JP2001146410A - Active carbon and method for producing the same - Google Patents

Active carbon and method for producing the same

Info

Publication number
JP2001146410A
JP2001146410A JP32709999A JP32709999A JP2001146410A JP 2001146410 A JP2001146410 A JP 2001146410A JP 32709999 A JP32709999 A JP 32709999A JP 32709999 A JP32709999 A JP 32709999A JP 2001146410 A JP2001146410 A JP 2001146410A
Authority
JP
Japan
Prior art keywords
activated carbon
spherical
carbide
granular
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32709999A
Other languages
Japanese (ja)
Inventor
Seiichiro Minami
誠一郎 南
Yasuo Saito
康夫 斎藤
Masako Tanaka
昌子 田中
Tetsunori Yamamoto
哲範 山本
Kunio Nishimura
邦夫 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP32709999A priority Critical patent/JP2001146410A/en
Publication of JP2001146410A publication Critical patent/JP2001146410A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

PROBLEM TO BE SOLVED: To provide a method for producing active carbon good in filling properties as an active carbon material and increasing the bulk density when converted into an electrode, to produce the active carbon and to provide the electrode for an electric double layer capacitor improved in capacity using the active carbon. SOLUTION: This active carbon is obtained by mixing a granular carbide in a spherical shape with a carbide having a smaller grain diameter than that of the granular carbide and activating the resultant mixture or compounding the granular active carbon in the spherical shape with the active carbon having the smaller grain diameter than that of the granular active carbon. The carbide in the spherical shape may be prepared by using a spherical resin as a raw material or may be obtained by polishing the pulverized carbide and having <=5 aspect ratio. The pore volume can be regulated to <=0.55 cc/g when the electrode is prepared from the active carbon according to the method for production. Thereby, the electric double layer capacitor of a high capacity is obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、充填密度の良好な
活性炭粒子群を提供するもので、充填層にして汚染物質
の除去や、触媒担持用あるいはバインダー樹脂との成形
で多孔質電極用また、その活性炭を使用した電極に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention provides a group of activated carbon particles having a good packing density. The present invention provides a packing layer for removing contaminants and for supporting a catalyst or molding with a binder resin for a porous electrode or a porous electrode. And an electrode using the activated carbon.

【0002】[0002]

【従来の技術】昨今環境問題から電気自動車(EV)の
開発が盛んである。しかし、二次電池のみの駆動方式の
EVは充電設備等のインフラが整備されていないことか
ら未だ本格化する兆しが見られていない。このような状
況下より現実的な従来のガソリンエンジンと大容量コン
デンサを組み合わせたハイブリッド方式のHEVがEV
に先駆けて商品化され始めている。このHEV用大容量
コンデンサは電気二重層コンデンサあるいはキャパシタ
と呼ばれるものであり、特に形状の小型化、放電容量の
増加が要求されている。
2. Description of the Related Art Recently, electric vehicles (EVs) have been actively developed due to environmental problems. However, there is no indication that EVs driven by a secondary battery alone will be in full swing due to the lack of infrastructure such as charging facilities. Under these circumstances, a hybrid HEV that combines a more realistic conventional gasoline engine with a large-capacity capacitor has become an EV.
It has begun to be commercialized ahead of. This large-capacity capacitor for HEV is called an electric double-layer capacitor or a capacitor. In particular, it is required to reduce the size and increase the discharge capacity.

【0003】電気二重層コンデンサについて説明する
と、図1のような基本構成となる。図1において1は電
解液を含む分極性電極であり、一対の電極間はイオン透
過性の電気絶縁材からなるセパレーター2で仕切られて
いる。そして分極性電極1の周辺は封止材3で密閉さ
れ、またこの単セルは不浸透性かつ導電性の集電板4を
介して多数セルが積層されて使用に供される。
The basic structure of an electric double layer capacitor is as shown in FIG. In FIG. 1, reference numeral 1 denotes a polarizable electrode containing an electrolytic solution, and a pair of electrodes is separated by a separator 2 made of an ion-permeable electric insulating material. The periphery of the polarizable electrode 1 is hermetically sealed with a sealing material 3, and this single cell is provided for use by laminating a large number of cells via an impervious and conductive current collector 4.

【0004】分極性電極として一般には活性炭が使用さ
れるが、その電極の特性として放電容量が大きいことが
必要である。放電容量を上げるための電極の保持すべき
特性としては、活性炭素内に10〜20Å程度の微細孔
が多く存在し比表面積が大きいほど良好である。このた
めに炭素材を焼成後、賦活処理を行い細孔を増やす処理
をすることが活性炭の製造方法として通常とられてい
る。
Activated carbon is generally used as a polarizable electrode, and the electrode must have a large discharge capacity as a characteristic. As characteristics to be held by the electrode for increasing the discharge capacity, it is preferable that the activated carbon has many fine pores of about 10 to 20 ° and the specific surface area is large. For this purpose, after firing the carbon material, an activation treatment is generally performed to increase the pores as a method for producing activated carbon.

【0005】活性炭の原料としては、ピッチ、椰子が
ら、有機樹脂等、焼成により炭化するものを使用するの
が一般的であり、これらを高温焼成、粉砕、賦活処理を
し、活性炭粉(粒)にするのが活性炭の製法である.
[0005] As a raw material of activated carbon, pitch, coconut, organic resin and the like, which are carbonized by firing, are generally used. These are fired at a high temperature, pulverized, activated, and activated carbon powder (granules). This is how activated carbon is made.

【0006】この活性炭は、導電性を保持するためのカ
ーボンブラック、粘結のためのPTFE(ポリテトラフ
ルオロエチレン)等を添加し、突き固められ板状の電極
板になる。この電極板の容量を上げるため、電極全体の
表面積すなわち細孔容積を上げることが必要であるが、
細孔容積を上げるためには、同形状の電極板で考えれば
活性炭自体の比表面積(重量あたりの表面積)を上げる
か、活性炭電極の密度(体積あたりの重量)をあげるこ
とが必要である。
[0006] The activated carbon is added with carbon black for maintaining conductivity, PTFE (polytetrafluoroethylene) for caking, and the like, and is compacted to form a plate-like electrode plate. In order to increase the capacity of this electrode plate, it is necessary to increase the surface area of the entire electrode, that is, the pore volume,
In order to increase the pore volume, it is necessary to increase the specific surface area (surface area per weight) of the activated carbon itself or the density (weight per volume) of the activated carbon electrode when considering electrode plates of the same shape.

【0007】比表面積をあげる手段として活性炭製造工
程で賦活を行うことが普通である。賦活処理方法につい
ては、高温で水蒸気中、あるいは炭酸ガス中を通すガス
賦活の方法と、アルカリ液等の薬品中を通す薬品賦活の
2通りの方法が一般的である。高容量化のため比表面積
を上げる意味では、薬品賦活のほうがガス賦活より効果
的である。
[0007] As a means of increasing the specific surface area, it is common to activate the activated carbon in the production process. Regarding the activation treatment method, there are generally two types of methods: a gas activation method in which steam is passed through a steam or a carbon dioxide gas at a high temperature, and a chemical activation method in which a chemical such as an alkaline solution is passed. In terms of increasing the specific surface area for increasing the capacity, chemical activation is more effective than gas activation.

【0008】高容量化のもう一つの手段としては活性炭
電極の電極密度を上げることである。すなわち電極にす
る場合の活性炭の充填時の嵩密度(以下充填密度とい
う。)を上げることであるが、粉砕された活性炭につい
ては、ある粒径分布では充填密度に限界があり、また比
表面積を上げていくと、細孔が内部に増えるため、電極
として同体積で見れば電極密度が下がるというジレンマ
があった。
Another means for increasing the capacity is to increase the electrode density of the activated carbon electrode. In other words, it is to increase the bulk density (hereinafter referred to as packing density) at the time of filling activated carbon in the case of forming an electrode. However, with regard to pulverized activated carbon, the packing density is limited in a certain particle size distribution, and the specific surface area is reduced. There was a dilemma that the electrode density decreased when the volume was increased because the pores increased inside.

【0009】本発明者らは、活性炭を少しでも高密度に
充填させるべく、粉砕された活性炭の粒度分布を各種変
え配合し充填密度を上げるべく実験を行ったが密度の向
上は得られなかった。
The present inventors conducted experiments to increase the packing density by changing the particle size distribution of the pulverized activated carbon in various ways in order to fill the activated carbon with even a high density, but no improvement in the density was obtained. .

【0010】[0010]

【発明が解決しようとする課題】本発明は、活性炭素材
特に電気二重層コンデンサ電極用の活性炭素材として充
填しやすく電極にしたときの嵩密度が上がる活性炭の製
造方法及び活性炭、それを使用することにより容量の向
上した電極を提供するものである。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing activated carbon, which can be easily filled as an activated carbon material for an electrode of an electric double layer capacitor, and which has an increased bulk density when formed into an electrode, and to use the activated carbon. Thus, an electrode having an improved capacity is provided.

【0011】[0011]

【課題を解決するための手段】本発明者らは、上記課題
をその活性炭の形態から如何に充填性を高めた活性炭が
出きるかについて鋭意研究を重ねた結果、以下に述べる
製法及び形状及び粒子径を制御した活性炭粒子群で解決
できるに至った。すなわち 1)球形状の粒状炭化物とそれより粒径の小さな炭化物
を混合し、賦活することを特徴とする活性炭の製造方
法。 2)球形状の粒状炭化物を賦活後、別に賦活した活性炭
を粉砕し粒径を小さくしたものを配合することを特徴と
する活性炭の製造方法。 3)球形状の粒状活性炭とそれより粒径の小さな活性炭
を配合することを特徴とする活性炭の製造方法。であ
る。球形状の粒状炭化物のかわりにアスペクト比が5以
下の塊状の炭化物、球形状の粒状活性炭のかわりにアス
ペクト比が5以下の塊状の活性炭も使用することがき
る。この製法に使用する球形状の粒状炭化物の原料とし
て樹脂を使用する場合は、いかなるものでも良いが、球
形状の粒状樹脂として製造、販売されたものを使用する
ことで、炭化焼成条件によりそのままの球形状の粒状炭
化物が得られる。また、球形状の粒状樹脂は、あらかじ
め球形状に製造されたものでなくても、樹脂の塊を粉
砕、造粒して球形状にしたものを炭化焼成してもよい。
いずれの場合でも、フェノール樹脂、グアナミン樹脂等
を使用することにより、容易にかつ安価に製造できる。
球形状の活性炭は、球形状の粒状炭化物を原料としなく
とも活性炭を研磨、摩砕により球形状にしたものでもか
まわない。またこの製造での賦活の方法は、いかなる賦
活方法でも可能であるが、比表面積を上げるためには、
薬品賦活で行うことが好ましい。
Means for Solving the Problems The inventors of the present invention have conducted intensive studies on the above-mentioned problems as to how an activated carbon having a higher filling property can be obtained from the form of the activated carbon. Activated carbon particles with controlled particle size can solve the problem. That is, 1) A method for producing activated carbon, which comprises mixing and activating a spherical granular carbide and a carbide having a smaller particle diameter. 2) A method for producing activated carbon, characterized in that after activating a spherical granular carbide, activated carbon separately activated is pulverized to reduce the particle size. 3) A method for producing activated carbon, which comprises mixing spherical activated carbon with activated carbon having a smaller particle size. It is. It is also possible to use a massive carbide having an aspect ratio of 5 or less instead of the spherical granular carbide, and a massive activated carbon having an aspect ratio of 5 or less instead of the spherical granular activated carbon. When a resin is used as a raw material of the spherical granular carbide used in this manufacturing method, any material may be used, but by using a product manufactured and sold as a spherical granular resin, the carbonized firing condition may be used as it is. A spherical granular carbide is obtained. Further, the spherical granular resin is not necessarily manufactured in advance into a spherical shape, but may be obtained by pulverizing and granulating a lump of resin to form a spherical shape and carbonizing and firing.
In any case, the use of a phenol resin, a guanamine resin, or the like allows easy and inexpensive production.
The spherical activated carbon may be formed by polishing and grinding the activated carbon into a spherical shape without using spherical granular carbide as a raw material. The activation method in this production can be any activation method, but in order to increase the specific surface area,
It is preferable to carry out by chemical activation.

【0012】このような製法にて活性炭として、 4)アスペクト比1〜5、平均粒径4〜40μmの球形
状の活性炭と平均粒径4μm以下の活性炭を配合した活
性炭。 5)平均粒径4μm以下の活性炭を10〜60質量%含
む4)記載の活性炭。 6)タッピング嵩密度が0.5〜1.2g/ccである
4)又は5)記載の活性炭。 7)細孔容積が0.5〜1.5cc/gである6)記載
の活性炭。が得られた。また、 8)これら4)〜7)いずれかの活性炭を使用した電気
二重層コンデンサ電極。にて高容量の特性が得られた。
またこの時の電極自体の細孔容積は、0.55cc/g
以下にすることができた。
4) Activated carbon obtained by blending activated carbon having an aspect ratio of 1 to 5 and a spherical shape having an average particle size of 4 to 40 μm with activated carbon having an average particle size of 4 μm or less. 5) The activated carbon according to 4), which contains 10 to 60% by mass of activated carbon having an average particle size of 4 μm or less. 6) The activated carbon according to 4) or 5), wherein the tapping bulk density is 0.5 to 1.2 g / cc. 7) The activated carbon according to 6), having a pore volume of 0.5 to 1.5 cc / g. was gotten. 8) An electric double layer capacitor electrode using any of the activated carbons of 4) to 7) above. , High capacity characteristics were obtained.
At this time, the pore volume of the electrode itself is 0.55 cc / g.
I was able to:

【0013】[0013]

【発明の実施の形態】本発明による活性炭の形態は、ア
スペクト比1〜5、平均粒径4〜40μmの活性炭に平
均粒径4μm以下の活性炭を配合したものである。ま
た、活性炭原料の樹脂の粒状物又は炭化物があらかじめ
配合され、しかる後に賦活後の組成がこの配合になるも
のも含む。アスペクト比とは一般に粒子の(長軸の長
さ)/(短軸の長さ)の比で表され、その値は顕微鏡写
真から求められる。平均粒子径とは、累積分布曲線の5
0%の値から求められた径(いわゆるD50)である。
BEST MODE FOR CARRYING OUT THE INVENTION The form of activated carbon according to the present invention is obtained by blending activated carbon having an aspect ratio of 1 to 5 and an average particle size of 4 to 40 μm with activated carbon having an average particle size of 4 μm or less. Further, it also includes those in which a granular material or a carbide of the resin as the raw material of the activated carbon is previously blended, and then the composition after activation becomes this blend. The aspect ratio is generally represented by the ratio of (major axis length) / (minor axis length) of a particle, and its value is determined from a micrograph. The average particle size is 5 in the cumulative distribution curve.
This is the diameter (so-called D50) determined from the value of 0%.

【0014】電極としての充填密度をあげるためには、
大きい粒子径で構成される粉体層の空隙に更に侵入でき
る大きさを持った、より小さな粒子径の粉体層との組合
せ、粒子の進入し易い形状が重要な要素となる。本発明
の活性炭では、大きい粒子群と小さい粒子群を混合する
ことと、大きい粒子の形状がポイントである。
In order to increase the packing density as an electrode,
An important factor is the combination with a powder layer having a smaller particle diameter, which has a size that can further penetrate into the voids of the powder layer having a large particle diameter, and a shape in which particles can easily enter. In the activated carbon of the present invention, the point is that the large particles and the small particles are mixed and the shape of the large particles.

【0015】大きい粒子群は、アスペクト比1〜5好ま
しくは1〜2でなるべく完全な球(アスペクト比1)が
好ましいが、本発明でいう球形状とは真円状の球、楕円
状あるいは繭状、塊状、更には角が丸く球形を保持して
いるもののいずれでもよい。平均粒径4μm以下の粒子
群の粒子形状は特に規定されるものではなく、いかなる
形状でもよいが好ましくは球状のものがよい。大きな粒
子群の粒子径は平均粒径で4〜40μm好ましくは10
〜30μmがよい。大きな粒子群中の最小粒子径は、特
に規定されないが、小さな粒子群の充填のための空隙を
考慮すると好ましくは小さな粒子群の平均粒径より大き
いほうが好ましい。一方小さな粒子群の粒子径は、平均
粒径4μm以下であり、好ましくは大きな粒子群の径の
1/5以下である。最小粒子径は特に規定されないが、
電気二重層コンデンサ用の電極では、粒子径が小さすぎ
ると静電容量発現に支障をきたすので、好ましくは0.
5μm以上がよい。小さな粒子群の最大粒子径は、大き
い粒子群の空隙への充填を考えると、大きい粒子群の平
均粒径以下が好ましい。
The large particle group is preferably a perfect sphere (aspect ratio 1) having an aspect ratio of 1 to 5, preferably 1 to 2. The spherical shape in the present invention is a perfect sphere, ellipse or cocoon. The shape may be any of a shape, a lump, and a shape having rounded corners and a spherical shape. The particle shape of the particle group having an average particle size of 4 μm or less is not particularly limited, and may be any shape, but is preferably spherical. The average particle diameter of the large particle group is 4 to 40 μm, preferably 10 μm.
3030 μm is preferred. The minimum particle size in the large particle group is not particularly limited, but is preferably larger than the average particle size of the small particle group in consideration of the space for filling the small particle group. On the other hand, the particle diameter of the small particle group is 4 μm or less in average particle diameter, and preferably 1/5 or less of the diameter of the large particle group. Although the minimum particle size is not particularly specified,
In the case of an electrode for an electric double layer capacitor, if the particle size is too small, it will hinder the development of capacitance.
5 μm or more is preferable. The maximum particle diameter of the small particle group is preferably equal to or less than the average particle diameter of the large particle group in consideration of filling the voids of the large particle group.

【0016】大きな粒子群への小さな粒子群の配合量
は、平均粒子径、粒度分布により変わるが、10〜60
質量%好ましくは20〜40質量%配合することによ
り、滑り性が改善され活性炭同士の空隙に小さな活性炭
が充填され、タッピング密度の高い活性炭粒子群を提供
できるに至った。10%以下の配合では、大きな粒子径
で構成される空隙を埋めきれず、60%以上では、小さ
い粒子径で構成される空隙が多くなる。
The amount of the small particles in the large particles depends on the average particle size and the particle size distribution.
By blending in an amount of 20% by mass, preferably 20% by mass to 40% by mass, the slipperiness is improved and the gap between the activated carbons is filled with a small amount of the activated carbon, thereby providing an activated carbon particle group having a high tapping density. When the content is 10% or less, the voids having a large particle size cannot be filled, and when the content is 60% or more, the voids having a small particle size increase.

【0017】なお、タッピング嵩密度とは、炭素粉末
5.0gを秤量し、15mmφの測定用セルに入れ、タ
ッピング装置にセットする。落下高さ30mm、タッピ
ング速度を0.2秒/回とし10000回自由落下させ
た後、その体積を測定する。その時の重量と体積から密
度を計算したものをタッピング嵩密度とする。また、活
性炭の細孔容積は、ユアサアイオニクス(AUTSOR
B−1MP型)にて細孔が液体窒素により充填されてい
ると仮定し、相対圧力が1付近で吸着したガス量から求
めた。
The tapping bulk density means that 5.0 g of carbon powder is weighed, placed in a 15 mmφ measuring cell, and set in a tapping device. After freely falling 10,000 times with a falling height of 30 mm and a tapping speed of 0.2 seconds / time, the volume is measured. The density calculated from the weight and volume at that time is defined as the tapping bulk density. The pore volume of activated carbon is determined by Yuasa Ionics (AUTSOR).
B-1MP type), the pores were assumed to be filled with liquid nitrogen, and the relative pressure was determined from the amount of gas adsorbed at around 1.

【0018】本願発明の製法についてのポイントは、球
形状の粒状炭化物とあらかじめ他で炭化焼成し作られた
それより粒径の小さな他の炭化物を配合し、賦活するこ
とにより活性炭を製造するものである。あるいは、球形
状の粒状炭化物を賦活後、別に賦活した活性炭を粉砕
し、より粒径を小さくしたものを配合することにより製
造するものである。球形状の粒状炭化物は、出発原料と
して球形状の粒状樹脂を使用し、これを炭化焼成する、
あるいは粒、塊状樹脂を粉砕、造粒により球形状の粒状
樹脂にしたものを炭化焼成してもよい。
The point of the production method of the present invention is to produce activated carbon by blending and activating a granular granular carbide and another carbide having a smaller particle size than that previously produced by carbonization and firing. is there. Alternatively, it is produced by activating a spherical granular carbide, pulverizing activated carbon separately activated, and blending the activated carbon having a smaller particle size. The spherical granular carbide uses a spherical granular resin as a starting material and carbonizes and calcinates it.
Alternatively, the granular or lump resin may be pulverized and granulated to give a spherical granular resin, which may be carbonized and fired.

【0019】樹脂は、フェノール樹脂、グアナミン樹
脂、キシレン樹脂、フラン樹脂、メラミン樹脂等の熱硬
化樹脂、塩化ビニール等の塩素系樹脂が使用できるが、
球形状の樹脂はモノマーを乳化あるいは懸濁状態で自己
縮合反応を進めるか、あるいはモノマーを均一系で自己
縮合反応を進めた後、乳化あるいは懸濁状態で析出させ
る。しかる後、溶媒から固形物を分離、洗浄乾燥後球形
状の粒状樹脂を得ることができる。また、通常の上記樹
脂を粉砕、造粒により球形状の粒状樹脂にすることも可
能である。粉砕はボールミル、振動ミル、ジェットミル
粉砕等通常の粉砕装置で良い。又、造粒は攪拌遠心造粒
あるいはスプレードライ等が使用される。
As the resin, a thermosetting resin such as a phenol resin, a guanamine resin, a xylene resin, a furan resin, and a melamine resin, and a chlorine-based resin such as vinyl chloride can be used.
The spherical resin is subjected to self-condensation reaction in a state where the monomer is emulsified or suspended, or the monomer is subjected to a self-condensation reaction in a homogeneous system and then precipitated in an emulsified or suspended state. Thereafter, a solid substance is separated from the solvent, washed and dried to obtain a spherical granular resin. It is also possible to pulverize and granulate the above-mentioned ordinary resin into a spherical granular resin. The pulverization may be performed by a usual pulverizer such as a ball mill, a vibration mill, and a jet mill. As for granulation, stirring centrifugal granulation or spray drying is used.

【0020】上記球形状の粒状樹脂の粒度は、使用する
活性炭の粒度にあわせて置いたほうが好ましい。すなわ
ち、もとの樹脂の粒をそのままの形状に近い形で活性炭
に焼成、賦活することにより元の球形状面を保持するこ
とが大事である。
The particle size of the spherical granular resin is preferably set according to the particle size of the activated carbon used. That is, it is important to maintain the original spherical surface by sintering and activating the original resin particles into activated carbon in a shape close to the original shape.

【0021】該粒径の小さな他の炭化物は球形状であれ
ばなお良いが、球形状である必要がなく、通常の樹脂を
炭化、賦活後、粉砕あるいは炭化後に粉砕、賦活したも
ので良い。ただし、その粒径については球形状の炭化物
よりも小さい粒径であることが必要である。その粒径の
大きさの程度は、球形状炭化物の粒径の約20%以下が
隙間に入り込むためには好ましい。
The other carbide having a small particle size is more preferably in a spherical shape, but need not be in a spherical shape, and may be a resin obtained by carbonizing and activating, pulverizing, or pulverizing and activating after carbonization. However, the particle size must be smaller than that of the spherical carbide. The size of the particle size is preferably such that about 20% or less of the particle size of the spherical carbide enters the gap.

【0022】炭化温度は、その後の特性に影響があるた
めコンデンサ用活性炭として最適な温度を選定する必要
があり、通常は500℃〜1000℃程度が一般に用い
られる。炭化温度があまり低い場合、炭化が不十分とな
り、その後の賦活が不安定となる。炭化温度が高いと表
面官能基が少なくなり賦活進み難くなる。炭化温度とし
ては、600〜800℃が好ましい。
Since the subsequent carbonization temperature has an effect on the subsequent characteristics, it is necessary to select an optimum temperature for the activated carbon for a capacitor, and usually about 500 ° C. to 1000 ° C. is generally used. If the carbonization temperature is too low, carbonization will be insufficient, and subsequent activation will be unstable. If the carbonization temperature is high, the number of surface functional groups is reduced, and it becomes difficult for activation to proceed. The carbonization temperature is preferably from 600 to 800C.

【0023】炭化後の賦活は、いかなる賦活方法でもよ
いが、比表面積をあげるためには苛性カリ(KOH)、
苛性ソーダ(NaOH)、塩化亜鉛(ZnCl2)、リ
ン酸等による薬品賦活が好ましい。賦活時の温度は、5
00〜1000℃で行われる。賦活温度が低いとミクロ
孔が多くなり、賦活温度が高いとメソ孔が多くなり、用
途に合った賦活温度が選定される。
The activation after carbonization may be performed by any activation method, but in order to increase the specific surface area, potassium hydroxide (KOH),
Chemical activation with caustic soda (NaOH), zinc chloride (ZnCl 2 ), phosphoric acid or the like is preferred. Activation temperature is 5
It is performed at 00 to 1000 ° C. When the activation temperature is low, the number of micropores increases, and when the activation temperature is high, the number of mesopores increases, and the activation temperature suitable for the application is selected.

【0024】更に本願発明の製法のポイントは、球形状
の粒状活性炭が粉砕、造粒することにより得られた活性
炭でも上記と同様の効果がある事がわかった。すなわ
ち、通常の樹脂を炭化、賦活した活性炭あるいは椰子ガ
ラ活性炭、コークス系活性炭等、通常の活性炭を粉砕、
造粒あるいは研磨、摩砕等にて球形状の活性炭を製造
し、該粒径の小さな他の活性炭と配合しても上記と同様
に充填密度の向上した活性炭粒子群が出きることがわか
った。通常活性炭を、ボールミル、振動ミル、ジェット
ミル等で平均粒径0.5〜10μm、好ましくは2〜8
μmに粉砕し、攪拌遠心造粒機、スプレードライ等で平
均粒径4〜40μm、好ましくは15〜30μmに造粒
する。必要に応じて湿式メディアミル等で研磨、摩砕す
る。
Further, the point of the production method of the present invention is that it has been found that activated carbon obtained by pulverizing and granulating spherical granular activated carbon has the same effect as described above. That is, ordinary activated carbon, such as activated carbon or coconut shell activated carbon activated or activated by carbonizing ordinary resin, is crushed,
Even if spherical activated carbon was produced by granulation, polishing, grinding, etc., and blended with other activated carbon having a small particle size, it was found that activated carbon particles with improved packing density could be obtained in the same manner as above. . Normally, activated carbon is subjected to an average particle size of 0.5 to 10 μm, preferably 2 to 8 by a ball mill, vibration mill, jet mill or the like.
It is pulverized to a particle size of 4 to 40 μm, preferably 15 to 30 μm using a stirring centrifugal granulator, spray drying or the like. If necessary, grind and grind with a wet media mill.

【0025】これまで述べてきたように球形状の大きい
粒径と該粒径の小さい粒径を配合することにより充填密
度の向上した活性炭粒子群を提供することができる。先
に述べたように、球形状の活性炭は、完全な真円の球で
ある必要はなく、アスペクト比で1〜5程度あればよ
い。好ましくは1〜2である。また電池用の電極として
は、塊状又は球形状の活性炭は平均粒径4〜40μm
が、好ましくは15〜30μmがよい。一緒に配合する
それより小さい粒径の活性炭は平均粒径4μm以下好ま
しくは大きい活性炭の平均粒径の1/5以下が、球形状
の粒子間を埋めるのに好ましい。なお、この小さい活性
炭は、球形状である必要はないが、球形状であればなお
充填のためには良い。この4μm以下の小さな粒径の活
性炭は、全体の10〜60質量%、好ましくは20〜4
0質量%程度配合することが充填時の密度をあげるため
に好ましい。本発明の製造法により、アスペクト比1〜
5、平均粒径4〜40μの球形状活性炭と平均粒径4μ
m以下の活性炭を配合した活性炭が得られ、そのタッピ
ング嵩密度は0.5〜1.2cc/gと高いとともに、
細孔容積は、0.5〜1.5cc/gに細孔を持つ活性
炭が得られた。
As described above, by blending a large spherical particle size and a small spherical particle size, an activated carbon particle group having an improved packing density can be provided. As described above, the spherical activated carbon does not need to be a perfectly round sphere, but may have an aspect ratio of about 1 to 5. Preferably it is 1-2. As a battery electrode, lumped or spherical activated carbon has an average particle size of 4 to 40 μm.
However, it is preferably 15 to 30 μm. The activated carbon having a smaller particle size than that of the activated carbon mixed together preferably has an average particle size of 4 μm or less, and preferably 1/5 or less of the average particle size of the large activated carbon for filling the space between the spherical particles. The small activated carbon does not need to have a spherical shape, but a spherical shape is sufficient for filling. The activated carbon having a small particle size of 4 μm or less accounts for 10 to 60% by mass of the total, preferably 20 to 4% by mass.
About 0% by mass is preferably added to increase the density at the time of filling. According to the production method of the present invention, the aspect ratio is 1 to
5. Spherical activated carbon having an average particle size of 4 to 40μ and an average particle size of 4μ
m is obtained, and the tapping bulk density is as high as 0.5 to 1.2 cc / g.
Activated carbon having a pore volume of 0.5 to 1.5 cc / g was obtained.

【0026】この活性炭を用いて、テフロンをバインダ
ーとし、圧延によりシート状に成形し、ステンレス網に
圧着した電極シートとし、先に述べた電気二重層コンデ
ンサの構成にて定電流充放電を行い放電時の容量を測定
したところ電気二重層として十分な性能が得られた。
又、この時の電極自体の細孔容積は、水銀ポロシメータ
ー(ユアサアイオニクス製:ポアマスター33)にて測
定したところ、0.55cc/g以下の空隙であった。
Using this activated carbon, a sheet is formed by rolling using Teflon as a binder, pressed into a stainless steel mesh to form an electrode sheet, and is charged and discharged at a constant current in the configuration of the electric double layer capacitor described above. When the capacity at the time was measured, sufficient performance as an electric double layer was obtained.
Further, the pore volume of the electrode itself at this time was measured by a mercury porosimeter (Poremaster 33 manufactured by Yuasa Ionics) and found to be a void of 0.55 cc / g or less.

【0027】[0027]

【実施例】以下、実施例により本発明の活性炭製造方
法、及びその活性炭、それを使用した電極についての説
明をおこなう。 (合成法による球形状樹脂の調整)球形状のフェノール
樹脂粒子を得るため、フェノール200g、37%ホル
マリン200g、28%アンモニア水64.2gを投入
し均一な溶液とした。この溶液に攪拌下で、弗化カリウ
ム5.8g、塩化カルシウム8.4g、水40gの分散
液を添加し、反応させ濾過水洗、乾燥させ平均粒径30
μmの球形状フェノール樹脂粒子を得た。(タイプAの
球形状樹脂) (合成法球形状樹脂からの球形状炭化物)上記タイプA
の球形状樹脂を窒素雰囲気中600℃で2時間炭化し
た。得られた炭素粉は平均粒径25μm、アスペクト比
は1であった。(タイプaの球形状炭化物) (加工法による球形状炭化物)市販フェノール樹脂(群
栄化学PL−2211)を180℃で硬化させ、600
℃で炭化した。振動ボールミルで2μmに粉砕した後、
商品名:FUKAE3L型の造粒機にて造粒し、必要に
応じ湿式粉砕器(商品名:DYNO−MILL LDL
A型)にて調整し、球形状の炭化物を得た。これを窒素
雰囲気中600℃で2時間炭化した。平均粒径23μ
m、アスペクト比は2であった。(タイプbの球形状炭
化物) (小さい粒径の炭化物)市販フェノール樹脂(群栄化学
PL−2211)を180℃で硬化させ、600℃で炭
化した。その後、振動ボールミルで粉砕し、平均粒径4
μmまで調整した。
EXAMPLES Hereinafter, the method for producing activated carbon of the present invention, the activated carbon, and the electrodes using the same will be described with reference to examples. (Preparation of Spherical Resin by Synthetic Method) In order to obtain spherical phenol resin particles, 200 g of phenol, 200 g of 37% formalin, and 64.2 g of 28% aqueous ammonia were added to form a uniform solution. A dispersion of 5.8 g of potassium fluoride, 8.4 g of calcium chloride and 40 g of water was added to this solution with stirring, reacted, filtered, washed with water and dried to obtain an average particle size of 30.
μm spherical phenol resin particles were obtained. (Type A spherical resin) (Spherical carbide from synthetic spherical resin) Type A above
Was carbonized at 600 ° C. for 2 hours in a nitrogen atmosphere. The obtained carbon powder had an average particle size of 25 μm and an aspect ratio of 1. (Spherical carbide of type a) (Spherical carbide by processing method) A commercially available phenol resin (Gunei Chemical PL-2211) was cured at 180 ° C.
Carbonized at ℃. After crushing to 2μm with a vibration ball mill,
Product name: Granulate with a FUKAE 3L type granulator, and if necessary, wet mill (product name: DYNO-MILL LDL)
(A type) to obtain a spherical carbide. This was carbonized at 600 ° C. for 2 hours in a nitrogen atmosphere. Average particle size 23μ
m and the aspect ratio were 2. (Spherical carbide of type b) (Carbide of small particle size) A commercially available phenol resin (Gunei Chemical PL-2211) was cured at 180 ° C and carbonized at 600 ° C. Then, it is pulverized with a vibrating ball mill and has an average particle size of 4
Adjusted to μm.

【0028】〔実施例1〕タイプaの球形状炭化物に苛
性カリ(KOH)を2.5倍投入し、窒素雰囲気中70
0℃で反応賦活した。良く水洗し、Kを除去した後、乾
燥した。賦活後の平均粒径は25μm、アスペクト比1
と変わらない活性炭が得られた。前記小さい粒径の炭化
物を同条件で賦活し、平均粒径3.8μmの活性炭を得
た。この球形状の活性炭と小さい粒径の活性炭を重量比
65:35に配合しタッピングした。この時のタッピン
グ嵩密度、活性炭の細孔容積を測定した。この結果を表
1に示す。
Example 1 Caustic potash (KOH) was added 2.5 times to a spherical carbide of type a, and 70% of nitrogen was added in a nitrogen atmosphere.
The reaction was activated at 0 ° C. After washing well with water to remove K and drying. The average particle size after activation is 25 μm, the aspect ratio is 1
Activated carbon which was not different was obtained. The carbide having the small particle size was activated under the same conditions to obtain activated carbon having an average particle size of 3.8 μm. The spherical activated carbon and the activated carbon having a small particle diameter were blended in a weight ratio of 65:35 and tapping was performed. At this time, the tapping bulk density and the pore volume of the activated carbon were measured. Table 1 shows the results.

【0029】次にこの活性炭にテフロン粉末を10重量
%、ファーネスブラック9重量%を加えメノウ乳鉢で混
合し、圧延ローラーにてシート状に成形し、ステンレス
製網に圧着し電極シートを作成した。このシートを10
×10mmに切り正極及び負極用電極とした。電極を、
1mmガラスフィルター製セパレータを間に介してAl
セルにセットしプロピレンカーボネート1Lに(C
254・NBF4 1mol/Lを溶解した液を電解液
とし浸漬し、電気二重層コンデンサとした。このコンデ
ンサに電流密度1.0mA/cm2、電圧範囲0〜2.
3Vで定電流充放電を行い放電時において容量を測定し
た。この電極としての活性炭の嵩密度(電極密度)及び
電極の細孔容積と放電容量を表1に示す。
Next, 10% by weight of Teflon powder and 9% by weight of furnace black were added to the activated carbon, mixed in an agate mortar, formed into a sheet by a rolling roller, and pressed into a stainless steel net to prepare an electrode sheet. This sheet is 10
The sheet was cut into a size of × 10 mm to form a positive electrode and a negative electrode. Electrodes
Al through a 1mm glass filter separator
Set in a cell and make 1L of propylene carbonate (C
2 H 5) a 4 · NBF 4 solution prepared by dissolving 1 mol / L was immersed with the electrolytic solution, and an electric double layer capacitor. This capacitor has a current density of 1.0 mA / cm 2 and a voltage range of 0 to 2.
Constant current charging and discharging was performed at 3 V, and the capacity was measured at the time of discharging. Table 1 shows the bulk density (electrode density) of the activated carbon as the electrode, the pore volume of the electrode, and the discharge capacity.

【0030】[実施例2]タイプbの球形状の炭化物を
実施例1同様の条件で薬品賦活を行いアスペクト比2、
平均粒径23μmの球形状活性炭を得た。これと、前記
小さい粒径の炭化物を同条件により賦活したものと6
0:40に配合しタッピングした。この時のタッピング
嵩密度、細孔容積を測定した。この結果を表1に示す。
実施例1と同様の手法により、この活性炭を用いて電極
を作成し、電気二重層コンデンサとして定電流充放電を
行った。同様に電極密度、放電容量を測定した結果を表
1に示す。
[Example 2] A spherical carbide of type b was subjected to chemical activation under the same conditions as in Example 1 and an aspect ratio of 2,
A spherical activated carbon having an average particle size of 23 μm was obtained. This is obtained by activating the small-sized carbide under the same conditions.
0:40 and tapping. At this time, the tapping bulk density and the pore volume were measured. Table 1 shows the results.
In the same manner as in Example 1, an electrode was formed using this activated carbon, and a constant current charge / discharge was performed as an electric double layer capacitor. Table 1 shows the measurement results of the electrode density and the discharge capacity in the same manner.

【0031】[実施例3]市販フェノール樹脂(群栄化
学PL−2211)を180℃で硬化させ、600℃で
炭化した。これに苛性カリ(KOH)を2.5倍投入
し、窒素雰囲気中700℃で反応賦活した。良く水洗
し、Kを除去した後、乾燥した。次にこれを商品名:F
UKAE 3L型の造粒機にて造粒し、必要に応じ湿式
粉砕器(商品名:DYNO−MILL LDLA型)に
て調整し、平均粒径30μm、アスペクト比3の球形状
の活性炭を得た。これと、前記小さい粒径の炭化物を同
条件で賦活し得た平均粒径3.8μmの活性炭を65:
35に配合し、タッピングした。この時のタッピング嵩
密度、細孔容積を測定した。この結果を表1に示す。以
下実施例1と同様に、電極を作成、電気二重層コンデン
サを組んで同様の測定を行った。この結果を表1に示
す。
Example 3 A commercially available phenol resin (Gunei Chemical PL-2211) was cured at 180 ° C. and carbonized at 600 ° C. Caustic potassium (KOH) was added 2.5 times to this, and the reaction was activated at 700 ° C. in a nitrogen atmosphere. After washing well with water to remove K and drying. Next, this is trade name: F
Granulation was performed using a UKE 3L-type granulator and, if necessary, adjustment was performed using a wet pulverizer (trade name: DYNO-MILL LDLA type) to obtain spherical activated carbon having an average particle size of 30 μm and an aspect ratio of 3. . Activated carbon having an average particle diameter of 3.8 μm obtained by activating the carbide having a small particle diameter under the same conditions is used for 65:
35 and tapping. At this time, the tapping bulk density and the pore volume were measured. Table 1 shows the results. Thereafter, in the same manner as in Example 1, an electrode was prepared, and an electric double layer capacitor was assembled. Table 1 shows the results.

【0032】[実施例4]タイプaの球形状炭化物と前
記小さい粒径の炭化物を60:40に配合し、苛性カリ
(KOH)を2.5倍量投入し窒素中で700℃にて賦
活した。その後、水洗し、Kを除去した後乾燥した。以
下、実施例1同様に、電極を作成、電気二重層コンデン
サを組んで同様の測定を行った。この結果を表1に示
す。
Example 4 A spherical carbide of type a and the above-described carbide having a small particle diameter were blended at a ratio of 60:40, and 2.5 times the amount of caustic potash (KOH) was added, and activated at 700 ° C. in nitrogen. . Then, it was washed with water, dried after removing K. Hereinafter, in the same manner as in Example 1, electrodes were formed, and an electric double layer capacitor was assembled, and the same measurement was performed. Table 1 shows the results.

【0033】[比較例1]市販フェノール樹脂(群栄化
学P1−2211)を180℃で硬化させ、600℃で
炭化し、2.5倍量のKOHを投入し、窒素雰囲気中7
00℃で賦活を行った。その後、振動ボールミルで平均
粒径20μmに粉砕した。アスペクト比は6となり、角
張った扁平な活性炭が得られた。これと実施例1に使用
した小さな粒径の活性炭を65:35に配合し、また実
施例1同様の条件にて電極を作成、電気二重層コンデン
サを組み各測定を行った。この結果を表1に示す。
[Comparative Example 1] A commercially available phenol resin (Gunei Chemical P1-2221) was cured at 180 ° C, carbonized at 600 ° C, and 2.5 times the amount of KOH was charged.
Activation was performed at 00 ° C. Then, it was pulverized with a vibration ball mill to an average particle size of 20 μm. The aspect ratio was 6, and a flat, flat, activated carbon was obtained. This and activated carbon having a small particle diameter used in Example 1 were blended in a ratio of 65:35, electrodes were prepared under the same conditions as in Example 1, and an electric double layer capacitor was assembled and each measurement was performed. Table 1 shows the results.

【0034】[比較例2]市販フェノール樹脂(群栄化
学P1−2211)を180℃で硬化させ、600℃で
炭化し、2.5倍量のKOHを投入し、窒素雰囲気中7
00℃で賦活を行った。その後、振動ボールミルで平均
粒径30μmに粉砕した。アスペクト比は5となり、角
張った扁平な活性炭が得られた。これと実施例1に使用
した小さな粒径の活性炭を60:40に配合し、また実
施例1同様の条件にて電極を作成、電気二重層コンデン
サを組み各測定を行った。この結果を表1に示す。
[Comparative Example 2] A commercially available phenol resin (Gunei Chemical P1-2221) was cured at 180 ° C, carbonized at 600 ° C, and 2.5 times the amount of KOH was charged.
Activation was performed at 00 ° C. Then, it was pulverized with a vibration ball mill to an average particle size of 30 μm. The aspect ratio was 5, and a flat, square activated carbon was obtained. This was mixed with the activated carbon having a small particle diameter used in Example 1 at a ratio of 60:40, and an electrode was prepared under the same conditions as in Example 1, and an electric double layer capacitor was assembled and each measurement was performed. Table 1 shows the results.

【0035】[0035]

【発明の効果】本発明の方法により、活性炭の充填密度
を上げることにより、細孔容積を増すことができ、本製
法により製造した活性炭を使用した電極は電極密度が高
く、高性能の放電容量が得られる。
According to the method of the present invention, the pore volume can be increased by increasing the packing density of the activated carbon, and the electrode using the activated carbon produced by this method has a high electrode density and a high-performance discharge capacity. Is obtained.

【表1】 [Table 1]

【0036】[0036]

【図面の簡単な説明】[Brief description of the drawings]

【図1】電気二重層コンデンサの基本構成図である。FIG. 1 is a basic configuration diagram of an electric double layer capacitor.

【符号の説明】 1 活性炭電極 2 多孔質ガラスセパレーター 3 パッキンシート 4 集電板[Description of Signs] 1 Activated carbon electrode 2 Porous glass separator 3 Packing sheet 4 Current collector plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田中 昌子 神奈川県川崎市川崎区大川町5−1 昭和 電工株式会社生産技術センター内 (72)発明者 山本 哲範 神奈川県川崎市川崎区大川町5−1 昭和 電工株式会社生産技術センター内 (72)発明者 西村 邦夫 神奈川県川崎市川崎区大川町5−1 昭和 電工株式会社生産技術センター内 Fターム(参考) 4G046 HA03 HB02 HB05 HC01  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Masako Tanaka 5-1 Okawacho, Kawasaki-ku, Kawasaki-shi, Kanagawa Prefecture Showa Denko KK Production Technology Center (72) Inventor Tetsunori Yamamoto 5- Okawacho, Kawasaki-ku, Kawasaki-shi, Kanagawa 1. Showa Denko KK Production Technology Center (72) Inventor Kunio Nishimura 5-1 Okawacho, Kawasaki-ku, Kawasaki City, Kanagawa Prefecture Showa Denko KK Production Technology Center F term (reference) 4G046 HA03 HB02 HB05 HC01

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】アスペクト比1〜5、平均粒径4〜40μ
mの活性炭(A)と平均粒径4μm以下の活性炭(B)
の少なくとも2種以上を配合した活性炭。
1. An aspect ratio of 1 to 5 and an average particle size of 4 to 40 μm.
m of activated carbon (A) and activated carbon having an average particle size of 4 μm or less (B)
Activated carbon containing at least two or more of the following.
【請求項2】Bの平均粒径4μm以下の活性炭を10〜
60質量%含む請求項1記載の活性炭。
2. Activated carbon having an average particle diameter of 4 μm or less of B is
The activated carbon according to claim 1, which contains 60% by mass.
【請求項3】タッピング嵩密度が0.5〜1.2g/c
cである請求項1又は2記載の活性炭。
3. A tapping bulk density of 0.5 to 1.2 g / c.
3. The activated carbon according to claim 1, which is c.
【請求項4】細孔容積が0.5〜1.5cc/gである
請求項3記載の活性炭。
4. The activated carbon according to claim 3, wherein the pore volume is 0.5 to 1.5 cc / g.
【請求項5】該Aの活性炭粒子が球形状である請求項1
〜4いずれか記載の活性炭。
5. The activated carbon particles of A are spherical.
Activated carbon according to any one of claims 1 to 4.
【請求項6】球形状の粒状炭化物とそれより粒径の小さ
な炭化物を配合し、賦活することを特徴とする活性炭の
製造方法。
6. A method for producing activated carbon, comprising mixing and activating a granular spherical carbide and a carbide having a smaller particle diameter than the spherical carbide.
【請求項7】球形状の粒状炭化物を賦活後、これに別の
粉砕活性炭を配合することを特徴とする活性炭の製造方
法。
7. A method for producing activated carbon, comprising the step of activating a granular granular carbide and then adding another pulverized activated carbon thereto.
【請求項8】該球形状の粒状炭化物が球形状の粒状樹脂
を炭化焼成することにより得られたものである請求項6
又は7記載の活性炭の製造方法。
8. The spherical granular carbide is obtained by carbonizing and firing a spherical granular resin.
Or a method for producing activated carbon according to 7.
【請求項9】該球形状の粒状樹脂が樹脂を粉砕、造粒す
ることにより得られたものである請求項8記載の活性炭
の製造方法。
9. The method for producing activated carbon according to claim 8, wherein said spherical granular resin is obtained by pulverizing and granulating the resin.
【請求項10】球形上の粒状活性炭とそれより粒径の小
さな活性炭を配合することを特徴とする活性炭の製造方
法。
10. A method for producing activated carbon, comprising mixing granular activated carbon on a sphere with activated carbon having a smaller particle size.
【請求項11】該球形状の粒状活性炭が活性炭を研磨、
摩砕することにより得られたものである請求項10記載
の活性炭の製造方法。
11. The spherical granular activated carbon grinds activated carbon,
The method for producing activated carbon according to claim 10, which is obtained by grinding.
【請求項12】請求項1〜5いずれか記載の活性炭を主
原料とした電気二重層コンデンサ電極。
12. An electric double layer capacitor electrode comprising the activated carbon according to claim 1 as a main raw material.
【請求項13】電極にした時の電極自体の細孔容積が
0.55cc/g以下である請求項12記載の電気二重
層コンデンサ電極。
13. The electric double layer capacitor electrode according to claim 12, wherein the electrode has a pore volume of 0.55 cc / g or less when used as an electrode.
JP32709999A 1999-11-17 1999-11-17 Active carbon and method for producing the same Pending JP2001146410A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32709999A JP2001146410A (en) 1999-11-17 1999-11-17 Active carbon and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32709999A JP2001146410A (en) 1999-11-17 1999-11-17 Active carbon and method for producing the same

Publications (1)

Publication Number Publication Date
JP2001146410A true JP2001146410A (en) 2001-05-29

Family

ID=18195290

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32709999A Pending JP2001146410A (en) 1999-11-17 1999-11-17 Active carbon and method for producing the same

Country Status (1)

Country Link
JP (1) JP2001146410A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004189586A (en) * 2002-11-29 2004-07-08 Honda Motor Co Ltd Activated carbon, polarizable electrode for electric double-layer capacitor, and electric double-layer capacitor using the same
KR100453922B1 (en) * 2001-04-17 2004-10-20 주식회사 엘지화학 Spherical active carbon and methods for preparing the same, and electric double layer capacitor using the same
WO2004100195A1 (en) * 2003-05-09 2004-11-18 Tdk Corporation Electrochemical capacitor
JP2006294817A (en) * 2005-04-08 2006-10-26 Matsushita Electric Ind Co Ltd Electric double layer capacitor, electrode material therefor, manufacturing method thereof, and electrode for electric double layer capacitor
JP2006319321A (en) * 2005-04-12 2006-11-24 Sumitomo Chemical Co Ltd Active carbon and manufacturing method therefor
JP2007169126A (en) * 2005-12-26 2007-07-05 Jfe Chemical Corp Porous material and electric double layer capacitor
JP2007529403A (en) * 2004-03-18 2007-10-25 ティーディーエイ・リサーチ・インコーポレーテッド Carbohydrate-derived porous carbon
JP2009135146A (en) * 2007-11-28 2009-06-18 Panasonic Corp Electrode material for electric double layer capacitor, and additive for the electrode material
US20100220429A1 (en) * 2006-09-01 2010-09-02 Hiroyuki Norieda Electric Double Layer Capacitor
JP2010219323A (en) * 2009-03-17 2010-09-30 National Univ Corp Shizuoka Univ Electrode for electric double layer capacitor
US10475595B2 (en) 2016-05-20 2019-11-12 Avx Corporation Ultracapacitor for use at high temperatures
US10658127B2 (en) 2016-05-20 2020-05-19 Avx Corporation Nonaqueous electrolyte for an ultracapacitor
US10679798B2 (en) 2016-05-20 2020-06-09 Avx Corporation Ultracapacitor containing thin electrodes in a metal container

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100453922B1 (en) * 2001-04-17 2004-10-20 주식회사 엘지화학 Spherical active carbon and methods for preparing the same, and electric double layer capacitor using the same
JP2004189586A (en) * 2002-11-29 2004-07-08 Honda Motor Co Ltd Activated carbon, polarizable electrode for electric double-layer capacitor, and electric double-layer capacitor using the same
KR100752945B1 (en) * 2003-05-09 2007-08-30 티디케이가부시기가이샤 Electrochemical capacitor
WO2004100195A1 (en) * 2003-05-09 2004-11-18 Tdk Corporation Electrochemical capacitor
US7310219B2 (en) 2003-05-09 2007-12-18 Tdk Corporation Electrochemical capacitor
JP2007529403A (en) * 2004-03-18 2007-10-25 ティーディーエイ・リサーチ・インコーポレーテッド Carbohydrate-derived porous carbon
JP4616052B2 (en) * 2005-04-08 2011-01-19 パナソニック株式会社 Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor
JP2006294817A (en) * 2005-04-08 2006-10-26 Matsushita Electric Ind Co Ltd Electric double layer capacitor, electrode material therefor, manufacturing method thereof, and electrode for electric double layer capacitor
US7948738B2 (en) 2005-04-08 2011-05-24 Panasonic Corporation Electrode material for electric double layer capacitor and process for producing the same, electrode for electric double layer capacitor, and electric double layer capacitor
JP2006319321A (en) * 2005-04-12 2006-11-24 Sumitomo Chemical Co Ltd Active carbon and manufacturing method therefor
JP2007169126A (en) * 2005-12-26 2007-07-05 Jfe Chemical Corp Porous material and electric double layer capacitor
US20100220429A1 (en) * 2006-09-01 2010-09-02 Hiroyuki Norieda Electric Double Layer Capacitor
US8848338B2 (en) * 2006-09-01 2014-09-30 W. L. Gore & Associates, Co., Ltd. Electric double layer capacitor
JP2009135146A (en) * 2007-11-28 2009-06-18 Panasonic Corp Electrode material for electric double layer capacitor, and additive for the electrode material
JP2010219323A (en) * 2009-03-17 2010-09-30 National Univ Corp Shizuoka Univ Electrode for electric double layer capacitor
US10475595B2 (en) 2016-05-20 2019-11-12 Avx Corporation Ultracapacitor for use at high temperatures
US10658127B2 (en) 2016-05-20 2020-05-19 Avx Corporation Nonaqueous electrolyte for an ultracapacitor
US10679798B2 (en) 2016-05-20 2020-06-09 Avx Corporation Ultracapacitor containing thin electrodes in a metal container
US10840031B2 (en) 2016-05-20 2020-11-17 Avx Corporation Ultracapacitor for use at high temperatures

Similar Documents

Publication Publication Date Title
JP6123839B2 (en) Carbon particle for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
CN101916844B (en) Torispherical cathode material for lithium ion battery and preparation method thereof
CN106410158A (en) Graphene modified silicon monoxide and carbon composite microsphere, and preparation method and application thereof
CN103214245B (en) Carbon/carbon composite microsphere material, production method and lithium ion battery
KR101614638B1 (en) Method for producing non-graphitizable carbon material
JP2001146410A (en) Active carbon and method for producing the same
CN106410177B (en) A kind of elliposoidal SiOx/ graphite cathode composite materials and its preparation method and application
TW201338253A (en) Carbonaceous material for non-aqueous electrolyte secondary batteries
JP7252988B2 (en) Prelithiated negative electrode, method of making same, lithium ion battery containing prelithiated negative electrode, and supercapacitor
KR101278766B1 (en) Carbon material, and storage element
CN108101083A (en) Lithium battery diaphragm aluminium oxide and preparation method thereof
CN112531160A (en) Amorphous carbon negative electrode material and preparation method and application thereof
JP2000123876A (en) Manufacture of lithium ion battery material
TWI739534B (en) Method for manufacturing graphite material
JP2000195512A (en) Active material powder and electrode material for electrode of silver oxide battery and manufacture thereof
JPH09259883A (en) Carbon negative electrode material for lithium ion secondary battery
JPH09293507A (en) Lithium ion secondary battery
KR101564373B1 (en) Method of preparing artificial graphite negative electrode material for rechargeable lithium battery
KR20150078068A (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
CN114824257A (en) Hard carbon negative electrode material and preparation method and application thereof
KR100771840B1 (en) Heterogeneous-carbonaceous materials-inserted globule carbonaceous powders and process for preparation thereof
CN116686108A (en) Negative electrode material for lithium ion secondary battery, method for producing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN109524627B (en) SiOx negative electrode material with controllable oxygen content, preparation method and lithium ion battery
CN113422018A (en) Preparation method of high-rate polycrystalline composite particle lithium battery negative electrode active material
WO2021153110A1 (en) Positive electrode active substance for lithium ion secondary battery and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060602

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090428

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090615

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090818