MgO)の配合割合及び焼成温度等を変化す
ることにより、機械的強度及びイオン伝導抵抗が調整可
能である。ところが、機械的強度を増大すると、イオン
伝導抵抗が増加し、反対にイオン伝導抵抗を減少すると
、機械的強度も低下する傾向にあり、従って、単一構造
のβ−アルミナよりなる固体電解質管4では両者の特性
をともに満足することは極めて困難であり、絶縁リング
2と固体電解質管4の組みつけ誤差や陽極用導電材Mの
製作誤差があると、ナトリウム−硫黄電池の組立時に固
体電解質管4を陽極用導電材Mへ嵌入する際、固体電解
質管4の基端部に応力が集中して破壊するという問題が
った。又、前述した製作誤差が問題とならい場合にも電
池運転の昇降温時において、陽極用導電材Mに含浸した
硫黄の溶融、凝固による熱歪あるいは陽極用導電材Mの
熱歪等により固体電解質管4が応力を受けて破損すると
いう問題があった。反対に、固体電解質g4の肉厚を大
きくして破損しないようにした場合にはイオン伝導抵抗
が増大して電池容量が低下するという問題があった。
(Problems to be Solved by the Invention) The conventional solid electrolyte tube 4 having a single structure as described above has different mixing ratios of lithium oxide (LizO) or magnesium oxide (MgO) as a stabilizer, firing temperature, etc. This allows the mechanical strength and ionic conduction resistance to be adjusted. However, when the mechanical strength is increased, the ion conduction resistance increases, and when the ion conduction resistance is decreased, the mechanical strength also tends to decrease. Therefore, it is extremely difficult to satisfy both characteristics, and if there is an assembly error between the insulating ring 2 and the solid electrolyte tube 4 or a manufacturing error in the conductive material M for the anode, the solid electrolyte tube may be damaged during the assembly of the sodium-sulfur battery. When inserting the solid electrolyte tube 4 into the conductive material M for the anode, stress was concentrated on the base end of the solid electrolyte tube 4 and the tube broke. In addition, even if the above-mentioned manufacturing errors are not a problem, the solid electrolyte may be damaged due to thermal distortion due to melting or solidification of the sulfur impregnated in the conductive material M for the anode, or thermal distortion of the conductive material M for the anode, etc. There was a problem in that the tube 4 received stress and was damaged. On the other hand, if the thickness of the solid electrolyte g4 is increased to prevent damage, there is a problem in that the ionic conduction resistance increases and the battery capacity decreases.

本発明の第1の目的は機械的強度を向上して耐久信頼性
を向上することができるナトリウム−硫黄電池用の固体
電解質管を提供することにある。
A first object of the present invention is to provide a solid electrolyte tube for a sodium-sulfur battery that can improve mechanical strength and durability and reliability.

又、本発明の第2の目的は機械的強度を増大し、イオン
伝導抵抗を低下することができるナトリウム−硫黄電池
用の固体電解質管を提供することにある。
A second object of the present invention is to provide a solid electrolyte tube for a sodium-sulfur battery that can increase mechanical strength and reduce ion conduction resistance.

さらに、本発明の第3の目的は第2の目的に加えて、固
体電解質管と絶縁リングとの接合作業を省略することが
できるナトリウム−硫黄電池用の固体電解質管を提供す
ることにある。
Furthermore, in addition to the second object, a third object of the present invention is to provide a solid electrolyte tube for a sodium-sulfur battery that can omit the work of joining the solid electrolyte tube and the insulating ring.

(課題を解決するための手段) 請求項1記載の固体電解質管は、第1の目的を達成する
ため、β−アルミナよりなる単一構造をなす固体電解質
管本体の内外両表面、特に外表面上に、該本体よりも焼
成冷却時の収縮率が大きいβ−アルミナよりなる外被層
を一体的に焼結するという手段をとっている。
(Means for Solving the Problems) In order to achieve the first object, the solid electrolyte tube according to claim 1 has a solid electrolyte tube body having a single structure made of β-alumina, both the inner and outer surfaces, especially the outer surface. On top of this, a method is taken in which a jacket layer made of β-alumina, which has a higher shrinkage rate during firing and cooling than the main body, is integrally sintered.

請求項2記載の固体電解In管は第2の目的を達成する
ため、固体電解質管本体をイオン伝導抵抗が小さいβ−
アルミナにより形成し、絶縁リングに嵌合される基端筒
部を、強度の大きいβ−アルミナにより形成し、固体電
解質管本体と基端筒部を一体的に焼結するという手段を
採用している。
In order to achieve the second object, the solid electrolyte In tube according to claim 2 has a solid electrolyte tube body made of β-
The proximal tube part, which is made of alumina and fitted into the insulating ring, is made of high-strength β-alumina, and the solid electrolyte tube body and the proximal tube part are integrally sintered. There is.

請求項3記載の固体電解質管は、第2の目的を達成する
ため、請求項2記載の固体電解質管において、前記固体
電解質管本体と基端筒部との間に、両者の中間物性を有
するβ−アルミナよりなる中間筒部を一体的に焼結する
という手段を採用している。
In order to achieve the second object, the solid electrolyte tube according to claim 3 has intermediate physical properties between the solid electrolyte tube main body and the base end cylinder portion in the solid electrolyte tube according to claim 2. A method of integrally sintering the intermediate cylindrical portion made of β-alumina is adopted.

請求項4記載の固体電解質管は、第3の目的を。The solid electrolyte tube according to claim 4 has a third purpose.

達成するため、固体電解質管本体をイオン伝導抵抗が小
さいβ−アルミナにより形成し、基端筒部及び絶縁リン
グを、α−アルミナにより形成し、β−アルミナよりな
る固体電解質管本体とα−アルミナよりなる基端筒部及
び絶縁リングとを一体的に焼結するという手段をとって
いる。
In order to achieve this, the solid electrolyte tube body is made of β-alumina with low ionic conduction resistance, the proximal tube portion and the insulating ring are made of α-alumina, and the solid electrolyte tube body is made of β-alumina and α-alumina. The proximal end tube portion and the insulating ring are integrally sintered.

請求項5記載の固体電解質管は、第3の目的を達成する
ため、請求項4記載の固体電解質管において、固体電解
質管本体と基端筒部との間に両者の混合物質よりなるア
ルミナよりなる中間筒部を一体的に焼結するという手段
をとっている。
In the solid electrolyte tube according to claim 5, in order to achieve the third object, in the solid electrolyte tube according to claim 4, alumina made of a mixture of the two is provided between the solid electrolyte tube main body and the base end cylindrical portion. The method is to integrally sinter the intermediate cylindrical portion.

(作用) 請求項1記載の固体電解質管は、固体電解質管本体の表
面に焼成収縮率が大きい外被層が一体的に被着焼結され
ているので、外被層の収縮力により固体電解質管本体が
圧縮され、このため機械的強度が向上し、絶縁リングに
嵌合固定してナトリウム−硫黄電池に使用した場合、該
基端筒部に応力が作用してもその応力により破壊される
ことはない。
(Function) In the solid electrolyte tube according to claim 1, since the outer coating layer having a large firing shrinkage rate is integrally adhered and sintered on the surface of the solid electrolyte tube body, the solid electrolyte is heated by the shrinkage force of the outer coating layer. The tube body is compressed, which improves its mechanical strength, and when used in a sodium-sulfur battery by fitting and fixing it into an insulating ring, even if stress is applied to the proximal end tube, it will not break due to the stress. Never.

又、請求項2記載の固体電解質管も、基端筒部の機械的
強度が向上するので、絶縁リングに嵌合固定してナトリ
ウム−硫黄電池に使用した場合、該基端筒部に応力が作
用してもその応力により破壊されることはない。又、固
体電解質管本体はイオン伝導抵抗の低いβ−アルミナに
より形成されているので、電池容量が増大する。
Moreover, since the solid electrolyte tube according to claim 2 also improves the mechanical strength of the proximal tube portion, when it is fitted and fixed to an insulating ring and used in a sodium-sulfur battery, stress is not applied to the proximal tube portion. Even if it is applied, it will not be destroyed by the stress. Furthermore, since the solid electrolyte tube body is made of β-alumina, which has low ionic conduction resistance, the battery capacity increases.

請求項3記載の固体電解質管は、請求項2記載の固体電
解質管の作用に加えて、固体電解質管本体と基端筒部と
の連結の急激な組成変化が抑制されて、両部材の熱膨脹
率の違いや熱歪等が中間筒体により吸収され、機械的強
度が向上する。
In addition to the effects of the solid electrolyte tube according to claim 2, the solid electrolyte tube according to claim 3 suppresses rapid compositional changes in the connection between the solid electrolyte tube main body and the proximal end cylindrical portion, thereby preventing thermal expansion of both members. Differences in ratio, thermal strain, etc. are absorbed by the intermediate cylinder, improving mechanical strength.

請求項4記載の固体電解質管は、基端筒部と絶縁リング
がα−アルミナにより一体的に形成されているので、請
求項2記載の固体電解質管の作用に加えて、絶縁リング
と固体電解質管を別途連結する工程が不要となる。
In the solid electrolyte tube according to claim 4, since the base end cylinder portion and the insulating ring are integrally formed of α-alumina, in addition to the function of the solid electrolyte tube according to claim 2, the insulating ring and the solid electrolyte There is no need for a separate process to connect the pipes.

請求項5記載の固体電解質管は、請求項3記載の固体電
解質管の作用に加えて、絶縁リングと固体電解質管本体
を別途連結する工程が不要となる。
In addition to the effects of the solid electrolyte tube according to claim 3, the solid electrolyte tube according to claim 5 eliminates the need for a separate step of connecting the insulating ring and the solid electrolyte tube body.

(実施例) 実施例1〜実施例4はそれぞれ請求項1記載の固体電解
質管の製造方法を具体化し、実施例5゜6は請求項2記
載の固体電解質管の製造方法、実施例7.8は請求項3
記載の固体電解質管の製造方法、実施例9は請求項4記
載の固体電解質管の製造方法、実施例10は請求項5記
載の固体電解質管の製造方法をそれぞれ具体化したもの
である。
(Example) Examples 1 to 4 each embody the method for manufacturing a solid electrolyte tube according to claim 1, Examples 5 and 6 embody the method for manufacturing a solid electrolyte tube according to claim 2, and Example 7. 8 is claim 3
The solid electrolyte tube manufacturing method described in Example 9 embodies the solid electrolyte tube manufacturing method described in claim 4, and Example 10 embodies the solid electrolyte tube manufacturing method described in claim 5.

以下に各実施例を順次説明する。Each example will be explained in sequence below.

(実施例1) 最初に、90.2重量部の酸化アルミニウム(Aj!z
 03 ) 、9.O重量部の酸化ナトリウム(Na2
0)及び0.8重量部の酸化リチウム(LizO)より
なる調合物を、1001のボールミルによる湿式$51
砕により粉砕・混合・仮焼して比表面積5rrr/gの
β−アルミナ含有粉末を調整する。
(Example 1) First, 90.2 parts by weight of aluminum oxide (Aj!z
03), 9. O parts by weight of sodium oxide (Na2
0) and 0.8 parts by weight of lithium oxide (LizO) was wet-processed using a 1001 ball mill for $51.
A β-alumina-containing powder having a specific surface area of 5 rrr/g is prepared by crushing, mixing, and calcining.

その後、前記β−アルミナ含有粉末をスプレードライヤ
ーにより所定粒径(平均粒径が40〜120μm)に造
粒する。
Thereafter, the β-alumina-containing powder is granulated to a predetermined particle size (average particle size of 40 to 120 μm) using a spray dryer.

次に、ラバープレス成形装置(アイソスタティックプレ
ス機)を使用し、圧力1,5ton/adで例えば外径
が15m5、肉厚が1.On、長さ150龍の袋管状を
なす単一構造の固体電解質管本体素地4a  (第2図
参照)を成形する。
Next, using a rubber press molding device (isostatic press machine), the outer diameter is 15 m5 and the wall thickness is 1.5 m at a pressure of 1.5 ton/ad. On, a solid electrolyte tube body body 4a (see FIG. 2) having a single structure in the shape of a bag tube with a length of 150 mm is molded.

さらに、前記固体電解質管本体素地4a”と同−の組成
を有する比表面積9 rd / gのβ−アルミナ含有
粉末のスラリー中に成形体を浸清し、前記本体素地4a
’の表面に厚さ0.2mmの外被層素地4b′ (第2
図鎖線参照)を形成する。次いで、乾燥、表面仕上げ及
び脱脂を行った後、1610℃で5分間焼成し、第1図
に示すように固体電解質管本体4aの外表面に外被Jl
ff14bが一体的に被着されてなる固体電解質管4を
得る。
Furthermore, the molded body is immersed in a slurry of β-alumina-containing powder having a specific surface area of 9 rd/g and having the same composition as the solid electrolyte tube body base material 4a''.
4b' (second layer) with a thickness of 0.2 mm
(see the dashed line in the figure). Next, after drying, surface finishing and degreasing, baking was performed at 1610°C for 5 minutes to coat the outer surface of the solid electrolyte tube body 4a with a jacket Jl.
A solid electrolyte tube 4 having the ff14b integrally attached thereto is obtained.

前記外被層4bの肉厚は、本体4aの厚さの約1/10
0〜1/2に設定される。
The thickness of the outer covering layer 4b is about 1/10 of the thickness of the main body 4a.
It is set between 0 and 1/2.

このようにして得られた固体電解質管4は・、外被層4
bの比表面積が本体4aのそれよりも大きいので、焼成
冷却時に外被J54bの収縮率が本体4aと比較して大
きくなり、従って、外被14bにより固体電解質管本体
4aが圧縮されるため、固体電解質管4の強度が増大す
る。なお、外被層4bの比表面積を大きくしても、イオ
ン転意抵抗は電池機能に影響を及ぼすほど庇化しないの
で問題はない。
The solid electrolyte tube 4 thus obtained has an outer covering layer 4
Since the specific surface area of b is larger than that of the main body 4a, the contraction rate of the outer sheath J54b becomes larger than that of the main body 4a during firing and cooling, and therefore, the solid electrolyte tube main body 4a is compressed by the outer sheath 14b. The strength of the solid electrolyte tube 4 increases. Incidentally, even if the specific surface area of the outer covering layer 4b is increased, there is no problem because the ionic rolling resistance does not increase to the extent that it affects the battery function.

(実施例2) 89.3重量部の酸化アルミニウム、10重量部の酸化
ナトリウム及び0.7重間部の酸化リヂウムよりなる調
合物を、実施例1と同様に粉砕・混合・仮焼して比表面
積5rrr/gのβ−アルミナ含有粉末を調整し、これ
を実施例1と同様にスプレードライヤにより所定粒径(
平均粒径が40〜120μm)に造粒する。
(Example 2) A preparation consisting of 89.3 parts by weight of aluminum oxide, 10 parts by weight of sodium oxide and 0.7 parts by weight of lithium oxide was ground, mixed and calcined in the same manner as in Example 1. A β-alumina-containing powder with a specific surface area of 5 rrr/g was prepared, and it was dried to a predetermined particle size (
Granulate to an average particle size of 40 to 120 μm.

次に、ラバープレス成形装置を使用し、圧力1、 5 
t o n/cIaで例えば外径が15鶴、肉厚が2、
O1■、長さ1501−の袋管状をなす単一構造の固体
電解質管本体素地4a゛ (第2図参照)を成形する。
Next, using a rubber press molding device, pressure 1, 5
ton/cIa, for example, the outer diameter is 15 Tsuru, the wall thickness is 2,
A solid electrolyte tube body base 4a (see FIG. 2) having a single structure in the shape of a bag tube with a length of 1501 mm and a length of 1501 mm is formed.

この固体電解質管本体素地4a’を約1000℃で2時
間脱脂し、脱脂後の該本体素地4a’の表面に対し、該
素地4a’と同一の組成を有する比表面積9 cd /
 gのβ−アルミナ含有粉末のスラリーをスプレーによ
り塗布し、前記本体素地4a″の表面に厚さ0.5龍の
外被層素地4b”を形成する。その後、乾燥、表面仕上
げ及び脱脂を行った後、1600℃で10分間焼成し、
固体電解質管本体4aの外表面上に外被層4bを一体的
に形成した第1図に示す固体電解質管4を得る。
This solid electrolyte tube body base 4a' is degreased at about 1000°C for 2 hours, and the surface of the body base 4a' after degreasing has a specific surface area of 9 cd /
A slurry of β-alumina-containing powder (g) was applied by spraying to form an outer covering layer base 4b'' having a thickness of 0.5 mm on the surface of the main body base 4a''. After that, after drying, surface finishing and degreasing, it was baked at 1600°C for 10 minutes.
A solid electrolyte tube 4 shown in FIG. 1 is obtained in which a jacket layer 4b is integrally formed on the outer surface of a solid electrolyte tube body 4a.

(実施例3) 89.0重量部の酸化アルミニウム、9.0重量部の酸
化ナトリウム及び2.0重量部の酸化マグネシウムより
なる調合物を、実施例1と同様に粉砕・混合・仮焼して
比表面積5nf/gのβ−アルミナ含有粉末を調整し、
同じ〈実施例1と同様にスプレードライヤにより所定粒
径(平均粒径が40〜120μm)に造粒する。
(Example 3) A preparation consisting of 89.0 parts by weight of aluminum oxide, 9.0 parts by weight of sodium oxide and 2.0 parts by weight of magnesium oxide was crushed, mixed and calcined in the same manner as in Example 1. to prepare β-alumina-containing powder with a specific surface area of 5nf/g,
Same as in Example 1, the particles are granulated to a predetermined particle size (average particle size of 40 to 120 μm) using a spray dryer.

次に、ラバープレス成形装置を使用し、圧力2.5Lo
n/a!で例えば外径が15mm、肉厚が2.0龍、長
さ150mmの袋管状をなす第2図に示す単一構造の固
体電解質管本体素地4a’を成形する。この固体電解質
管本体素地4a’の表面に対し、該素地4a’と同一の
組成を存する比表面積9rrr/gのβ−アルミナ含有
粉末のスラリーをスプレーにより塗布し、厚さ0.2龍
の外被層素地4b”を形成する。その後、乾燥、表面仕
上げ及び脱脂を行った後、1630℃で30分間焼成し
、固体電解質管本体4aの表面に外被層4bを一体的に
形成した第1図に示す固体電解質管4を得る。
Next, using a rubber press molding device, the pressure was 2.5Lo.
n/a! Then, a solid electrolyte tube main body base 4a' having a single structure shown in FIG. 2 is formed, for example, in the shape of a bag tube with an outer diameter of 15 mm, a wall thickness of 2.0 mm, and a length of 150 mm. A slurry of β-alumina-containing powder having the same composition as that of the solid electrolyte tube body 4a' and having a specific surface area of 9 rrr/g is applied by spraying onto the surface of the solid electrolyte tube body body 4a' to a thickness of 0.2 rrr/g. After that, after drying, surface finishing and degreasing, the first coated body 4b was baked at 1630°C for 30 minutes to integrally form the outer coated layer 4b on the surface of the solid electrolyte tube body 4a. A solid electrolyte tube 4 shown in the figure is obtained.

(実施例4) 87.0重量部の酸化アルミニウム、10重iJ部の酸
化ナトリウム及び3.0重量部の酸化マグネシウムより
なる調合物を、実施例1と同様に粉砕・混合・仮焼して
比表面積5 rd / gのβ−アルミナ含有粉末を調
整し、スプレードライヤにより所定粒径(平均粒径が4
0〜120μm)に造粒する。
(Example 4) A preparation consisting of 87.0 parts by weight of aluminum oxide, 10 parts by weight of sodium oxide, and 3.0 parts by weight of magnesium oxide was ground, mixed, and calcined in the same manner as in Example 1. A β-alumina-containing powder with a specific surface area of 5 rd/g was prepared and dried to a predetermined particle size (average particle size of 4
0 to 120 μm).

次に、ラバープレス成形装置を使用し、圧力2、  O
t o n/cTAで例えば外径が15鶴、肉厚が1.
0mm、長さ150mmの袋管状をなす第2図に図示す
る単一構造の固体電解質管本体素地4aを成形する。こ
の素地4a”を約1ooo’cで2時間脱脂し、脱脂後
の素地4a’を該素地と同一の組成を有する比表面積9
n?/gのβ−アルミナ含有粉末のスラリーに漫禎し、
該素地4a’の表面に厚さ0.3鶴の外被層素地4b’
を被着形成する。その後、乾燥、表面仕上げ及び脱脂を
行った後、1000℃で10分間焼成し、固体電解質管
本体4aの外表面に外被層4bを一体的に被着形成した
第1図に示す固体電解質管4を得る。
Next, using a rubber press molding device, a pressure of 2,0
For example, the outer diameter of ton/cTA is 15 mm and the wall thickness is 1 mm.
A solid electrolyte tube main body base 4a having a single structure shown in FIG. 2 and having a bag tube shape with a diameter of 0 mm and a length of 150 mm is molded. This substrate 4a'' is degreased at approximately 1 ooo'c for 2 hours, and the substrate 4a' after degreasing has a specific surface area of 9 having the same composition as that of the substrate.
n? /g of β-alumina-containing powder into a slurry,
On the surface of the substrate 4a' is an outer covering layer substrate 4b' having a thickness of 0.3 mm.
Form the adhesion. Thereafter, after drying, surface finishing and degreasing, the solid electrolyte tube shown in FIG. 1 is baked at 1000° C. for 10 minutes to integrally form an outer covering layer 4b on the outer surface of the solid electrolyte tube body 4a. Get 4.

(実施例5) 90.5重量部の酸化アルミニウム、9重M部の酸化ナ
トリウム及び0.5重量部の酸化リチウムよりなる調合
物を、実施例1と同様に粉砕・混合・仮焼してβ−アル
ミナ含有粉末八へ調整するとともに、90.2重量部の
酸化アルミニウム、9重量部の酸化ナトリウム及び0.
8重量部の酸化リチウムよりなる調合物を、同様に粉砕
・混合してβ−アルミナ含有粉末Bを調整する。その後
、前記β−アルミナ含含有粉八人Bを、実施例1と同様
にスプレードライヤにより所定粒径(平均粒径が40〜
120μm)に造粒する。
(Example 5) A preparation consisting of 90.5 parts by weight of aluminum oxide, 9 parts by weight of sodium oxide, and 0.5 parts by weight of lithium oxide was ground, mixed, and calcined in the same manner as in Example 1. While adjusting to β-alumina-containing powder 8, 90.2 parts by weight of aluminum oxide, 9 parts by weight of sodium oxide and 0.
A preparation containing 8 parts by weight of lithium oxide is similarly ground and mixed to prepare β-alumina-containing powder B. Thereafter, the β-alumina-containing powder Yatsunin B was dried in a spray dryer in the same manner as in Example 1 to a predetermined particle size (average particle size of 40 to
120 μm).

次に、ラバープレス成形装置の成形型内の開口端部以外
の部分、つまり固体電解質管4の本体4aを成形する空
間にβ−アルミナ含有粉末Bをほぼ全体積の85%、そ
れ以外の部分、つまり第3図に示す固体電解質管4の基
端筒部4cを成形する空間にβ−アルミナ含有粉末Aを
ほぼ15%充填し、圧力2. 5 t o n/ctA
で複合組成の固体電解質管素地を成形する。その後、乾
燥、表面仕上げ及び脱脂を行った後、1600℃で5分
間焼成し、第3図に示す固体電解質管4を得る。
Next, approximately 85% of the β-alumina-containing powder B is applied to the part other than the open end of the mold of the rubber press molding device, that is, the space where the main body 4a of the solid electrolyte tube 4 is to be molded, and the other part is That is, approximately 15% of the β-alumina-containing powder A is filled into the space in which the base end cylinder portion 4c of the solid electrolyte tube 4 shown in FIG. 3 is to be formed, and the pressure is 2. 5 tons/ctA
A solid electrolyte tube base with a composite composition is formed using the following steps. Thereafter, after drying, surface finishing and degreasing, the tube was fired at 1600° C. for 5 minutes to obtain the solid electrolyte tube 4 shown in FIG. 3.

このようにして得られた固体電解質管4は、基端筒部4
cが強度上優れているので、電池組立時や電池運転の昇
降温時に作用する応力に充分耐えることができ、一方、
固体電解質管本体4aはイオン伝導抵抗が小さいので、
電池容量を向上することができる。
The solid electrolyte tube 4 thus obtained has a proximal tube portion 4
Since c has excellent strength, it can sufficiently withstand the stress that is applied during battery assembly and during temperature rise and fall during battery operation, and on the other hand,
Since the solid electrolyte tube body 4a has low ionic conduction resistance,
Battery capacity can be improved.

(実施例6) この実施例6では89.5重量部のα−アルミナ、9.
0重量部の酸化ナトリウム及び1.5重量部の酸化マグ
ネシウムよりなる調合物により、実施例5と同様にβ−
アルミナ含有粉末Cを調製するとともに、89.0重量
部のα−アルミナ、9.0重量部の酸化ナトリウム及び
3.0重量部の酸化マグネシウムよりなる調合物により
実施例5と同様にβ−アルミナ含有粉末りを調製する。
(Example 6) In this Example 6, 89.5 parts by weight of α-alumina, 9.
Similarly to Example 5, β-
In addition to preparing alumina-containing powder C, β-alumina was prepared in the same manner as in Example 5 using a formulation consisting of 89.0 parts by weight of α-alumina, 9.0 parts by weight of sodium oxide, and 3.0 parts by weight of magnesium oxide. Prepare the containing powder.

このβ−アルミナ含有粉末Cにより基端筒部4cを、D
により固体電解質管本体4aを形成し、第3図に示す固
体電解質管4を製造するが、最終工程の温度を1620
℃で約40分間焼成する点を除いて実施例5と同じであ
るため詳しい製造工程の説明を省略する。このようにし
て得られた固体電解質管4は、実施例5の固体電解質管
と同様の効果を有する。
With this β-alumina-containing powder C, the base end cylinder portion 4c is
The solid electrolyte tube body 4a is formed by the steps shown in FIG. 3, and the solid electrolyte tube 4 shown in FIG.
The manufacturing process is the same as Example 5 except that it is baked at ℃ for about 40 minutes, so a detailed explanation of the manufacturing process will be omitted. The solid electrolyte tube 4 thus obtained has the same effects as the solid electrolyte tube of Example 5.

(実施例7) この実施例7では、実施例5で調製したβ−アルミナ含
有粉末八へBの他に、90.3重量部のα−アルミナ、
9.0重量部の酸化ナトリウム及び0.7重量部の酸化
リチウムよりなる調合物を、前述した湿式粉砕により粉
砕・混合・仮焼して中IuI物性を備えたβ−アルミナ
含有粉末Eを調整する。
(Example 7) In this Example 7, in addition to the β-alumina-containing powder HachiheB prepared in Example 5, 90.3 parts by weight of α-alumina,
A preparation consisting of 9.0 parts by weight of sodium oxide and 0.7 parts by weight of lithium oxide was pulverized, mixed and calcined by the above-mentioned wet pulverization to prepare β-alumina-containing powder E with medium IuI physical properties. do.

その後、前記β−アルミナ含有粉末A、B、Eを、それ
ぞれスプレードライヤーにより所定粒径(平均粒径が4
0〜120μm)に造粒する。
Thereafter, the β-alumina-containing powders A, B, and E were each dried using a spray dryer to a predetermined particle size (average particle size of 4
0 to 120 μm).

次に、第4図に示すようにラバープレス成形装置の成形
型内の開口部以外の部分、つまり固体電解質管本体4a
を成形する空間にβ−アルミナ含有粉末Bをほぼ75%
充填し、その上部の筒部4dに前記粉末EをほぼlO%
充填し、最後に開口部分、つまり固体電解質管40基@
笥部4cを成形する空間にβ−アルミナ含有粉末Aをほ
ぼ15%充填し、圧力2. 5 t o n/cdで複
合組成の固体電解質管素地を成形する。その後、乾燥、
表面仕上げ及び脱脂を行った後、1590℃で10分間
焼成し、上部はど機械的強度の強い第4図に示すような
固体電解質管4を製造する。
Next, as shown in FIG.
Approximately 75% of the β-alumina-containing powder B is placed in the space where the
The powder E is filled into the upper cylindrical portion 4d at approximately 10%.
Fill and finally open the opening part, that is, 40 solid electrolyte tubes @
Approximately 15% of the β-alumina-containing powder A is filled into the space where the box part 4c is to be formed, and the pressure is set to 2. A solid electrolyte tube base having a composite composition is molded at 5 tons/cd. Then dry,
After surface finishing and degreasing, the tube is fired at 1590° C. for 10 minutes to produce a solid electrolyte tube 4 as shown in FIG. 4, which has a strong upper mechanical strength.

この実施例7の固体電解質管4は、中間物性の筒部4d
により本体4aと基端筒部4cの結合強度が向上すると
ともに、熱膨脹率の差異による応力が緩和される (実施例8) この実施例8では前述した実施例6のβ−アルミナ含有
粉末C,Dと、88.7重量部のα−アル″ミナ、9.
0重量部の酸化ナトリウム及び2.3重量部の酸化マグ
ネシウムの組成からなるβ−アルミナ含有粉末Fとを使
用して第4図に示すような粉末りで本体4aを、粉末F
で筒部4dを、粉末Cで筒部4cをそれぞれ形成し、上
部はど機械的強度の強い固体電解質管4を製造する。
The solid electrolyte tube 4 of Example 7 has a cylindrical portion 4d with intermediate physical properties.
As a result, the bonding strength between the main body 4a and the proximal tube portion 4c is improved, and the stress due to the difference in coefficient of thermal expansion is alleviated (Example 8) In this Example 8, the β-alumina-containing powder C of Example 6 described above, D and 88.7 parts by weight of α-alumina; 9.
Using a β-alumina-containing powder F having a composition of 0 parts by weight of sodium oxide and 2.3 parts by weight of magnesium oxide, the main body 4a is prepared using a powder mill as shown in FIG.
The cylindrical portion 4d is formed with powder C, and the cylindrical portion 4c is formed with powder C, thereby producing a solid electrolyte tube 4 with strong mechanical strength in the upper part.

この実施例8では1630℃で約30分間焼成する点に
おいて実施例7と相違し、その他の製造工程は同様であ
るため、詳しい説明を省略する。
This Example 8 differs from Example 7 in that baking is performed at 1630° C. for about 30 minutes, and other manufacturing steps are the same, so a detailed explanation will be omitted.

(実施例9) 88.0重量部のα−アルミナ、9.0重量部の酸化ナ
トリウム及び3.0重1部の酸化マグネシウムよりなる
調合物を、前述した湿式粉砕により粉砕・混合・仮焼し
てβ−アルミナ含有粉末Gを調整する。
(Example 9) A preparation consisting of 88.0 parts by weight of α-alumina, 9.0 parts by weight of sodium oxide, and 3.0 parts by weight of magnesium oxide was pulverized, mixed, and calcined by the wet pulverization described above. β-alumina-containing powder G is prepared.

一方、α−アルミナを同様に粉砕・混合してα−アルミ
ナ粉末Hを用意する。
On the other hand, α-alumina powder H is prepared by crushing and mixing α-alumina in the same manner.

その後、前記β−アルミナ含有粉粂G、α−アルミナ粉
末Hを、それぞれスプレードライヤーにより所定粒径(
平均粒径が40〜120μm)に造粒する。
Thereafter, the β-alumina-containing powder G and α-alumina powder H are each dried to a predetermined particle size (
Granulate to an average particle size of 40 to 120 μm.

次に、ラバープレス成形装置の成形型内の開口端部以外
の部分、つまり第5図に図示する固体電解質管4の本体
4aを成形する空間にβ−アルミナ含有粉末Gを体積の
ほぼ85%、それ以外の部分、つまり固体電解質管4の
基端筒部4c及び絶縁リング2を成形する空間にα−ア
ルミナ粉末14をほぼ15%充填し、圧力2. 5 t
 o n/c+イで複合組成の固体電解質管素地を成形
する。その後、乾燥、表面仕上げ及び脱脂を行った後、
1630℃で60分間焼成してβ−アルミナよりなる固
体電解質管の基端部及びフランジ部をα−アルミナによ
り一体的に形成した第5図に示すような固体電解質管4
を製造する。
Next, approximately 85% of the volume of the β-alumina-containing powder G is applied to a portion of the mold of the rubber press molding device other than the open end, that is, the space where the main body 4a of the solid electrolyte tube 4 shown in FIG. 5 is to be molded. The remaining portions, that is, the space where the proximal end cylinder portion 4c of the solid electrolyte tube 4 and the insulating ring 2 are to be formed, are filled with approximately 15% α-alumina powder 14, and the pressure is 2. 5t
A solid electrolyte tube base having a composite composition is formed using on/c+a. After that, after drying, surface finishing and degreasing,
A solid electrolyte tube 4 as shown in FIG. 5 is obtained by baking at 1630°C for 60 minutes to integrally form the base end and flange of a solid electrolyte tube made of β-alumina with α-alumina.
Manufacture.

このようにして得られた固体電M、’ii管4は、前記
実施例5の作用に加えて、絶縁リング2と固体電解質管
4の連結作業を省略することができる。
The thus obtained solid electrolyte M,'ii tube 4 not only has the effect of the fifth embodiment, but also allows the operation of connecting the insulating ring 2 and the solid electrolyte tube 4 to be omitted.

(実施例10) 実施例9のβ−アルミナ含有扮末G、α−アルミナ粉末
H1及び両粉末G、Hの混合組成を有するアルミナ粉末
Iを調製する。これらの粉末G。
(Example 10) Alumina powder I having a mixed composition of β-alumina-containing powder G of Example 9, α-alumina powder H1, and both powders G and H is prepared. These powders G.

H,Iをスプレードライヤーによりそれぞれ40〜12
0μmに造粒する。
H and I were dried by a spray dryer to 40 to 12
Granulate to 0 μm.

次に、今バープレス成形装置の成形型内の開口端部以外
の部分、つまり第6図に示す固体電解質管本体4aを成
形する空間にβ−アルミナ粉末Gを体積のほぼ75%充
填し、その上方に中間組成のアルミナ粉末Iをほぼ10
%充填した後固体電解質管4の基端筒部4c及び絶縁リ
ング2を成形する空間にα−アルミナ粉末Hをほぼ15
%充填し、これらの3種類の複合組成の固体電解質管素
地をラバープレス成形する。その後、乾燥、表面仕上げ
及び脱脂を行った後、1630℃で60分間焼成し、第
6図に示すような固体電解質管4を得た。
Next, approximately 75% of the volume of β-alumina powder G is filled into the part other than the open end of the mold of the bar press molding apparatus, that is, the space where the solid electrolyte tube body 4a shown in FIG. 6 is to be molded. Approximately 10% of alumina powder I of intermediate composition is placed above it.
After filling the solid electrolyte tube 4 with approximately 15% of α-alumina powder H into the space where the proximal end cylindrical portion 4c and the insulating ring 2 are to be formed.
% filling, and the solid electrolyte tube bases with these three types of composite compositions are rubber press molded. Thereafter, after drying, surface finishing and degreasing, the tube was fired at 1630° C. for 60 minutes to obtain a solid electrolyte tube 4 as shown in FIG.

このようにして得られた固体電解質管4は、前記実施例
9の作用に加えて、本体4aと基端筒部4cとの連結が
より強固となり、両部材の熱膨■し率の差異による応力
を緩和することができる。
In addition to the effects of Example 9, the thus obtained solid electrolyte tube 4 has a stronger connection between the main body 4a and the proximal tube portion 4c, which is due to the difference in coefficient of thermal expansion between the two members. Stress can be alleviated.

なお、本発明は次のように具体化することも可能である
Note that the present invention can also be embodied as follows.

第1図に示す実施例において、固体電解質管4の内周面
にも外被154bと同様の組成を有する内被1(図示略
)を形成したり、第3図〜第6図に示す各実施例におい
て、境界部の組成を連続的に変化させたりする等、本発
明の特許請求の範囲内で構成を任意に変更して具体化す
ることも可能である。
In the embodiment shown in FIG. 1, an inner sheath 1 (not shown) having the same composition as the outer sheath 154b is formed on the inner peripheral surface of the solid electrolyte tube 4, and In the embodiments, it is also possible to change the structure arbitrarily and embody it within the scope of the claims of the present invention, such as by continuously changing the composition of the boundary part.

(発明の効果) 以上詳述したように、請求項1記載の固体電解質管は、
その表面に外被層が焼結されているので、イオン転意抵
抗を低下させることなく外被層の収縮力により固体電解
質管本体が圧縮され、このため機械的強度を向上して、
電池の組立時や電池運転の昇降温時における固体電解質
管の破損を抑制して耐久信頼性を向上することができる
効果がある。
(Effect of the invention) As detailed above, the solid electrolyte tube according to claim 1 has the following features:
Since the outer covering layer is sintered on the surface, the solid electrolyte tube body is compressed by the contraction force of the outer covering layer without reducing the ion rolling resistance, thus improving the mechanical strength.
This has the effect of improving durability and reliability by suppressing damage to the solid electrolyte tubes during battery assembly and temperature rise and fall during battery operation.

又、請求項2記載の固体電解’i管は、固体電解In管
の基端筒部が機械的強度に優れているので、電池の組立
時や電池運転の昇降温時における固体電解質管の応力に
よる破壊を防止して耐久信頼性を向上することができる
とともに、固体電解質管本体はイオン伝導抵抗の低いβ
−アルミナにより形成されているので、電池容量を増大
することができる効果もある。
In addition, in the solid electrolyte 'i-tube according to claim 2, since the proximal cylindrical part of the solid electrolyte In tube has excellent mechanical strength, the stress of the solid electrolyte tube is reduced during battery assembly and during temperature rise and fall during battery operation. In addition to improving durability and reliability by preventing damage due to
-Since it is made of alumina, it also has the effect of increasing battery capacity.

請求項3記載の固体電解質管は、請求項2記載の固体電
解質管の作用に加えて、固体電解質管本体と基端筒部と
の連結が強固となり、さらに、熱膨張率の違いによる応
力発生を緩和して固体電解質管の耐久性を向上すること
ができる効果がある。
In addition to the effects of the solid electrolyte tube according to claim 2, the solid electrolyte tube according to claim 3 has a strong connection between the solid electrolyte tube main body and the base end cylinder portion, and furthermore, the solid electrolyte tube has a strong connection between the solid electrolyte tube body and the base end cylinder portion, and furthermore, stress generation due to a difference in coefficient of thermal expansion is achieved. This has the effect of improving the durability of the solid electrolyte tube by alleviating it.

請求項4記載の固体電解質管は、基端筒部と絶縁リング
とがα−アルミナにより一体的に形成され、かつ全体が
一体的に形成されているので、請求項2記載の固体電解
質管の効果に加えて、フランジ部までの一体構造の固体
電解質管が形成でき、しかも絶縁リングと固体電解質管
を別途連結する工程を不要にして製造を容易に行い、コ
ストダウンを計ることができる。
In the solid electrolyte tube according to claim 4, the base end cylinder portion and the insulating ring are integrally formed of α-alumina, and the whole is integrally formed. In addition to the effects, it is possible to form a solid electrolyte tube with an integral structure up to the flange portion, and it also eliminates the need for a separate step of connecting the insulating ring and the solid electrolyte tube, making manufacturing easier and reducing costs.

請求項5記載の固体電解質管は、請求項3及び4記載の
固体電解質管の効果を合せ有するものである。
The solid electrolyte tube according to the fifth aspect has the effects of the solid electrolyte tube according to the third and fourth aspects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明を具体化した一実施例を示す固体電解質
管を一部省略して示す中央部縦断面図、第2図は製造工
程途上で製造される固体電解質管本体素地を示す一部省
略中央部縦断面図、第3図は請求項2記載の固体電解質
管の中央部縦断面図、第4図は請求項3記載の固体電解
質管の中央部縦断面図、第5図は請求項4記載の固体電
解質管の中央部縦断面図、第6図は請求項5記載の固体
電解質管の中央部縦断面図、第7図は従来のナトリウム
−硫黄電池の中央部縦断面図である。 2・・・絶縁リング、4・・・固体電解質管、4a・・
・固体電解質管本体、4a ・・・固体電解質管本体素
地、4b・・・外被層、4b’・・・外被層素地、4c
・・・基端筒部、4c・・・基端筒部素地、4d・・・
中間筒部、4d”・・・中間筒部素地。
FIG. 1 is a longitudinal cross-sectional view of the central part of a solid electrolyte tube showing an embodiment of the present invention, with a portion omitted, and FIG. 3 is a vertical sectional view of the central portion of the solid electrolyte tube according to claim 2, FIG. 4 is a vertical sectional view of the central portion of the solid electrolyte tube according to claim 3, and FIG. FIG. 6 is a vertical sectional view of the central portion of the solid electrolyte tube according to claim 4, FIG. 6 is a longitudinal sectional view of the central portion of the solid electrolyte tube according to claim 5, and FIG. 7 is a vertical sectional view of the central portion of a conventional sodium-sulfur battery. It is. 2... Insulating ring, 4... Solid electrolyte tube, 4a...
・Solid electrolyte tube body, 4a...Solid electrolyte tube body base, 4b...Outer cover layer, 4b'...Outer cover layer base, 4c
... Proximal tube portion, 4c... Proximal tube portion base material, 4d...
Intermediate cylindrical part, 4d"...Intermediate cylindrical part base material.

Claims (1)

【特許請求の範囲】 1、β−アルミナよりなる単一構造をなす固体電解質管
本体(4a)の外表面に、該本体(4a)よりも焼成冷
却時の収縮率が大きいβ−アルミナよりなる外被層(4
b)を一体的に焼結したことを特徴とするナトリウム−
硫黄電池用の固体電解質管。 2、固体電解質管本体(4a)をイオン伝導抵抗が小さ
いβ−アルミナにより形成し、絶縁リング(2)に嵌合
される基端筒部(4c)を、強度の大きいβ−アルミナ
により形成し、固体電解質管本体(4a)と基端筒部(
4c)を一体的に焼結したことを特徴とするナトリウム
−硫黄電池用の固体電解質管。 3、請求項2記載の固体電解質管において、前記固体電
解質管本体(4a)と基端筒部(4c)との間に、両者
の中間物性を有するβ−アルミナよりなる中間筒部(4
d)を一体的に焼結したことを特徴とするナトリウム−
硫黄電池用の固体電解質管。 4、固体電解質管本体(4a)をイオン伝導抵抗が小さ
いβ−アルミナにより形成し、基端筒部(4c)及び絶
縁リング(2)を、α−アルミナにより形成し、固体電
解質管本体(4a)と基端筒部(4c)及び絶縁リング
(2)とを一体的に焼結したことを特徴とするナトリウ
ム−硫黄電池用の固体電解質管。 5、請求項4記載の固体電解質管において、固体電解質
管本体(4a)と基端筒部(4c)との間に両者の混合
物質よりなるアルミナよりなる中間筒部(4d)を一体
的に焼結したことを特徴とするナトリウム−硫黄電池用
の固体電解質管。
[Claims] 1. The outer surface of the solid electrolyte tube main body (4a), which has a single structure made of β-alumina, is made of β-alumina which has a higher shrinkage rate during firing and cooling than the main body (4a). Outer layer (4
b) characterized by being integrally sintered.
Solid electrolyte tube for sulfur batteries. 2. The solid electrolyte tube body (4a) is made of β-alumina with low ionic conduction resistance, and the base end cylinder portion (4c) fitted to the insulating ring (2) is made of β-alumina with high strength. , the solid electrolyte tube body (4a) and the proximal tube portion (
A solid electrolyte tube for a sodium-sulfur battery, characterized in that 4c) is integrally sintered. 3. In the solid electrolyte tube according to claim 2, an intermediate tube portion (4) made of β-alumina having intermediate physical properties between the solid electrolyte tube body (4a) and the proximal tube portion (4c) is provided between the solid electrolyte tube body (4a) and the proximal tube portion (4c).
d) characterized by being integrally sintered.
Solid electrolyte tube for sulfur batteries. 4. The solid electrolyte tube body (4a) is made of β-alumina with low ionic conduction resistance, the proximal tube portion (4c) and the insulating ring (2) are made of α-alumina, and the solid electrolyte tube body (4a) is made of α-alumina. ), a base end cylinder part (4c), and an insulating ring (2) are integrally sintered. A solid electrolyte tube for a sodium-sulfur battery. 5. In the solid electrolyte tube according to claim 4, an intermediate tube portion (4d) made of alumina made of a mixture of the solid electrolyte tube body (4a) and the proximal tube portion (4c) is integrally provided between the solid electrolyte tube body (4a) and the proximal tube portion (4c). A solid electrolyte tube for a sodium-sulfur battery characterized by being sintered.
JP63139635A 1988-06-07 1988-06-07 Solid electrolyte tube for sodium-sulfur battery Expired - Lifetime JPH0668975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63139635A JPH0668975B2 (en) 1988-06-07 1988-06-07 Solid electrolyte tube for sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63139635A JPH0668975B2 (en) 1988-06-07 1988-06-07 Solid electrolyte tube for sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH0215578A true JPH0215578A (en) 1990-01-19
JPH0668975B2 JPH0668975B2 (en) 1994-08-31

Family

ID=15249872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63139635A Expired - Lifetime JPH0668975B2 (en) 1988-06-07 1988-06-07 Solid electrolyte tube for sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH0668975B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020990A1 (en) * 2016-07-25 2018-02-01 日本電気硝子株式会社 Solid electrolyte powder, and electrode composite material and all-solid sodium ion secondary battery formed using same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018020990A1 (en) * 2016-07-25 2018-02-01 日本電気硝子株式会社 Solid electrolyte powder, and electrode composite material and all-solid sodium ion secondary battery formed using same

Also Published As

Publication number Publication date
JPH0668975B2 (en) 1994-08-31

Similar Documents

Publication Publication Date Title
CN105698542B (en) A kind of anti-lithium battery high temperature corrosion stratiform saggar and preparation method thereof
JP6861942B2 (en) Solid electrolyte sheet and its manufacturing method, and sodium ion all-solid-state secondary battery
WO2021124944A1 (en) Member for power storage device, all-solid-state battery, and method for manufacturing member for power storage device
KR101876059B1 (en) Manufacturing method of duplex solid electrolyte membrane, duplex solid electrolyte membrane thereof and manufacturing method all solid state cell thereof
US5728331A (en) Method of preparing a battery separator
JPH02257574A (en) Anode for high temperature rechangeable electrochemical power storage cell
CN109256499A (en) A kind of glass-sealed seal assembly of aluminum hull power battery electrode pole and its method for sealing
JPH0215578A (en) Solid electrolytic pipe for sodium-sulfur battery
CN113943151B (en) Sagger for preparing lithium aluminum titanium phosphate solid electrolyte material and preparation method thereof
CN113666721A (en) Alumina ceramic tube shell with composite structure and preparation method thereof
KR101353600B1 (en) Sodium-sulfur rechargeable battery and method for manufacturing the same
JPH03126505A (en) Hydrostatic pressure mold for ceramic pipe
WO2024135357A1 (en) Power storage element and all-solid-state secondary battery
JP4382896B2 (en) Firing method for bottomed cylindrical beta-alumina ceramics compact
JPH07192754A (en) Solid electrolyte for sodium- sulfur battery and its preparation
WO2024135358A1 (en) Power storage element and all-solid-state secondary battery
US5024907A (en) Solid electrolyte tube for sodium sulfur cells and surface finishing process thereof
JP2719352B2 (en) Method for manufacturing solid electrolyte tube for sodium-sulfur battery
JPH0631647Y2 (en) Solid electrolyte tube for sodium-sulfur battery
JP3446093B2 (en) Beta-alumina sintered body and method for producing the same
JPH1112028A (en) Beta"-alumina-sintered solid electrolyte and its production
JP2000128627A (en) Bottomed cylindrical beta-alumina tube and its production
JPS59105276A (en) Lead-acid battery
CN117105679A (en) Preparation method of refractory crucible capable of reducing metal nickel smelting bonding wall hanging
JPH03163763A (en) Beta alumina solid electrolyte