JPH0215576A - Manufacture of solid electrolytic pipe for sodium-sulfur battery - Google Patents

Manufacture of solid electrolytic pipe for sodium-sulfur battery

Info

Publication number
JPH0215576A
JPH0215576A JP63139631A JP13963188A JPH0215576A JP H0215576 A JPH0215576 A JP H0215576A JP 63139631 A JP63139631 A JP 63139631A JP 13963188 A JP13963188 A JP 13963188A JP H0215576 A JPH0215576 A JP H0215576A
Authority
JP
Japan
Prior art keywords
solid electrolyte
sodium
electrolyte tube
manufacturing
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP63139631A
Other languages
Japanese (ja)
Other versions
JP2719352B2 (en
Inventor
Kaichiro Kato
加藤 嘉一郎
Michimasa Fujii
藤井 通正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP63139631A priority Critical patent/JP2719352B2/en
Publication of JPH0215576A publication Critical patent/JPH0215576A/en
Application granted granted Critical
Publication of JP2719352B2 publication Critical patent/JP2719352B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/39Accumulators not provided for in groups H01M10/05-H01M10/34 working at high temperature
    • H01M10/3909Sodium-sulfur cells
    • H01M10/3918Sodium-sulfur cells characterised by the electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enhance the radial crushing strength constant and density of a solid electrolytic pipe, by removing its raw material powder specified in grain size and put in a slurry by means of a screen before a granulation process is performed after a wet grinding and mixing process thereof. CONSTITUTION:After beta-alumina raw material powder having alpha-alumina as main component thereof and including sodium salt class, or sodium oxide and lithium salt class, or lithium oxide has been temporarily burned, it is wetly grinded and mixed, then the grains included in the powder that are more than approximately 100mum in grain size are removed out of the powder within a slurry by means of a screen. Next, the powder is dried and granuated by means of a spray dryer, and besides this granuated material is molded with rubber- press so as to burn a base after molding thereof. Crystals may thus be prevented from extraordinarily growing up during a burning process thereof, so that generation of pores is controlled; the radial crushing strength constant and density of a solid electrolytic pipe is, therefore, enhanced.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はナトリウム−硫黄電池用の固体電解質管の製造
方法に係わり、さらに詳しくは固体電解質管の機械的強
度及び密度を向上して電池組み立て時や電池停止時の耐
久信頼性を向上し、かつ電池効率を向上することができ
る固体電解質管の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to a method for manufacturing a solid electrolyte tube for a sodium-sulfur battery, and more particularly to a method for manufacturing a solid electrolyte tube for battery assembly by improving the mechanical strength and density of the solid electrolyte tube. The present invention relates to a method for manufacturing a solid electrolyte tube that can improve durability and reliability during battery downtime and when the battery is stopped, and can also improve battery efficiency.

(従来の技術) 最近、電気自動車用、夜間電力貯蔵用の二次電池として
性能面及び経済面の両面において優れ、300〜350
℃で作動する高温型のナトリウム−硫黄電池の研究開発
が進められている。
(Prior art) Recently, as a secondary battery for electric vehicles and nighttime power storage, it has been developed to be excellent in both performance and economical aspects.
Research and development is progressing on high-temperature sodium-sulfur batteries that operate at ℃.

このナトリウム−硫黄電池として、従来、第6図に示す
ように陽極活物質である溶融硫黄Sを含浸したカーボン
マット等の陽極用導電材Mを収納する円筒状の陽極容器
1と、該陽極容器1の上端部に対し、α−アルミナ製の
絶縁リング2を介して連結され、かつ溶融金属ナトリウ
ムNaを貯留する陰極容器3と、前記絶縁リング2の内
周部に固着され、かつ陰挽活物質であるナトリウムイオ
ン(Na”)を選択的に透過させる機能を有する有底円
筒状の多結晶β−アルミナ製の固体電解質管4とからな
っている。
Conventionally, as shown in FIG. 6, this sodium-sulfur battery includes a cylindrical anode container 1 that houses a conductive material M for the anode, such as a carbon mat impregnated with molten sulfur S, which is an anode active material, and a cylindrical anode container 1. A cathode container 3 is connected to the upper end of the insulation ring 2 through an insulating ring 2 made of α-alumina and stores molten metal Na, and a cathode container 3 is connected to the upper end of the insulation ring 2 through an insulating ring 2 made of α-alumina and stores molten metal Na. It consists of a solid electrolyte tube 4 made of polycrystalline β-alumina and having a cylindrical shape with a bottom that has the function of selectively transmitting the substance sodium ion (Na'').

又、陰極容器3の上部蓋の中央部には、該陰極容器3を
通して固体電解質管4底部まで延びた細長い陰極管5が
貫通支持されている。
Further, an elongated cathode tube 5 extending through the cathode container 3 to the bottom of the solid electrolyte tube 4 is supported through the center of the upper lid of the cathode container 3 .

そして、放電時には次のような反応によってすトリウム
イオンが固体電解質管4を透過して陽極容器1内の硫黄
Sと反応し、多硫化ナトリウムを生成する。
During discharge, thorium ions pass through the solid electrolyte tube 4 and react with the sulfur S in the anode container 1 through the following reaction, producing sodium polysulfide.

2Na +X5=Naz Sx 又、充電時には放電時とは逆の反応が起こり、ナトリウ
ムNa及び硫黄Sが生成される。
2Na +X5=Naz Sx Also, during charging, a reaction opposite to that during discharging occurs, and sodium Na and sulfur S are generated.

上記のように構成されたナトリウム−硫黄電池の固体電
解質管4は、前述したように絶縁リング2に嵌合すると
ともに、陽極用導電材Mに嵌合して300〜350℃の
温度で使用されるので、高い機械的強度が要求され、か
つ密度を高め、電気的性能を向上することが要求される
The solid electrolyte tube 4 of the sodium-sulfur battery configured as described above is used at a temperature of 300 to 350°C by fitting into the insulating ring 2 as described above and fitting into the conductive material M for the anode. Therefore, high mechanical strength is required, and it is also required to increase density and improve electrical performance.

この固体電解質管の従来の製造法の一例を説明すると、
第7図に示すように、まず主成分のα−アルミナと少量
のナトリウム塩類あるいは酸化ナトリウムをそれぞれ秤
量するとともに、α−アルミナとリチウム塩類あるいは
酸化リチウムをそれぞれ秤量し、それらを別々に乾式混
合した後、アルミナ製のサヤに収容して1100℃以上
で2時間程度仮焼し、Na−アルミネートとLi−アル
ミネートを製造する。
An example of the conventional manufacturing method for this solid electrolyte tube is as follows.
As shown in Figure 7, first, α-alumina, the main component, and a small amount of sodium salts or sodium oxide were each weighed, and α-alumina and lithium salts or lithium oxide were each weighed, and they were dry mixed separately. Thereafter, it is housed in an alumina pod and calcined at 1100° C. or higher for about 2 hours to produce Na-aluminate and Li-aluminate.

次いで、前記Na−アルミネートと、Li−アルミネー
トとの所定側を秤量混合し、ボールミルにより例えば2
0〜30時間程度湿式粉砕混合して平均粒径0.5〜5
μm程度に粉砕する。その後、スプレードライヤーによ
り好ましくは平均粒径が50〜100μmの造粒物を製
造し、この造粒物をラバープレス成形装置により所定形
状に成形し、脱脂工程を経て、電気炉中で1400〜1
60.0℃程度の温度で焼結を行い固体電解質管4の製
造を完了する。
Next, predetermined sides of the Na-aluminate and Li-aluminate are weighed and mixed, and then milled using a ball mill for example 2
Wet-grind and mix for about 0 to 30 hours to obtain an average particle size of 0.5 to 5.
Grind to about μm size. Thereafter, granules with an average particle diameter of preferably 50 to 100 μm are produced using a spray dryer, molded into a predetermined shape using a rubber press molding device, passed through a degreasing process, and then placed in an electric furnace with an average particle diameter of 50 to 100 μm.
Sintering is performed at a temperature of about 60.0° C. to complete the production of the solid electrolyte tube 4.

(発明が解決しようとする課題) ところが、前記従来の固体電解質管の製造方法は、湿式
粉砕・混合工程の後、直ちに造粒工程を行うため、スラ
リー中に含まれる100μm以上の粗大粒子が次の乾吸
造粒工程に送られるため、燃結後の結晶異常成長の核と
なったり、又、気孔の発生原因となり、固体電解質管の
圧環強度の低下及び密度の低下を招来するという問題が
あった。
(Problem to be Solved by the Invention) However, in the conventional solid electrolyte tube manufacturing method, since the granulation process is performed immediately after the wet pulverization and mixing process, coarse particles of 100 μm or more contained in the slurry are Since the solid electrolyte is sent to the dry absorption granulation process, it becomes a nucleus for abnormal crystal growth after combustion, and also causes the generation of pores, leading to a decrease in the radial crushing strength and density of the solid electrolyte tube. there were.

又、造粒物をそのままラバープレス成形装置に送ると、
流動性に乏しい粒径°200μm以上の粗大粒子やスプ
レードライヤーの管壁付着凝集物等が成形型内へ混入す
るため、造粒物の充填作業性が悪くなって不均一な組織
となり、固体電解質管の圧環強度を低下するとともに、
密度の低下を来すという問題があった。
In addition, if the granules are directly sent to the rubber press molding equipment,
Coarse particles with a particle size of 200 μm or more with poor fluidity and aggregates adhering to the tube wall of the spray dryer get mixed into the mold, which impairs the filling workability of the granules, resulting in an uneven structure and the solid electrolyte. In addition to reducing the radial crushing strength of the pipe,
There was a problem in that the density decreased.

本発明の第1の目的は、粉砕混合工程から造粒工程にお
ける結晶異常成長及び気孔の発生の原因となる粗粒の混
合を抑制して、固体電解質管の圧環強度及び密度を均一
かつ向上することができて電気的性能の低下を抑制する
ことができるナトリウム−硫黄電池の固体電解質管の製
造方法を提供することにある。
The first object of the present invention is to suppress the mixing of coarse particles that cause abnormal crystal growth and the generation of pores in the pulverization and mixing process to the granulation process, thereby uniformly improving the radial crushing strength and density of the solid electrolyte tube. An object of the present invention is to provide a method for manufacturing a solid electrolyte tube for a sodium-sulfur battery, which can suppress deterioration in electrical performance.

本発明の第2の目的は、成形工程において造粒物の成形
型内への充填作業性を向上し、充填密度を高くして、固
体電解質管の圧環強度と密度とを向上し、電気的性能の
低下を抑制することができるナトリウム−硫黄電池の固
体電解質管の製造方法を提供することにある。
The second object of the present invention is to improve the workability of filling granules into a mold in the molding process, increase the packing density, improve the radial crushing strength and density of the solid electrolyte tube, and improve the electrical It is an object of the present invention to provide a method for manufacturing a solid electrolyte tube for a sodium-sulfur battery that can suppress deterioration in performance.

本発明の第3の目的は第1及び第2の目的を達成するこ
とができるすトリウム−硫黄電池用の固体電解質管の製
造方法を従供することにある。
A third object of the present invention is to provide a method for manufacturing a solid electrolyte tube for a thorium-sulfur battery that can achieve the first and second objects.

(課題を解決するための手段) 請求項1記載の固体電解質管は、前記第1の目的を達成
するため、α−アルミナを主成分とし、ナトリウム塩類
あるいは酸化ナトリウム及びリチウム塩類あるいは酸化
リチウムを含有するβ−アルミナ川用料第51末を仮焼
した後、湿式粉砕・混合し、次いでスプレードライヤー
により乾燥造粒し、さらに、この造粒物をラバープレス
成形し、成形後の素地を焼成する固体電解rJl管の製
造方法において、 前記湿式粉砕・混合工程の後の造粒工程前に、篩により
スラリー中のほぼ100μm以上の粒径の原料粉末を除
去するという手段をとっている。
(Means for Solving the Problems) In order to achieve the first object, the solid electrolyte tube according to claim 1 contains α-alumina as a main component and contains sodium salts or sodium oxide and lithium salts or lithium oxide. After calcining the β-alumina river raw material No. 51 powder, it is wet-pulverized and mixed, then dried and granulated using a spray dryer, and then this granulated product is rubber press molded, and the molded base is fired. In the method for manufacturing a solid electrolytic rJl tube, after the wet grinding and mixing process and before the granulation process, raw material powder having a particle size of approximately 100 μm or more in the slurry is removed using a sieve.

請求項2記載の固体電解質管は前記第2の目的を達成す
るため、α−アルミナを主成分とし、ナトリウム塩頬あ
るいは酸化ナトリウム及びリチウム塩類あるいは酸化リ
チウムを含有するβ−アルミナ用原料粉末を仮焼した後
、湿式粉砕・混合し、次いでスプレードライヤーにより
乾燥造粒し、さらに、この造粒物をラバープレス成形し
、成形後の素地を焼成する固体電解質管の製造方法にお
いて、 前記乾燥造粒工程後の成形工程前に、篩により造粒物中
の200μm以上の粒径の造粒物を除去するという手段
を採用している。
In order to achieve the second object, the solid electrolyte tube according to claim 2 has α-alumina as its main component, and temporarily contains a raw material powder for β-alumina containing sodium salt, sodium oxide and lithium salts, or lithium oxide. In the method for manufacturing a solid electrolyte tube, the dry granulation is performed by baking, wet-pulverizing and mixing, then drying and granulating using a spray dryer, further rubber press molding the granulated product, and firing the molded base material. After the process and before the forming process, a method is adopted in which granules having a particle size of 200 μm or more are removed from the granules using a sieve.

請求項3記載の固体電解質管は、前記第3の目的を達成
するため、請求項1記載のナトリウム−硫黄電池用の固
体電解質管の製造方法において、乾燥造粒工程後の成形
工程前に、篩によりほぼ200μm以上の粒径の造粒物
を除去するという手段をとっている。
In the solid electrolyte tube according to claim 3, in order to achieve the third object, in the method for manufacturing a solid electrolyte tube for a sodium-sulfur battery according to claim 1, before the forming step after the dry granulation step, A measure is taken to remove granules with a particle size of approximately 200 μm or more using a sieve.

(作用) 請求項1記載の固体電解質管の製造方法においては、ス
ラリー中の100μm以上の粗大原ギi)粒子が排除さ
れるので、燃結過程で結晶が異常に成長することはな(
、気孔の発生が抑制され、固体電解質管の圧環強度と密
度とが向上するとともに、電池に使用した場合の電気的
性能が向上する。
(Function) In the method for manufacturing a solid electrolyte tube according to claim 1, since coarse particles of 100 μm or more in the slurry are removed, abnormal crystal growth will not occur during the sintering process.
The generation of pores is suppressed, the radial crushing strength and density of the solid electrolyte tube are improved, and the electrical performance when used in a battery is improved.

又、請求項2記載の固体電解質管の製造方法は、ラバー
プレス成形型内への造粒物の充填作業性が向上し、充填
密度も均一、かつ高くなるため、緻密で均質な成形体が
得られ、その結果燃結した団体電解質管を電池に使用し
た場合の電気的性能が向上する。
In addition, the method for producing a solid electrolyte tube according to claim 2 improves the workability of filling the granules into the rubber press mold, and the filling density becomes uniform and high, so that a dense and homogeneous molded product can be produced. The electrical performance of the resulting sintered collective electrolyte tube when used in a battery is improved.

請求項コ記載の固体電解質管の製造方法は、請求項1及
び請求項2記載の固体電解質管の製造方法の作用を奏す
る。
The method for manufacturing a solid electrolyte tube according to claim 7 exhibits the effects of the method for manufacturing a solid electrolyte tube according to claims 1 and 2.

(実施例■) 以下、請求項1記載のナトリウム−硫黄電池の固体電解
質管の製造方法を具体化した実施例■を第1図及び第5
図に基づいて説明する。
(Example ■) Hereinafter, Example ■ that embodies the method for manufacturing a solid electrolyte tube for a sodium-sulfur battery according to claim 1 will be described with reference to FIGS. 1 and 5.
This will be explained based on the diagram.

この実施例■では、前述した従来の固体電解質管の製造
方法と比較して、次の点が異なり、その他は同様である
ため、相違点についてのみ説明する。
This Example (2) differs from the conventional solid electrolyte tube manufacturing method described above in the following points and is otherwise the same, so only the differences will be described.

この実施例■の製造方法は、第1図に示すようにβ−ア
ルミナ用原料粉末の粉砕・混合工程後のスラリーを、目
開きが100μmの篩を通して、β−アルミナ川用’1
1 tst末から100μm以上の粗大原料粒子を除去
する篩工程を行うようにしている。この篩工程をとるこ
とにより、異常結晶の成長の核となり、かつ気孔の発生
原因となる100μm以上の粗大原料粒子が除去された
め、固体電解質管の強度が向上し、かつ密度も高く均一
となった。実験の結果は第5図に示すように従来例と比
較して圧環強度が60MPa高くなり、かつ密度が0.
02g/cra上界した。
As shown in Fig. 1, the manufacturing method of this Example
1 A sieving process is performed to remove coarse raw material particles of 100 μm or more from the tst powder. By using this sieving process, coarse raw material particles of 100 μm or more, which serve as the nucleus for the growth of abnormal crystals and cause the generation of pores, are removed, thereby improving the strength of the solid electrolyte tube and making it highly dense and uniform. Ta. As shown in Figure 5, the experimental results show that the radial crushing strength is 60 MPa higher than the conventional example, and the density is 0.
The amount exceeded 0.2g/cra.

(実施例■) 次に、第2図及び第5図により請求項2記載の固体電解
質管の製造方法を具体化した実施例■を説明する。この
実施例■では前述した従来の固体電解質管の製造方法に
おいて、次の工程を付加した点が異なるのみであるため
、相違点についてのみ説明する。
(Example 2) Next, Example 2, which embodies the solid electrolyte tube manufacturing method according to claim 2, will be described with reference to FIGS. 2 and 5. This embodiment (2) differs from the conventional solid electrolyte tube manufacturing method described above only in that the following steps are added, so only the differences will be explained.

この実施例■の製造方法は、スプレードライヤーによる
造粒工程後の造粒物を目開き200μmの篩に通し20
0μm以上の粗大な造粒物やスプレードライヤーの管壁
付着物等を除去している。
The manufacturing method of this example
Coarse granules with a size of 0 μm or more and deposits on the pipe wall of the spray dryer are removed.

従って、この実施例ではラバープレス成形時に充填作業
性が低下する200μm以上の粗大な造粒物等が除去さ
れるため、プレス成形型内への造粒物の充填作業性が向
上するとともに、造粒物を均一、かつ高密度に充填する
ことができ、従って、燃成後に得られる固体電解質管の
機械的強度を向上し、密度を均一、かつ高くして電気的
性能を向上することができる。
Therefore, in this example, coarse granules of 200 μm or more that reduce the filling workability during rubber press molding are removed, so the workability of filling the granules into the press mold is improved, and the Particles can be packed uniformly and densely, thus improving the mechanical strength of the solid electrolyte tube obtained after combustion, making the density uniform and high, and improving electrical performance. .

実験の結果、第5図に示すように圧環強度は前記実施例
■と同じであったが、密度については、実施例■の密度
よりも0.01g/cnl増加して3、 21 g/c
+aとなった。
As a result of the experiment, as shown in Fig. 5, the radial crushing strength was the same as that of Example (2), but the density was 3.21 g/c, which was 0.01 g/cnl higher than that of Example (2).
It became +a.

(実施例■) 次に、第3図及び第5図に基づいて請求項3記載の固体
電解質管の製造方法を説明する。
(Example ■) Next, a method for manufacturing a solid electrolyte tube according to claim 3 will be explained based on FIGS. 3 and 5.

この実施例■は第3図に示すように、前述した実施例■
で述べたスラリーの篩工程と実施例■で述べた造粒物の
篩工程とをともに行なったものである。
As shown in FIG. 3, this embodiment
Both the slurry sieving process described in 1 and the granulation sieving process described in Example 2 were performed.

この実施例では実験の結果、第5図に示すように実施例
■又は実施例■の製造方法と比較して、圧環強度及び密
度がともに向上することが判った。
As a result of experiments in this example, it was found that both the radial crushing strength and the density were improved as compared with the manufacturing method of Example (1) or Example (2), as shown in FIG.

なお、本発明は次のように具体化することができる。Note that the present invention can be embodied as follows.

実施例■の製造方法において、第4図に示すように、仮
焼工程の前後において、それぞれ目開きが1000μm
の篩に原料粉末を通すことにより、第5図に示すように
圧環強度及び密度が実施例■よりもさらに向上すること
が確認された。
In the manufacturing method of Example 2, as shown in FIG. 4, the opening is 1000 μm before and after the calcination step.
By passing the raw material powder through the sieve, it was confirmed that the radial crushing strength and density were further improved compared to Example ①, as shown in FIG.

なお、本発明と近似した例として、仮焼工程の直前(近
似例■)と直後(近似例■)に行う原料粉末の篩工程に
ついて、それぞれ単独で実験したところ、第5図に示す
ように従来例と比較して圧環強度が向上することがわか
った。この理由は仮焼工程の直前の篩工程(近似例■)
では仮焼工程においてα−アルミナとリチウム塩類ある
いは酸化リチウム及びα−アルミナとナトリウム塩類あ
るいは酸化ナトリウムとのそれぞれの反応性が向上する
ためであると考えられる。又、仮焼工程の直後の篩工程
(近似例■)では、粉砕・混合粒子の粒度のバラツキを
抑制することができるためと考えられる。
As an example similar to the present invention, we independently experimented with the sieving process of the raw material powder performed immediately before the calcination process (approximate example ■) and immediately after (approximate example ■), as shown in Figure 5. It was found that the radial crushing strength was improved compared to the conventional example. The reason for this is the sieving process just before the calcination process (approximate example ■)
This is considered to be because the reactivity of α-alumina and lithium salts or lithium oxide and α-alumina and sodium salts or sodium oxide are improved in the calcination step. Further, it is thought that this is because the sieving step (approximate example ①) immediately after the calcination step can suppress variations in the particle size of the pulverized and mixed particles.

なお、本発明は次のように具体化することも可能である
Note that the present invention can also be embodied as follows.

前記実施例ではNa−アルミネートとLi−アルミネー
トとを別々に製造したが、これに代えてα−アルミナ粉
末とナトリウム塩類等及びリチウム塩類等を同時に混合
した後に仮焼して得られるβ−アルミナ用粉末、あるい
はLi−アルミネートにα−アルミナ粉末とナトリウム
塩類等を混合した後に仮焼して得られるβ−アルミナ用
粉末等、様々なβ−アルミナ用粉末の製造方法にも適用
できる。
In the above examples, Na-aluminate and Li-aluminate were produced separately, but instead of this, β-aluminate obtained by simultaneously mixing α-alumina powder, sodium salts, etc., lithium salts, etc., and then calcining the mixture was used. It can also be applied to various methods for producing powder for β-alumina, such as powder for alumina, or powder for β-alumina obtained by calcining after mixing α-alumina powder and sodium salts with Li-aluminate.

(発明の効果) 以上詳述したように、請求項1記載の固体電解¥を管の
製造方法は、結晶異常成長の核となり、かつ気孔の発生
原因となる粗大原料粒子を除去して、固体電解質管の圧
環強度及び密度をともに向上することができ、電池の電
気的性能を向上することが、できる効果がある。
(Effects of the Invention) As described in detail above, the method for manufacturing a solid electrolyte tube according to claim 1 removes coarse raw material particles that become the core of abnormal crystal growth and cause generation of pores, and solidifies the solid electrolyte. This has the effect that both the radial crushing strength and density of the electrolyte tube can be improved, and the electrical performance of the battery can be improved.

又、請求項2記載の固体電解質管の製造方法は、プレス
成形型への造粒物の充填作業性を向上し充填密度を均一
、かつ向上することによって最終的に得られる固体電解
質管の圧環強度と密度とを向上し、電気的性能を向上す
ることができる効果がある。
Furthermore, the method for producing a solid electrolyte tube according to claim 2 improves the workability of filling the granules into the press mold and makes the packing density uniform and improved, thereby reducing the radial crushing of the solid electrolyte tube finally obtained. It has the effect of improving strength and density and improving electrical performance.

請求項3記載の固体電解質管の製造方法は、請求項1及
び請求項2記載の固体電解質管の製造方法の効果をとも
に奏する。
The method for manufacturing a solid electrolyte tube according to claim 3 exhibits the effects of both the methods for manufacturing solid electrolyte tubes according to claims 1 and 2.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第3図はそれぞれ請求項1〜3記載のナトリウ
ム−硫黄電池の固体′rt&解’Et管の製造工程を示
す路体ブロック図、第4図は請求項3記載の異なる例の
製造工程を示すた路体ブロック図、第5薗は請求項1〜
3及び側倒の製造方法により製造された固体電解質管の
圧環強度及び密度の実験結果を示すグラフ、第6図はナ
トリウム−硫黄電池の中央部縦断面図、第7図は従来の
固体電解質管の製造方法を示す路体ブロック図である。 オ・・・固体電解質管。 第5図 α−Al 20s α−Al 20a 第7図
1 to 3 are road body block diagrams showing the manufacturing process of solid 'rt &decomposition'Et tubes for sodium-sulfur batteries according to claims 1 to 3, respectively, and FIG. Road body block diagram showing the manufacturing process, the fifth section is claim 1 ~
Graphs showing the experimental results of the radial crushing strength and density of solid electrolyte tubes manufactured by the manufacturing methods 3 and 3 and side-tilt, Figure 6 is a vertical cross-sectional view of the central part of a sodium-sulfur battery, and Figure 7 is a conventional solid electrolyte tube. It is a road body block diagram showing a manufacturing method. E...Solid electrolyte tube. Figure 5 α-Al 20s α-Al 20a Figure 7

Claims (1)

【特許請求の範囲】 1、α−アルミナを主成分とし、ナトリウム塩類あるい
は酸化ナトリウム及びリチウム塩類あるいは酸化リチウ
ムを含有するβ−アルミナ用原料粉末を仮焼した後、湿
式粉砕・混合し、次いでスプレードライヤーにより乾燥
造粒し、さらに、この造粒物をラバープレス成形し、成
形後の素地を焼成する固体電解質管の製造方法において
、前記湿式粉砕・混合工程の後の造粒工程前に、篩によ
りスラリー中のほぼ100μm以上の粒径の原料粉末を
除去することを特徴とするナトリウム−硫黄電池用の固
体電解質管の製造方法。 2、α−アルミナを主成分とし、ナトリウム塩類あるい
は酸化ナトリウム及びリチウム塩類あるいは酸化リチウ
ムを含有するβ−アルミナ用原料粉末を仮焼した後、湿
式粉砕・混合し、次いでスプレードライヤーにより乾燥
造粒し、さらに、この造粒物をラバープレス成形し、成
形後の素地を焼成する固体電解質管の製造方法において
、前記乾燥造粒工程後の成形工程前に、篩により造粒物
中の200μm以上の粒径の造粒物を除去することを特
徴とするナトリウム−硫黄電池用の固体電解質管の製造
方法。 3、請求項1記載のナトリウム−硫黄電池用の固体電解
質管の製造方法において、造粒工程後の成形工程前に、
篩によりほぼ200μm以上の粒径の造粒物を除去する
ことを特徴とするナトリウム−硫黄電池用の固体電解質
管の製造方法。
[Claims] 1. A raw material powder for β-alumina containing α-alumina as a main component and sodium salts or sodium oxide and lithium salts or lithium oxide is calcined, wet-pulverized and mixed, and then sprayed. In a method for manufacturing a solid electrolyte tube, which involves drying and granulating with a dryer, further rubber press molding the granulated product, and firing the molded base material, a sieve is used before the granulation step after the wet crushing and mixing step. 1. A method for manufacturing a solid electrolyte tube for a sodium-sulfur battery, comprising removing raw material powder having a particle size of approximately 100 μm or more from a slurry. 2. After calcining the raw material powder for β-alumina which is mainly composed of α-alumina and contains sodium salts or sodium oxide and lithium salts or lithium oxide, it is wet-pulverized and mixed, and then dried and granulated using a spray dryer. Furthermore, in the method for producing a solid electrolyte tube, in which the granules are rubber press-molded and the formed base is fired, after the dry granulation step and before the forming step, the particles of 200 μm or more in the granules are sieved. A method for manufacturing a solid electrolyte tube for a sodium-sulfur battery, characterized by removing granules having a particle size. 3. In the method for manufacturing a solid electrolyte tube for a sodium-sulfur battery according to claim 1, after the granulation step and before the molding step,
A method for manufacturing a solid electrolyte tube for a sodium-sulfur battery, which comprises removing granules having a particle size of approximately 200 μm or more using a sieve.
JP63139631A 1988-06-07 1988-06-07 Method for manufacturing solid electrolyte tube for sodium-sulfur battery Expired - Lifetime JP2719352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63139631A JP2719352B2 (en) 1988-06-07 1988-06-07 Method for manufacturing solid electrolyte tube for sodium-sulfur battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63139631A JP2719352B2 (en) 1988-06-07 1988-06-07 Method for manufacturing solid electrolyte tube for sodium-sulfur battery

Publications (2)

Publication Number Publication Date
JPH0215576A true JPH0215576A (en) 1990-01-19
JP2719352B2 JP2719352B2 (en) 1998-02-25

Family

ID=15249777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63139631A Expired - Lifetime JP2719352B2 (en) 1988-06-07 1988-06-07 Method for manufacturing solid electrolyte tube for sodium-sulfur battery

Country Status (1)

Country Link
JP (1) JP2719352B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482128A (en) * 1993-12-07 1996-01-09 Koyo Seiko Co., Ltd. Power steering apparatus
US6854556B1 (en) 1995-05-01 2005-02-15 Koyo Seiko Co., Ltd. Motor operated power steering device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105502449B (en) * 2015-12-21 2017-08-04 上海电气钠硫储能技术有限公司 A kind of preparation method of β 〞 alumina powders

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482128A (en) * 1993-12-07 1996-01-09 Koyo Seiko Co., Ltd. Power steering apparatus
US6854556B1 (en) 1995-05-01 2005-02-15 Koyo Seiko Co., Ltd. Motor operated power steering device
US7014009B2 (en) 1995-05-01 2006-03-21 Koyo Seiko Co., Ltd. Motor operated power steering device

Also Published As

Publication number Publication date
JP2719352B2 (en) 1998-02-25

Similar Documents

Publication Publication Date Title
KR100784589B1 (en) Carbonaceous electrode material for secondary battery and process for production thereof and secondary batteries using the same
KR101969657B1 (en) Lithium-containing garnet crystal body, method for producing same, and all-solid-state lithium ion secondary battery
WO2017203954A1 (en) Lowly symmetric garnet-related structured solid electrolyte and lithium secondary battery
CN109320216A (en) A kind of calcium hexaluminate crucible manufacturing modified based on laminar structured rare earth oxide
JPH0258744B2 (en)
JP2001146410A (en) Active carbon and method for producing the same
JPH0215576A (en) Manufacture of solid electrolytic pipe for sodium-sulfur battery
JP2000195512A (en) Active material powder and electrode material for electrode of silver oxide battery and manufacture thereof
JP2002241174A (en) METHOD FOR PRODUCING beta-ALUMINA SOLID ELECTROLYTE
JP2878973B2 (en) Method for producing beta alumina solid electrolyte
JP2000302551A (en) Carbon material for negative electrode of lithium secondary battery and accelerator for graphitization
JPH02120274A (en) Production of solid electrolyte tube for sodium-sulfur battery
JPS6122424B2 (en)
JPH09221356A (en) Production of beta-alumina sintered compact
JP2000185965A (en) Production of beta alumina ceramic
JPH0345554A (en) Production of beta"-alumina sintered compact
JPH06236756A (en) Electrode for nonaqueous electrolytic battery
KR20220032854A (en) Process of manufacturing Solid Electrolyte for Secondary Battery
JP3446093B2 (en) Beta-alumina sintered body and method for producing the same
JPH11154414A (en) Beta-alumina electrolyte and manufacture thereof
JPH0761862B2 (en) Method for producing β ″ -alumina calcined powder
CN117758350A (en) Single-crystal ternary positive electrode material and preparation method and application thereof
JPH1112028A (en) Beta"-alumina-sintered solid electrolyte and its production
JPH0214873A (en) Production of beta-alumina ceramic
JPH03131563A (en) Production of beta-alumina tube for sodium-sulfur cell

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081114

Year of fee payment: 11