JPH0668975B2 - Solid electrolyte tube for sodium-sulfur battery - Google Patents

Solid electrolyte tube for sodium-sulfur battery

Info

Publication number
JPH0668975B2
JPH0668975B2 JP63139635A JP13963588A JPH0668975B2 JP H0668975 B2 JPH0668975 B2 JP H0668975B2 JP 63139635 A JP63139635 A JP 63139635A JP 13963588 A JP13963588 A JP 13963588A JP H0668975 B2 JPH0668975 B2 JP H0668975B2
Authority
JP
Japan
Prior art keywords
solid electrolyte
electrolyte tube
alumina
sodium
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63139635A
Other languages
Japanese (ja)
Other versions
JPH0215578A (en
Inventor
幹夫 中川
嘉一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63139635A priority Critical patent/JPH0668975B2/en
Publication of JPH0215578A publication Critical patent/JPH0215578A/en
Publication of JPH0668975B2 publication Critical patent/JPH0668975B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3918Sodium-sulfur cells characterised by the electrolyte
    • H01M10/3927Several layers of electrolyte or coatings containing electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はナトリウム−硫黄電池用の固体電解質管に係わ
り、さらに詳しくは固体電解質管の機械的強度を向上し
て電池組み立て時や電池運転の昇降温時の耐久信頼性を
向上し、かつイオン伝導抵抗を低減して電池容量を向上
することができる固体電解質管の構造に関するものであ
る。
TECHNICAL FIELD The present invention relates to a solid electrolyte tube for a sodium-sulfur battery, and more particularly, to improve the mechanical strength of the solid electrolyte tube to improve battery assembly and battery operation. The present invention relates to a structure of a solid electrolyte tube capable of improving durability reliability during temperature rising / falling and reducing ion conduction resistance to improve battery capacity.

(従来の技術) 最近、電気自動車用、夜間電力貯蔵用の二次電池として
性能面及び経済面の両面において優れ、300〜350℃で作
動する高温型のナトリウム−硫黄電池の研究開発が進め
られている。
(Prior Art) Recently, research and development of a high temperature type sodium-sulfur battery which is excellent in both performance and economy as a secondary battery for electric vehicles and for storing electric power at night and which operates at 300 to 350 ° C. ing.

このナトリウム−硫黄電池として、従来、第7図に示す
ように陽極活物質である溶融硫黄Sを含浸したカーボン
マット等の陽極用導電材Mを収納する円筒状の陽極容器
1と、該陽極容器1の上端部に対し、α−アルミナ製の
絶縁リング2を介して連結され、かつ溶融金属ナトリウ
ムNaを貯留する陰極容器3と、前記絶縁リング2の内周
部に固着され、かつ陰極活物質であるナトリウムイオン
(Na+)を選択的に透過させる機能を有する有底円筒状
の多結晶β−アルミナ製の固体電解質管4とからなって
いる。
As this sodium-sulfur battery, conventionally, as shown in FIG. 7, a cylindrical anode container 1 for accommodating a conductive material M for an anode such as carbon mat impregnated with molten sulfur S as an anode active material, and the anode container 1. A cathode container 3 which is connected to the upper end of 1 through an insulating ring 2 made of α-alumina and which stores molten metal sodium Na, and which is fixed to the inner peripheral portion of the insulating ring 2 and has a cathode active material. And a solid electrolyte tube 4 made of polycrystalline β-alumina having a cylindrical shape with a bottom and having a function of selectively transmitting sodium ions (Na + ).

又、陰極容器3の上部蓋の中央部には、該陰極容器3を
通して固体電解質管4底部まで延びた細長い陰極管5が
貫通支持されている。
A slender cathode tube 5 extending through the cathode container 3 to the bottom of the solid electrolyte tube 4 is penetratingly supported at the center of the upper lid of the cathode container 3.

そして、放電時には次のような反応によってナトリウム
イオンが固体電解質管4を透過して陽極容器1内の硫黄
Sと反応し、多硫化ナトリウムを生成する。
Then, at the time of discharge, sodium ions permeate the solid electrolyte tube 4 and react with the sulfur S in the anode container 1 by the following reaction to generate sodium polysulfide.

2Na+XS→Na2Sx 又、充電時には放電時とは逆の反応が起こり、ナトリウ
ムNa及び硫黄Sが生成される。
2Na + XS → Na 2 Sx Also, during charging, a reaction reverse to that during discharging occurs, and sodium Na and sulfur S are produced.

上記のように構成されたナトリウム−硫黄電池の固体電
解質管4は、酸化アルミニウム、酸化ナトリウム、酸化
リチウム、あるいは酸化マグネシウム等を適当に配合し
てラバープレス成形した後、電気炉中にて加熱して焼結
形成される。この固体電解質管4は前述したように絶縁
リング2に嵌合するとともに、陽極用導電材Mに嵌合し
て使用されるので、高い機械的強度が要求され、かつナ
トリウムイオンの伝導抵抗を低下することが要求され
る。
The solid electrolyte tube 4 of the sodium-sulfur battery configured as described above is appropriately mixed with aluminum oxide, sodium oxide, lithium oxide, magnesium oxide or the like, rubber-press molded, and then heated in an electric furnace. Formed by sintering. Since the solid electrolyte tube 4 is used by being fitted to the insulating ring 2 and also fitted to the anode conductive material M as described above, high mechanical strength is required and the sodium ion conduction resistance is lowered. Required to do so.

(発明が解決しようとする課題) 前述した単一構造からなる従来の固体電解質管4は、安
定化剤としての酸化リチウム(Li2O)又は酸化マグネシ
ウム(MgO)の配合割合及び焼成温度等を変化すること
により、機械的強度及びイオン伝導抵抗が調整可能であ
る。ところが、機械的強度を増大すると、イオン伝導抵
抗が増加し、反対にイオン伝導抵抗を減少すると、機械
的強度も低下する傾向にあり、従って、単一構造のβ−
アルミナよりなる固体電解質管4では両者の特性をとも
に満足することは極めて困難であり、絶縁リング2と固
体電解質管4の組みつけ誤差や陽極用導電材Mの製作誤
差があると、ナトリウム−硫黄電池の組立時に固体電解
質管4を陽極用導電材Mへ嵌入する際、固体電解質管4
の基端部に応力が集中して破壊するという問題があっ
た。又、前述した製作誤差が問題とならない場合にも電
池運転の昇降温時において、陽極用導電材Mに含浸した
硫黄の溶融、凝固による熱歪あるいは陽極用導電材Mの
熱歪等により固体電解質管4が応力を受けて破損すると
いう問題があった。反対に、固体電解質管4の肉厚を大
きくして破損しないようにした場合にはイオン伝導抵抗
が増大して電池容量が低下するという問題があった。
(Problems to be Solved by the Invention) In the conventional solid electrolyte tube 4 having the above-mentioned single structure, the mixing ratio of lithium oxide (Li 2 O) or magnesium oxide (MgO) as a stabilizer, the firing temperature, etc. By changing, mechanical strength and ionic conduction resistance can be adjusted. However, when the mechanical strength is increased, the ionic conduction resistance is increased, and conversely, when the ionic conduction resistance is decreased, the mechanical strength tends to be reduced, and therefore, the β-structure of the single structure tends to decrease.
It is extremely difficult for the solid electrolyte tube 4 made of alumina to satisfy both characteristics, and if there is an assembly error between the insulating ring 2 and the solid electrolyte tube 4 or a manufacturing error of the anode conductive material M, sodium-sulfur is produced. When the solid electrolyte tube 4 is fitted into the conductive material M for the anode when the battery is assembled, the solid electrolyte tube 4 is
There was a problem that the stress was concentrated on the base end of the and was destroyed. Even when the above-mentioned manufacturing error does not cause a problem, the solid electrolyte is caused by the thermal strain due to the melting and solidification of the sulfur impregnated in the anode conductive material M, the thermal strain of the anode conductive material M, or the like when the battery is heated or cooled. There was a problem that the pipe 4 was stressed and damaged. On the other hand, when the solid electrolyte tube 4 is made thicker so as not to be damaged, there is a problem that the ionic conduction resistance increases and the battery capacity decreases.

本発明の第1の目的は機械的強度を向上して耐久信頼性
を向上することができるナトリウム−硫黄電池用の固体
電解質管を提供することにある。
A first object of the present invention is to provide a solid electrolyte tube for a sodium-sulfur battery which can improve mechanical strength and durability durability.

又、本発明の第2の目的は機械的強度を増大し、イオン
伝導抵抗を低下することができるナトリウム−硫黄電池
用の固体電解質管を提供することにある。
A second object of the present invention is to provide a solid electrolyte tube for a sodium-sulfur battery, which can increase mechanical strength and reduce ionic conduction resistance.

さらに、本発明の第3の目的は第2の目的に加えて、固
体電解質管と絶縁リングとの接合作業を省略することが
できるナトリウム−硫黄電池用の固体電解質管を提供す
ることにある。
Furthermore, a third object of the present invention is to provide a solid electrolyte tube for a sodium-sulfur battery which can omit the work of joining the solid electrolyte tube and the insulating ring in addition to the second object.

(課題を解決するための手段) 請求項1記載の固体電解質管は、第1の目的を達成する
ため、β−アルミナよりなる単一構造をなす固体電解質
管本体の内外両表面、特に外表面上に、該本体よりも焼
成冷却時の収縮率が大きいβ−アルミナよりなる外被層
を一体的に焼結するという手段をとっている。
(Means for Solving the Problem) In order to achieve the first object, the solid electrolyte tube according to claim 1 has both inner and outer surfaces, particularly an outer surface, of a solid electrolyte tube body having a single structure made of β-alumina. Above, the means for integrally sintering the outer coat layer made of β-alumina, which has a higher shrinkage rate during firing and cooling than the main body, is adopted.

請求項2記載の固体電解質管は第2の目的を達成するた
め、固体電解質管本体を基端筒部を形成するβ−アルミ
ナよりもイオン伝導抵抗が小さいβ−アルミナにより形
成し、絶縁リングに嵌合される基端筒部を、前記本体を
形成するβ−アルミナよりも強度の大きいβ−アルミナ
により形成し、固体電解質管本体と基端筒部を一体的に
焼結するという手段を採用している。
In order to achieve the second object of the solid electrolyte tube according to the second aspect, the solid electrolyte tube main body is formed of β-alumina having a smaller ionic conduction resistance than β-alumina forming the proximal end cylinder portion, and the solid electrolyte tube is formed on the insulating ring. The base tube part to be fitted is made of β-alumina, which is stronger than the β-alumina forming the body, and the solid electrolyte tube body and the base tube part are integrally sintered. is doing.

請求項3記載の固体電解質管は、第2の目的を達成する
ため、請求項2記載の固体電解質管において、前記固体
電解質管本体と基端筒部との間に、両者の中間物性を有
するβ−アルミナよりなる中間筒部を一体的に焼結する
という手段を採用している。
In order to achieve the second object, the solid electrolyte tube according to claim 3 is the solid electrolyte tube according to claim 2, wherein the solid electrolyte tube main body and the proximal end tube portion have intermediate physical properties therebetween. The method of integrally sintering the intermediate tubular portion made of β-alumina is adopted.

請求項4記載の固体電解質管は、第3の目的を達成する
ため、固体電解質管本体を基端筒部を形成するβ−アル
ミナよりもイオン伝導抵抗が小さいβ−アルミナにより
形成し、基端筒部及び絶縁リングを、α−アルミナによ
り形成し、β−アルミナよりなる固体電解質管本体とα
−アルミナよりなる基端筒部及び絶縁リングとを一体的
に焼結するという手段をとっている。
In order to achieve the third object of the solid electrolyte tube according to claim 4, the solid electrolyte tube main body is formed of β-alumina having an ion conduction resistance smaller than that of β-alumina forming the proximal end cylinder portion. The tubular portion and the insulating ring are made of α-alumina, and the solid electrolyte tube body made of β-alumina and α
-Means of integrally sintering the base end cylinder made of alumina and the insulating ring.

請求項5記載の固体電解質管は、第3の目的を達成する
ため、請求項4記載の固体電解質管において、固体電解
質管本体と基端筒部との間に両者を組成するα−アルミ
ナとβ−アルミナを混合した物質よりなる中間筒部を一
体的に焼結するという手段をとっている。
In order to achieve the third object, the solid electrolyte tube according to claim 5 is the solid electrolyte tube according to claim 4, wherein α-alumina is included between the solid electrolyte tube body and the proximal end tube portion. The means is to integrally sinter the intermediate cylinder part made of a substance mixed with β-alumina.

(作用) 請求項1記載の固体電解質管は、固体電解質管本体の表
面に焼成収縮率が大きい外被層が一体的に被着焼結され
ているので、外被層の収縮力により固体電解質管本体が
圧縮され、このため機械的強度が向上し、絶縁リングに
嵌合固定してナトリウム−硫黄電池に使用した場合、該
基端筒部に応力が作用してもその応力により破壊される
ことはない。
(Operation) In the solid electrolyte tube according to claim 1, since the outer coating layer having a large firing shrinkage rate is integrally adhered and sintered on the surface of the solid electrolyte tube body, the solid electrolyte tube is contracted by the outer coating layer. The tube body is compressed, and therefore the mechanical strength is improved. When the tube body is fitted and fixed to the insulating ring and used in a sodium-sulfur battery, even if stress is applied to the proximal end tube portion, it is destroyed by the stress. There is no such thing.

又、請求項2記載の固体電解質管も、基端筒部の機械的
強度が向上するので、絶縁リングに嵌合固定してナトリ
ウム−硫黄電池に使用した場合、該基端筒部に応力が作
用してもその応力により破壊されることはない。又、固
体電解質管本体は基端筒部よりもイオン伝導抵抗の低い
β−アルミナにより形成されているので、電池容量が増
大する。
Also, in the solid electrolyte tube according to the second aspect, the mechanical strength of the proximal tube portion is improved. Therefore, when the solid electrolyte tube is fitted and fixed to an insulating ring and used in a sodium-sulfur battery, stress is applied to the proximal tube portion. Even if it acts, it is not destroyed by the stress. Further, since the solid electrolyte tube main body is formed of β-alumina having a lower ionic conduction resistance than the base end tube portion, the battery capacity is increased.

請求項3記載の固体電解質管は、請求項2記載の固体電
解質管の作用に加えて、固体電解質管本体と基端筒部と
の連結の急激な組成変化が抑制されて、両部材の熱膨脹
率の違いや熱歪等が中間筒体により吸収され、機械的強
度が向上する。
In addition to the function of the solid electrolyte tube according to claim 2, the solid electrolyte tube according to claim 3 suppresses a rapid composition change in the connection between the solid electrolyte tube body and the proximal end tube portion, and thus the thermal expansion of both members. The difference in the rate and the thermal strain are absorbed by the intermediate cylindrical body, and the mechanical strength is improved.

請求項4記載の固体電解質管は、基端筒部と絶縁リング
がα−アルミナにより一体的に形成されているので、請
求項2記載の固体電解質管の作用に加えて、絶縁リング
と固体電解質管を別途連結する工程が不要となる。
In the solid electrolyte tube according to claim 4, the base end tube portion and the insulating ring are integrally formed of α-alumina. Therefore, in addition to the function of the solid electrolyte tube according to claim 2, the insulating ring and the solid electrolyte are provided. The step of connecting the pipes separately is unnecessary.

請求項5記載の固体電解質管は、請求項3記載の固体電
解質管の作用に加えて、絶縁リングと固体電解質管本体
を別途連結する工程が不要となる。
According to the solid electrolyte tube of the fifth aspect, in addition to the function of the solid electrolyte tube of the third aspect, the step of separately connecting the insulating ring and the solid electrolyte tube body is not necessary.

(実施例) 実施例1〜実施例4はそれぞれ請求項1記載の固体電解
質管の製造方法を具体化し、実施例5,6は請求項2記載
の固体電解質管の製造方法、実施例7,8は請求項3記載
の固体電解質管の製造方法、実施例9は請求項4記載の
固体電解質管の製造方法、実施例10は請求項5記載の固
体電解質管の製造方法をそれぞれ具体化したものであ
る。以下に各実施例を順次説明する。
(Examples) Examples 1 to 4 embody the method for producing a solid electrolyte tube according to claim 1, and Examples 5 and 6 show a method for producing a solid electrolyte tube according to claim 2 and Example 7, 8 is a method for manufacturing a solid electrolyte tube according to claim 3, Example 9 is a method for manufacturing a solid electrolyte tube according to claim 4, and Example 10 is a method for manufacturing a solid electrolyte tube according to claim 5. It is a thing. Each embodiment will be described below in order.

(実施例1) 最初に、90.2重量部の酸化アルミニウム(Al2O3)、9.0
重量部の酸化ナトリウム(Ma2O)及び0.8重量部の酸化
リチウム(Li2O)よりなる調合物を、100のボールミ
ルによる湿式粉砕により粉砕・混合・仮焼して比表面積
5m2/gのβ−アルミナ含有粉末を調整する。
Example 1 First, 90.2 parts by weight of aluminum oxide (Al 2 O 3 ) 9.0
Specific surface area by pulverizing, mixing and calcining a mixture consisting of 1 part by weight sodium oxide (Ma 2 O) and 0.8 parts by weight lithium oxide (Li 2 O) by wet pulverization with a 100 ball mill.
A powder containing 5 m 2 / g β-alumina is prepared.

その後、前記β−アルミナ含有粉末をスプレードライヤ
ーにより所定粒径(平均粒径が40〜120μm)に造粒す
る。
Then, the β-alumina-containing powder is granulated with a spray dryer to a predetermined particle size (average particle size is 40 to 120 μm).

次に、ラバープレス成形装置(アイソスタティックプレ
ス機)を使用し、圧力1.5ton/cm2で例えば外径が15m
m、肉厚が1.0mm、長さ150mmの袋管状をなす単一構造の
固体電解質管本体素地4a′(第2図参照)を成形する。
Next, using a rubber press molding machine (isostatic press machine), the pressure is 1.5 ton / cm 2 and the outer diameter is 15 m, for example.
A single-body solid electrolyte tube body 4a '(see FIG. 2) having a m-shape, a wall thickness of 1.0 mm and a length of 150 mm and having a tubular shape is formed.

さらに、前記固体電解質管本体素地4a′と同一の組成を
有する比表面積9m2/gのβ−アルミナ含有粉末のスラ
リー中に成形体を浸漬し、前記本体素地4a′の表面に厚
さ0.2mmの外被層素地4b′(第2図鎖線参照)を形成す
る。次いで、乾燥、表面仕上げ及び脱脂を行った後、16
10℃で5分間焼成し、第1図に示すように固体電解質管
本体4aの外表面に外被層4bが一体的に被着されてなる固
体電解質管4を得る。
Further, the molded body is immersed in a slurry of β-alumina-containing powder having a specific surface area of 9 m 2 / g and having the same composition as that of the solid electrolyte tube body 4a ′, and the surface of the body 4a ′ has a thickness of 0.2 mm. To form the outer coat base material 4b '(see the chain line in FIG. 2). Then, after drying, surface finishing and degreasing, 16
By firing at 10 ° C. for 5 minutes, as shown in FIG. 1, the solid electrolyte tube 4 is obtained by integrally coating the outer surface of the solid electrolyte tube body 4a with the outer coat layer 4b.

前記外被層4bの肉厚は、本体4aの厚さの約1/100〜1
/2に設定される。
The thickness of the outer cover layer 4b is about 1/100 to 1 of the thickness of the main body 4a.
It is set to / 2.

このようにして得られた固体電解質管4は、外被層4bの
比表面積が本体4aのそれよりも大きいので、焼成冷却時
に外被層4bの収縮率が本体4aと比較して大きくなり、従
って、外被層4bにより固体電解質管本体4aが圧縮される
ため、固体電解質管4の強度が増大する。なお、外被層
4bの比表面積を大きくしても、イオン伝導抵抗は電池機
能に影響を及ぼすほど変化しないので問題はない。
In the solid electrolyte tube 4 thus obtained, since the specific surface area of the outer coating layer 4b is larger than that of the main body 4a, the shrinkage rate of the outer coating layer 4b during firing and cooling is larger than that of the main body 4a, Therefore, the solid electrolyte tube body 4a is compressed by the outer coat layer 4b, and the strength of the solid electrolyte tube 4 increases. The outer layer
Even if the specific surface area of 4b is increased, there is no problem because the ionic conduction resistance does not change so much as to affect the battery function.

(実施例2) 89.3重量部の変化アルミニウム、10重量部の酸化ナトリ
ウム及び0.7重量部の酸化リチウムよりなる調合物を、
実施例1と同様に粉砕・混合・仮焼して比表面積5m2
gのβ−アルミナ含有粉末を調整し、これを実施例1と
同様にスプレードライヤにより所定粒径(平均粒径が40
〜120μm)に造粒する。
Example 2 A formulation consisting of 89.3 parts by weight of variable aluminum, 10 parts by weight of sodium oxide and 0.7 parts by weight of lithium oxide,
Grinding, mixing, and calcination as in Example 1 to give a specific surface area of 5 m 2 /
g of β-alumina-containing powder was prepared, and this was sprayed in the same manner as in Example 1 to give a predetermined particle size (average particle size: 40
Granulate to 120 μm).

次に、ラバープレス成形装置を使用し、圧力1.5ton/cm
2で例えば外径が15mm、肉厚が2.0mm、長さ150mmの袋管
状をなす単一構造の固体電解質管本体素地4a′(第2図
参照)を成形する。この固体電解質管本体素地4a′を約
1000℃で2時間脱脂し、脱脂後の該本体素地4a′の表面
に対し、該素地4a′と同一の組成を有する比表面積9m2
/gのβ−アルミナ含有粉末のスラリーをスプレーによ
り塗布し、前記本体素地4a′の表面に厚さ0.5mmの外被
層素地4b′を形成する。その後、乾燥、表面仕上げ及び
脱脂を行った後、1600℃で10分間焼成し、固体電解質管
本体4aの外表面上に外被層4bを一体的に形成した第1図
に示す固体電解質管4を得る。
Next, using a rubber press molding device, pressure 1.5ton / cm
2, for example, an outer diameter of 15 mm, wall thickness 2.0 mm, forming a solid electrolyte tube body base material 4a of the single structure '(see FIG. 2) forming the bag tubular length 150 mm. About this solid electrolyte tube body 4a '
Degreasing at 1000 ° C. for 2 hours, and the specific surface area of the surface of the body 4a ′ after degreasing is 9 m 2 having the same composition as that of the body 4a ′.
/ G of β-alumina-containing powder slurry is applied by spraying to form a 0.5 mm-thick outer layer base 4b 'on the surface of the main body 4a'. Then, after drying, surface finishing and degreasing, it is baked at 1600 ° C. for 10 minutes to integrally form the outer coating layer 4b on the outer surface of the solid electrolyte tube body 4a. To get

(実施例3) 89.0重量部の酸化アルミニウム、9.0重量部の酸化ナト
リウム及び2.0重量部の酸化マグネシウムよりなる調合
物を、実施例1と同様に粉砕・混合・仮焼して比表面積
5m2/gのβ−アルミナ含有粉末を調整し、同じく実施
例1と同様にスプレードライヤにより所定粒径(平均粒
径が40〜120μm)に造粒する。
(Example 3) A specific surface area was obtained by crushing, mixing and calcining a formulation consisting of 89.0 parts by weight of aluminum oxide, 9.0 parts by weight of sodium oxide and 2.0 parts by weight of magnesium oxide in the same manner as in Example 1.
A powder containing β-alumina of 5 m 2 / g was prepared and granulated to a predetermined particle size (average particle size of 40 to 120 μm) by a spray dryer as in Example 1.

次に、ラバープレス成形装置を使用し、圧力2.5ton/cm
2で例えば外径が15mm、肉厚が2.0mm、長さ150mmの袋管
状をなす第2図に示す単一構造の固体電解質管本体素地
4a′を成形する。この固体電解質管本体素地4a′の表面
に対し、該素地4a′と同一の組成を有する比表面積9m2
/gのβ−アルミナ含有粉末のスラリーをスプレーによ
り塗布し、厚さ0.2mmの外被層素地4b′を形成する。そ
の後、乾燥・表面仕上げ及び脱脂を行った後、1630℃で
30分間焼成し、固体電解質管本体4aの表面に外被層4bを
一体的に形成した第1図に示す固体電解質管4を得る。
Next, using a rubber press molding machine, pressure 2.5ton / cm
2 , the outer diameter is 15 mm, the wall thickness is 2.0 mm, and the length is 150 mm.
Mold 4a '. A specific surface area of 9 m 2 having the same composition as that of the base body 4a ′ with respect to the surface of the base body 4a ′ of the solid electrolyte tube.
/ G of β-alumina-containing powder slurry is applied by spraying to form a coating layer base 4b 'having a thickness of 0.2 mm. After that, after drying, surface finishing and degreasing, at 1630 ℃
The solid electrolyte tube 4 shown in FIG. 1 is obtained by firing for 30 minutes to integrally form a jacket layer 4b on the surface of the solid electrolyte tube body 4a.

(実施例4) 87.0重量部の酸化アルミニウム、10重量部の酸化ナトリ
ウム及び3.0重量部の酸化マグネシウムよりなる調合物
を、実施例1と同様に粉砕・混合・仮焼して比表面積5m
2/gのβ−アルミナ含有粉末を調整し、スプレードラ
イヤにより所定粒径(平均粒径が40〜120μm)に造粒
する。
(Example 4) A mixture of 87.0 parts by weight of aluminum oxide, 10 parts by weight of sodium oxide and 3.0 parts by weight of magnesium oxide was pulverized, mixed and calcined in the same manner as in Example 1 to give a specific surface area of 5 m.
A powder containing 2 / g of β-alumina is prepared and granulated to a predetermined particle size (average particle size is 40 to 120 μm) by a spray dryer.

次に、ラバープレス成形装置を使用し、圧力2.0ton/cm
2で例えば外径が15mm、肉厚が1.0mm、長さ150mmの袋管
状をなす第2図に図示す単一構造の固体電解質管本体素
地4a′を成形する。この素地4a′を約1000℃で2時間脱
脂し、脱脂後の素地4a′を該素地と同一の組成を有する
比表面積9m2/gのβ−アルミナ含有粉末のスラリーに
浸漬し、該素地4a′の表面に厚さ0.3mmの外被層素地4
b′を被着形成する。その後、乾燥・表面仕上げ及び脱
脂を行った後、1610℃で10分間焼成し、固体電解質管本
体4aの外表面に外被層4bを一体的に被着形成した第1図
に示す固体電解質管4を得る。
Next, using a rubber press molding machine, pressure 2.0ton / cm
2 , a solid electrolyte tube body 4a 'of a single structure shown in FIG. 2 is formed, which has a tubular shape with an outer diameter of 15 mm, a wall thickness of 1.0 mm and a length of 150 mm. This base material 4a 'was degreased at about 1000 ° C. for 2 hours, and the degreased base material 4a' was immersed in a slurry of β-alumina-containing powder having a specific surface area of 9 m 2 / g and the same composition as the base material. ′ Surface 0.3 mm thick outer layer substrate 4
Deposit b '. Then, after drying, surface finishing, and degreasing, baking is performed at 1610 ° C. for 10 minutes, and the outer coating layer 4b is integrally formed on the outer surface of the solid electrolyte tube main body 4a to form the solid electrolyte tube shown in FIG. Get 4.

(実施例5) 90.5重量部の酸化アルミニウム、9重量部の酸化ナトリ
ウム及び0.5重量部の酸化リチウムよりなる調合物を、
実施例1と同様に粉砕・混合・仮焼してβ−アルミナ含
有粉末Aを調整するとともに、90.2重量部の酸化アルミ
ニウム、9重量部の酸化ナトリウム及び0.8重量部の酸
化ナトリウムよりなる調合物を、同様に粉砕・混合して
β−アルミナ含有粉末Bを調整する。その後、前記β−
アルミナ含有粉末A,Bを、実施例1と同様にスプレード
ライヤにより所定粒径(平均粒径が40〜120μm)に造
粒する。
Example 5 A formulation consisting of 90.5 parts by weight aluminum oxide, 9 parts by weight sodium oxide and 0.5 parts by weight lithium oxide,
The β-alumina-containing powder A was pulverized, mixed and calcined in the same manner as in Example 1 to prepare a powder A containing 90.2 parts by weight of aluminum oxide, 9 parts by weight of sodium oxide and 0.8 parts by weight of sodium oxide. Similarly, the β-alumina-containing powder B is pulverized and mixed to prepare the powder B. Then, the β-
Alumina-containing powders A and B are granulated to a predetermined particle size (average particle size is 40 to 120 μm) by a spray dryer as in Example 1.

次に、ラバープレス成形装置の成形型内の開口端部以外
の部分、つまり固体電解質管4の本体4aを成形する空間
にβ−アルミナ含有粉末Bをほぼ全体積の85%、それ以
外の部分、つまり第3図に示す固体電解質管4の基端筒
部4cを成形する空間にβ−アルミナ含有粉末Aをほぼ15
%充填し、圧力2.5ton/cm2で複合組成の固体電解質管
素地を成形する。その後、乾燥、表面仕上げ及び脱脂を
行った後、1600℃で5分間焼成し、第3図に示す固体電
解質管4を得る。
Next, 85% of the total volume of the β-alumina-containing powder B is contained in a portion other than the open end portion in the molding die of the rubber press molding apparatus, that is, in the space for molding the main body 4a of the solid electrolyte tube 4, and other portions. That is, about 15 parts of β-alumina-containing powder A is filled in the space for molding the base end tube portion 4c of the solid electrolyte tube 4 shown in FIG.
%, And a solid electrolyte tube base material having a composite composition is molded at a pressure of 2.5 ton / cm 2 . Then, after drying, surface finishing and degreasing, baking is performed at 1600 ° C. for 5 minutes to obtain a solid electrolyte tube 4 shown in FIG.

このようにして得られた固体電解質管4は、基端筒部4c
が本体4aよりも強度上優れているので、電池組立時や電
池運転の昇降温時に作用する応力に充分耐えることがで
き、一方、固体電解質管本体4aは基端筒部4cよりもイオ
ン伝導抵抗が小さいので、基端筒部4cを形成するアルミ
ナで前記本体4aを形成した場合と比較して電池容量を向
上することができる。
The solid electrolyte tube 4 thus obtained has a base end tube portion 4c.
Since it is superior in strength to the main body 4a, it can sufficiently withstand the stress acting during battery assembly or temperature rise / fall during battery operation, while the solid electrolyte tube main body 4a has an ionic conduction resistance higher than that of the proximal end tube portion 4c. Is small, the battery capacity can be improved as compared with the case where the main body 4a is formed of alumina forming the proximal end cylinder portion 4c.

(実施例6) この実施例6では89.5重量部のα−アルミナ、9.0重量
部の酸化ナトリウム及び1.5重量部の酸化マグネシウム
よりなる調合物により、実施例5と同様にβ−アルミナ
含有粉末Cを調製するとともに、89.0重量部のα−アル
ミナ、9.0重量部の酸化ナトリウム及び3.0重量部の酸化
マグネシウムよりなる調合物により実施例5と同様にβ
−アルミナ含有粉末Dを調製する。このβ−アルミナ含
有粉末Cにより基端筒部4cを、Dにより固体電解質管本
体4aを形成し、第3図に示す固体電解質管4を製造する
が、最終工程の温度を1620℃で約40分間焼成する点を除
いて実施例5と同じであるため詳しい製造工程の説明を
省略する。このようにして得られた固体電解質管4は、
実施例5の固体電解質管と同様の効果を有する。
Example 6 In this Example 6, a β-alumina-containing powder C was prepared in the same manner as in Example 5 by using a formulation consisting of 89.5 parts by weight of α-alumina, 9.0 parts by weight of sodium oxide and 1.5 parts by weight of magnesium oxide. Prepared and prepared as in Example 5 with a formulation consisting of 89.0 parts by weight α-alumina, 9.0 parts by weight sodium oxide and 3.0 parts by weight magnesium oxide.
-Alumina-containing powder D is prepared. The β-alumina-containing powder C forms a proximal end tube portion 4c and D forms a solid electrolyte tube body 4a to manufacture the solid electrolyte tube 4 shown in FIG. 3. The final step temperature is 1620 ° C. Since it is the same as Example 5 except that it is fired for a minute, detailed description of the manufacturing process is omitted. The solid electrolyte tube 4 thus obtained is
It has the same effect as the solid electrolyte tube of Example 5.

(実施例7) この実施例7では、実施例5で調製したβ−アルミナ含
有粉末A,Bの他に、90.3重量部のα−アルミナ、9.0重量
部の酸化ナトリウム及び0.7重量部の酸化リチウムより
なる調合物を、前述した湿式粉砕により粉砕・混合・仮
焼して中間物性を備えたβ−アルミナ含有粉末Eを調製
する。
Example 7 In this Example 7, in addition to the β-alumina-containing powders A and B prepared in Example 5, 90.3 parts by weight of α-alumina, 9.0 parts by weight of sodium oxide and 0.7 parts by weight of lithium oxide were used. The β-alumina-containing powder E having intermediate properties is prepared by pulverizing, mixing, and calcining the above-described formulation by the wet pulverization described above.

その後、前記β−アルミナ含有粉末A,B,Eを、それぞれ
スプレードライヤーにより所定粒径(平均粒径が40〜12
0μm)に造粒する。
After that, the β-alumina-containing powders A, B, and E were respectively sprayed to a predetermined particle size (average particle size of 40 to 12).
Granulate to 0 μm).

次に、第4図に示すようにラバープレス成形装置の成形
型内の開口部以外の部分、つまり固体電解質管本体4aを
成形する空間にβ−アルミナ含有粉末Bをほぼ75%充填
し、その上部の筒部4dに前記粉末Eをほぼ10%充填し、
最後に開口部分、つまり固体電解質管4の基端筒部4cを
成形する空間にβ−アルミナ含有粉末Aをほぼ15%充填
し、圧力2.5ton/cm2で複合組成の固体電解質管素地を
成形する。その後、乾燥、表面仕上げ及び脱脂を行った
後、1590℃で10分間焼成し、上部ほど機械的強度の強い
第4図に示すような固体電解質管4を製造する。
Next, as shown in FIG. 4, about 75% of β-alumina-containing powder B was filled in a portion other than the opening in the molding die of the rubber press molding apparatus, that is, the space for molding the solid electrolyte tube main body 4a, and Almost 10% of the powder E is filled in the upper cylindrical portion 4d,
Finally, about 15% of β-alumina-containing powder A was filled in the opening, that is, the space for forming the proximal end tube portion 4c of the solid electrolyte tube 4, and the solid electrolyte tube base material of composite composition was formed at a pressure of 2.5 ton / cm 2. To do. Then, after drying, surface finishing and degreasing, baking is performed at 1590 ° C. for 10 minutes to manufacture a solid electrolyte tube 4 as shown in FIG.

この実施例7の固体電解質管4は、中間物性の筒部4dに
より本体4aと基端筒部4cの結合強度が向上するととも
に、熱膨脹率の差異による応力が緩和される。
In the solid electrolyte tube 4 of Example 7, the joint strength between the main body 4a and the base end cylinder 4c is improved by the intermediate physical properties of the tubular portion 4d, and the stress due to the difference in thermal expansion coefficient is relaxed.

(実施例8) この実施例8では前述した実施例6のβ−アルミナ含有
粉末C,Dと、88.7重量部のα−アルミナ、9.0重量部の酸
化ナトリウム及び2.3重量部の酸化マグネシウムの組成
からなるβ−アルミナ含有粉末Fとを使用して第4図に
示すような粉末Dで本体4aを、粉末Fで筒部4dを、粉末
Cで筒部4cをそれぞれ形成し、上部ほど機械的強度の強
い固体電解質管4を製造する。この実施例8では1630℃
で約30分間焼成する点において実施例7と相違し、その
他の製造工程は同様であるため、詳しい説明を省略す
る。
Example 8 In this Example 8, the composition of the β-alumina-containing powders C and D of Example 6 described above, 88.7 parts by weight of α-alumina, 9.0 parts by weight of sodium oxide and 2.3 parts by weight of magnesium oxide was used. The powder 4 as shown in FIG. 4 is used to form the main body 4a, the powder F to form the cylindrical portion 4d, and the powder C to form the cylindrical portion 4c. The solid electrolyte tube 4 having a high strength is manufactured. 1630 ° C. in this Example 8.
The difference from Example 7 is that the firing is performed for about 30 minutes, and the other manufacturing steps are the same, so detailed description will be omitted.

(実施例9) 89.0重量部のα−アルミナ、9.0重量部の酸化ナトリウ
ム及び3.0重量部の酸化マグネシウムよりなる調合物
を、前述した湿式粉砕により粉砕・混合・仮焼してβ−
アルミナ含有粉末Gを調整する。
Example 9 A formulation consisting of 89.0 parts by weight of α-alumina, 9.0 parts by weight of sodium oxide and 3.0 parts by weight of magnesium oxide was pulverized, mixed and calcined by the wet pulverization described above to obtain β-.
Alumina-containing powder G is prepared.

一方、α−アルミナを同様に粉砕・混合してα−アルミ
ナ粉末Hを用意する。
On the other hand, α-alumina is similarly pulverized and mixed to prepare α-alumina powder H.

その後、前記β−アルミナ含有粉末G,α−アルミナ粉末
Hを、それぞれスプレードライヤーにより所定粒径(平
均粒径が40〜120μm)に造粒する。
Then, the β-alumina-containing powder G and the α-alumina powder H are granulated to have a predetermined particle size (average particle size is 40 to 120 μm) by a spray dryer.

次に、ラバープレス成形装置の成形型内の開口端部以外
の部分、つまり第5図に図示する固体電解質管4の本体
4aを成形する空間にβ−アルミナ含有粉末Gを体積のほ
ぼ85%、それ以外の部分、つまり固体電解質管4の基端
筒部4c及び絶縁リング2を成形する空間にα−アルミナ
粉末Hをほぼ15%充填し、圧力2.5ton/cm2で複合組成
の固体電解質管素地を成形する。その後、乾燥、表面仕
上げ及び脱脂を行った後、1630℃で60分間焼成してβ−
アルミナよりなる固体電解質管の基端部及びフランジ部
をα−アルミナにより一体的に形成した第5図に示すよ
うな固体電解質管4を製造する。
Next, a portion other than the open end portion in the molding die of the rubber press molding apparatus, that is, the main body of the solid electrolyte tube 4 shown in FIG.
Almost 85% of the volume of β-alumina-containing powder G is filled in the space for molding 4a, and α-alumina powder H is filled in the space other than that, that is, in the space for molding the base end cylindrical portion 4c of the solid electrolyte tube 4 and the insulating ring 2. The solid electrolyte tube base material of composite composition is molded at a pressure of 2.5 ton / cm 2 with a filling rate of about 15%. After that, after drying, surface finishing and degreasing, baking at 1630 ° C for 60 minutes β-
A solid electrolyte tube 4 as shown in FIG. 5 is manufactured in which the base end portion and the flange portion of the solid electrolyte tube made of alumina are integrally formed of α-alumina.

このようにして得られた固体電解質管4は、前記実施例
5の作用に加えて、絶縁リング2と固体電解質管4の連
結作業を省略することができる。
In the solid electrolyte tube 4 thus obtained, in addition to the operation of the fifth embodiment, the work of connecting the insulating ring 2 and the solid electrolyte tube 4 can be omitted.

(実施例10) 実施例9のβ−アルミナ含有粉末G、α−アルミナ粉末
H、及び両粉末G,Hの混合組成を有するアルミナ粉末I
を調製する。これらの粉末G,H,Iをスプレードライヤー
によりそれぞれ40〜120μmに造粒する。
Example 10 The β-alumina-containing powder G of Example 9, the α-alumina powder H, and the alumina powder I having a mixed composition of both powders G and H.
To prepare. These powders G, H and I are granulated with a spray dryer to a particle size of 40 to 120 μm.

次に、ラバープレス成形装置の成形型内の開口端部以外
の部分、つまり第6図に示す固体電解質管本体4aを成形
する空間にβ−アルミナ粉末Gを体積のほぼ75%充填
し、その上方に中間組成のアルミナ粉末Iをほぼ10%充
填した後固体電解質管4の基端筒部4c及び絶縁リング2
を成形する空間にα−アルミナ粉末Hをほぼ15%充填
し、これらの3種類の複合組成の固体電解質管素地をラ
バープレス成形する。その後、乾燥、表面仕上げ及び脱
脂を行った後、1630℃で60分間焼成し、第6図に示すよ
うな固体電解質管4を得た。
Next, a portion other than the open end portion in the molding die of the rubber press molding apparatus, that is, a space for molding the solid electrolyte tube body 4a shown in FIG. 6 is filled with β-alumina powder G in an amount of about 75% of the volume. After filling up with about 10% of alumina powder I having an intermediate composition, the base end cylindrical portion 4c of the solid electrolyte tube 4 and the insulating ring 2 are filled.
Almost 15% of α-alumina powder H is filled in the space for molding, and the solid electrolyte tube base material of these three kinds of composite compositions is rubber press molded. Then, after drying, surface finishing and degreasing, baking was performed at 1630 ° C. for 60 minutes to obtain a solid electrolyte tube 4 as shown in FIG.

このようにして得られた固体電解質管4は、前記実施例
9の作用に加えて、本体4aと基端筒部4cとの連結がより
強固となり、両部材の熱膨脹率の差異による応力を緩和
することができる。
In the solid electrolyte tube 4 thus obtained, in addition to the effect of the ninth embodiment, the connection between the main body 4a and the base end tube portion 4c becomes stronger, and the stress due to the difference in the thermal expansion coefficient of both members is relaxed. can do.

なお、本発明は次のように具体化することも可能であ
る。
The present invention can also be embodied as follows.

第1図に示す実施例において、固体電解質管4の内周面
にも外被層4bと同様の組成を有する内被覆(図示略)を
形成したり、第3図〜第6図に示す各実施例において、
境界部の組成を連続的に変化させたりする等、本発明の
特許請求の範囲内で構成を任意に変更して具体化するこ
とも可能である。
In the embodiment shown in FIG. 1, an inner coating (not shown) having the same composition as that of the outer coating layer 4b is formed on the inner peripheral surface of the solid electrolyte tube 4, and each of the inner coatings shown in FIGS. In the example,
It is also possible to embody by arbitrarily changing the configuration within the scope of the claims of the present invention, such as continuously changing the composition of the boundary portion.

(発明の効果) 以上詳述したように、請求項1記載の固体電解質管は、
その表面に外被層が焼結されているので、イオン伝導抵
抗を低下させることなく外被層の収縮力により固体電解
質管本体が圧縮され、このため機械的強度を向上して、
電池の組立時や電池運転の昇降温時における固体電解質
管の破損を抑制して耐久信頼性を向上することができる
効果がある。
(Effect of the invention) As described in detail above, the solid electrolyte tube according to claim 1 is
Since the outer coat layer is sintered on the surface, the solid electrolyte tube body is compressed by the contracting force of the outer coat layer without lowering the ionic conduction resistance, thus improving the mechanical strength.
There is an effect that it is possible to suppress damage to the solid electrolyte tube at the time of assembling the battery or raising or lowering the temperature of the battery operation to improve durability reliability.

又、請求項2記載の固体電解質管は、固体電解質管の基
端筒部が本体よりも機械的強度に優れているので、電池
の組立時や電池運転の昇降温時における固体電解質管の
応力による破壊を防止して耐久信頼性を向上することが
できるとともに、固体電解質管本体は基端筒部よりもイ
オン伝導抵抗の低いβ−アルミナにより形成されている
ので、基端筒部を形成するアルミナで前記本体を形成し
た場合と比較して電池容量を増大することができる効果
もある。
Further, in the solid electrolyte tube according to claim 2, since the proximal end tube portion of the solid electrolyte tube is superior to the main body in mechanical strength, stress of the solid electrolyte tube at the time of assembling the battery or temperature rising / falling of the battery operation. The solid electrolyte tube body is formed of β-alumina, which has a lower ionic conduction resistance than the proximal end tube portion, while preventing damage due to damage and improving the durability and reliability. There is also an effect that the battery capacity can be increased as compared with the case where the main body is formed of alumina.

請求項3記載の固体電解質管は、請求項2記載の固体電
解質管の作用に加えて、固体電解質管本体と基端筒部と
の連結が強固となり、さらに、熱膨脹率の違いにより応
力発生を緩和して固体電解質管の耐久性を向上すること
ができる効果がある。
In addition to the function of the solid electrolyte tube according to claim 2, the solid electrolyte tube according to claim 3 strengthens the connection between the solid electrolyte tube body and the proximal end tube portion, and further, stress is generated due to the difference in thermal expansion coefficient. There is an effect that it can be relaxed and the durability of the solid electrolyte tube can be improved.

請求項4記載の固体電解質管は、基端筒部と絶縁リング
とがα−アルミナにより一体的に形成され、かつ全体が
一体的に形成されているので、請求項2記載の固体電解
質管の効果に加えて、フランジ部までの一体構造の固体
電解質管が形成でき、しかも絶縁リングと固体電解質管
を別途連結する工程を不要にして製造を容易に行い、コ
ストダウンを計ることができる。
In the solid electrolyte tube according to claim 4, the base end tube portion and the insulating ring are integrally formed of α-alumina, and the whole is integrally formed. In addition to the effect, a solid electrolyte tube having an integral structure up to the flange portion can be formed, and further, a process for separately connecting the insulating ring and the solid electrolyte tube is not required, the manufacturing can be easily performed, and the cost can be reduced.

請求項5記載の固体電解質管は、請求項3及び4記載の
固体電解質管の効果を合せ有するものである。
The solid electrolyte tube according to claim 5 has the effects of the solid electrolyte tube according to claims 3 and 4.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明を具体化した一実施例を示す固体電解質
管を一部省略して示す中央部縦断面図、第2図は製造工
程途上で製造される固体電解質管本体素地を示す一部省
略中央部縦断面図、第3図は請求項2記載の固体電解質
管の中央部縦断面図、第4図は請求項3記載の固体電解
質管の中央部縦断面図、第5図は請求項4記載の固体電
解質管の中央部縦断面図、第6図は請求項5記載の固体
電解質管の中央部縦断面図、第7図は従来のナトリウム
−硫黄電池の中央部縦断面図である。 2……絶縁リング、4……固体電解質管、4a……固体電
解質管本体、4a′……固体電解質管本体素地、4b……外
被層、4b′……外被層素地、4c……基端筒部、4c′……
基端筒部素地、4d……中間筒部、4d′……中間筒部素
地。
FIG. 1 is a vertical cross-sectional view of a central portion showing a solid electrolyte tube in which one embodiment of the present invention is partially omitted, and FIG. 2 shows a solid electrolyte tube main body manufactured during the manufacturing process. 3 is a longitudinal sectional view of the central portion of the solid electrolyte tube according to claim 2, FIG. 4 is a longitudinal sectional view of the central portion of the solid electrolyte tube according to claim 3, and FIG. A central longitudinal sectional view of the solid electrolyte tube according to claim 4, FIG. 6 is a central longitudinal sectional view of the solid electrolyte tube according to claim 5, and FIG. 7 is a central longitudinal sectional view of a conventional sodium-sulfur battery. Is. 2 ... Insulating ring, 4 ... Solid electrolyte tube, 4a ... Solid electrolyte tube body, 4a '... Solid electrolyte tube body base, 4b ... Outer layer, 4b' ... Outer layer base, 4c. Base end cylinder, 4c ′ ……
Base cylinder part base material, 4d …… intermediate cylinder part, 4d ′ …… intermediate cylinder part base material.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】β−アルミナよりなる単一構造をなす固体
電解質管本体(4a)の外表面に、該本体(4a)よりも焼
成冷却時の収縮率が大きいβ−アルミナよりなる外被層
(4b)を一体的に焼結したことを特徴とするナトリウム
−硫黄電池用の固体電解質管。
1. A jacket layer made of β-alumina, which has a larger shrinkage factor during firing and cooling than the main body (4a), on the outer surface of a solid electrolyte tube body (4a) having a single structure made of β-alumina. A solid electrolyte tube for a sodium-sulfur battery, wherein (4b) is integrally sintered.
【請求項2】固体電解質管本体(4a)を基端筒部(4c)
を形成するβ−アルミナよりもイオン伝導抵抗が小さい
β−アルミナにより形成し、絶縁リング(2)に嵌合さ
れる基端筒部(4c)を、前記本体(4a)を形成するβ−
アルミナよりも強度の大きいβ−アルミナにより形成
し、固体電解質管本体(4a)と基端筒部(4c)を一体的
に焼結したことを特徴とするナトリウム−硫黄電池用の
固体電解質管。
2. The solid electrolyte tube body (4a) is connected to the base end cylinder part (4c).
Β-alumina, which has a smaller ionic conduction resistance than β-alumina that forms the core, forms a base end tube portion (4c) fitted to the insulating ring (2) in the main body (4a).
A solid electrolyte tube for a sodium-sulfur battery, characterized in that it is made of β-alumina having a strength higher than that of alumina, and the solid electrolyte tube body (4a) and the proximal end tube portion (4c) are integrally sintered.
【請求項3】請求項2記載の固体電解質管において、前
記固体電解質管本体(4a)と基端筒部(4c)との間に、
両者の中間物性を有するβ−アルミナよりなる中間筒部
(4d)を一体的に焼結したことを特徴とするナトリウム
−硫黄電池用の固体電解質管。
3. The solid electrolyte tube according to claim 2, wherein between the solid electrolyte tube body (4a) and the proximal end tube portion (4c),
A solid electrolyte tube for a sodium-sulfur battery, which is obtained by integrally sintering an intermediate tubular portion (4d) made of β-alumina having intermediate properties of both.
【請求項4】固体電解質管本体(4a)を基端筒部(4c)
よりもイオン伝導抵抗が小さいβ−アルミナにより形成
し、基端筒部(4c)及び絶縁リング(2)を、α−アル
ミナにより形成し、固体電解質管本体(4a)と基端筒部
(4c)及び絶縁リング(2)とを一体的に焼結したこと
を特徴とするナトリウム−硫黄電池用の固体電解質管。
4. The solid electrolyte tube body (4a) is connected to the base end cylinder (4c).
It is made of β-alumina, which has a smaller ionic conduction resistance than that of the solid electrolyte tube body (4a), and the insulating tube (2) is made of α-alumina. ) And an insulating ring (2) are integrally sintered, a solid electrolyte tube for a sodium-sulfur battery.
【請求項5】請求項4記載の固体電解質管において、固
体電解質管本体(4a)と基端筒部(4c)との間にα−ア
ルミナとβ−アルミナを混合した物質よりなる中間筒部
(4d)を一体的に焼結したことを特徴とするナトリウム
−硫黄電池用の固体電解質管。
5. The solid electrolyte tube according to claim 4, wherein an intermediate tube portion made of a material in which α-alumina and β-alumina are mixed between the solid electrolyte tube body (4a) and the proximal end tube portion (4c). A solid electrolyte tube for a sodium-sulfur battery, characterized in that (4d) is integrally sintered.
JP63139635A 1988-06-07 1988-06-07 Solid electrolyte tube for sodium-sulfur battery Expired - Lifetime JPH0668975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63139635A JPH0668975B2 (en) 1988-06-07 1988-06-07 Solid electrolyte tube for sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63139635A JPH0668975B2 (en) 1988-06-07 1988-06-07 Solid electrolyte tube for sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH0215578A JPH0215578A (en) 1990-01-19
JPH0668975B2 true JPH0668975B2 (en) 1994-08-31

Family

ID=15249872

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63139635A Expired - Lifetime JPH0668975B2 (en) 1988-06-07 1988-06-07 Solid electrolyte tube for sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JPH0668975B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018018578A (en) * 2016-07-25 2018-02-01 日本電気硝子株式会社 Solid electrolytic powder, electrode mixture material arranged by use thereof, and all-solid type sodium ion secondary battery

Also Published As

Publication number Publication date
JPH0215578A (en) 1990-01-19

Similar Documents

Publication Publication Date Title
GB2182194A (en) Electrochemical cell
CA1290806C (en) Electrochemical cell
WO2021124944A1 (en) Member for power storage device, all-solid-state battery, and method for manufacturing member for power storage device
US5728331A (en) Method of preparing a battery separator
JPH0668975B2 (en) Solid electrolyte tube for sodium-sulfur battery
CN108172704A (en) A kind of glass seal packs of cover plate of power battery and pole and preparation method thereof
CN208014758U (en) A kind of glass seal packs of cover plate of power battery and pole
CN103050354A (en) Storage film-coating dipped barium-tungsten cathode and preparation method
JP2552737B2 (en) Method for firing beta-alumina tube for sodium-sulfur battery
JP2005079333A (en) Valve action metal powder for dispersion, and solid electrolytic capacitor using the same
US5024907A (en) Solid electrolyte tube for sodium sulfur cells and surface finishing process thereof
JP4382896B2 (en) Firing method for bottomed cylindrical beta-alumina ceramics compact
JPH0631647Y2 (en) Solid electrolyte tube for sodium-sulfur battery
JPH07192754A (en) Solid electrolyte for sodium- sulfur battery and its preparation
WO2024135357A1 (en) Power storage element and all-solid-state secondary battery
WO2024135358A1 (en) Power storage element and all-solid-state secondary battery
US12021238B2 (en) Glassy embedded solid-state electrode assemblies, solid-state batteries and methods of making electrode assemblies and solid-state batteries
KR101353600B1 (en) Sodium-sulfur rechargeable battery and method for manufacturing the same
JP3446093B2 (en) Beta-alumina sintered body and method for producing the same
US20220045328A1 (en) Glassy embedded solid-state electrode assemblies, solid-state batteries and methods of making electrode assemblies and solid-state batteries
US20230134479A1 (en) Glassy solid-state electrodes and methods of making glassy solid-state electrodes and battery cells thereof
JP2000203932A (en) Bottomed cylindrical beta-alumina sintered body and its production
JPH0215576A (en) Manufacture of solid electrolytic pipe for sodium-sulfur battery
JP2000128627A (en) Bottomed cylindrical beta-alumina tube and its production
JP3422681B2 (en) Method for manufacturing sodium-sulfur battery