JP2009135146A - Electrode material for electric double layer capacitor, and additive for the electrode material - Google Patents

Electrode material for electric double layer capacitor, and additive for the electrode material Download PDF

Info

Publication number
JP2009135146A
JP2009135146A JP2007307822A JP2007307822A JP2009135146A JP 2009135146 A JP2009135146 A JP 2009135146A JP 2007307822 A JP2007307822 A JP 2007307822A JP 2007307822 A JP2007307822 A JP 2007307822A JP 2009135146 A JP2009135146 A JP 2009135146A
Authority
JP
Japan
Prior art keywords
activated carbon
electrode material
double layer
electric double
average particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007307822A
Other languages
Japanese (ja)
Other versions
JP2009135146A5 (en
JP5367974B2 (en
Inventor
Hideki Shimamoto
秀樹 島本
Chiho Yamada
千穂 山田
Susumu Nomoto
進 野本
Morio Takizawa
守雄 滝沢
Mitsumasa Hijiriyama
光政 聖山
Hisatsugu Izuhara
久嗣 出原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Kansai Coke and Chemicals Co Ltd
Original Assignee
Panasonic Corp
Kansai Coke and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Kansai Coke and Chemicals Co Ltd filed Critical Panasonic Corp
Priority to JP2007307822A priority Critical patent/JP5367974B2/en
Publication of JP2009135146A publication Critical patent/JP2009135146A/en
Publication of JP2009135146A5 publication Critical patent/JP2009135146A5/ja
Application granted granted Critical
Publication of JP5367974B2 publication Critical patent/JP5367974B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material for an electric double layer capacitor for forming the electric double layer capacitor having low internal resistance, and additives for the electrode material as a constituent member of the electrode material. <P>SOLUTION: The electrode material for the electric double layer capacitor is obtained by mixing first active carbon of ≤1 μm in mean particle diameter and second active carbon of >1 μm in mean particle diameter with each other, the mean particle diameter of the first active carbon being preferably ≤0.8 μm and more preferably ≤0.5 μm and the amount of the first active carbon being preferably ≥2% by mass for 100% by mass of the first active carbon and second active carbon in total. The additives for the electrode material are used for the electrode material for the electric double layer capacitor which contains the first active carbon of ≤1 μm in mean particle diameter and with which the second active carbon of >1 μm in mean particle diameter is mixed. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、内部抵抗が低く且つ静電容量が大きい電気二重層キャパシタを製造するために使用される電気二重層キャパシタ用電極材料、および当該電極材料の構成部材になる電極材料用添加材に関するものである。   TECHNICAL FIELD The present invention relates to an electrode material for an electric double layer capacitor used for producing an electric double layer capacitor having a low internal resistance and a large capacitance, and an additive for an electrode material which is a constituent member of the electrode material. It is.

電気二重層キャパシタは、電解液と電極との界面で電気二重層が生じることを蓄電原理とする大容量キャパシタとして知られている。電気二重層キャパシタを情報機器のメモリーバックアップ、モーター駆動用等の汎用電源にするためには、効率の良い充放電を実現するべく、電気二重層キャパシタの低内部抵抗化が望まれる。   An electric double layer capacitor is known as a large-capacity capacitor based on the principle of power storage that an electric double layer is generated at the interface between an electrolyte and an electrode. In order to use an electric double layer capacitor as a general-purpose power source for information equipment memory backup, motor drive, etc., it is desired to reduce the internal resistance of the electric double layer capacitor in order to realize efficient charge and discharge.

電気二重層キャパシタの電極には、活性炭が主たる電極材料として使用されており、電気的特性に優れる電気二重層キャパシタを実現するための電極材料開発が進められている。そして、その開発の成果が多くの文献で公開されている。   Activated carbon is used as the main electrode material for the electrode of the electric double layer capacitor, and the development of an electrode material for realizing an electric double layer capacitor having excellent electric characteristics is underway. The results of the development are published in many documents.

例えば特許文献1には、低内部抵抗かつ大容量の電気二重層キャパシタを実現するために、フラーレン含有煤またはフラーレン含有煤からフラーレンの少なくとも一部を溶媒抽出して得られた抽出残渣物を熱処理または賦活処理することにより、平均粒径5〜7μmの炭素質物質を製造し、当該炭素質物質を活性炭と併用して電極を製造することが開示されている。   For example, in Patent Document 1, in order to realize an electric double layer capacitor having a low internal resistance and a large capacity, a fullerene-containing soot or an extraction residue obtained by solvent extraction of at least a part of fullerene from a fullerene-containing soot is heat-treated. Alternatively, it is disclosed that a carbonaceous material having an average particle diameter of 5 to 7 μm is produced by activation treatment, and the carbonaceous material is used in combination with activated carbon to produce an electrode.

また、特許文献2には、電気二重層キャパシタの大容量化のためには充填性の良い電極材料が必要であると開示され、その必要な電極材料は、平均粒径4〜40μmの活性炭(A)と、平均粒径4μm以下の活性炭(B)とを混合したものであると開示されている。そして、活性炭(A)の好ましい平均粒径は10〜30μm、活性炭(B)の好ましい平均粒径は活性炭(A)の平均粒径の1/5以下であると特許文献2に記載されている。
特開2006−294817号公報 特開2001−146410号公報
Patent Document 2 discloses that an electrode material having a good filling property is necessary for increasing the capacity of an electric double layer capacitor, and the necessary electrode material is activated carbon having an average particle diameter of 4 to 40 μm ( It is disclosed that A) is mixed with activated carbon (B) having an average particle size of 4 μm or less. Patent Document 2 describes that the preferable average particle diameter of activated carbon (A) is 10 to 30 μm, and the preferable average particle diameter of activated carbon (B) is 1/5 or less of the average particle diameter of activated carbon (A). .
JP 2006-294817 A JP 2001-146410 A

本発明は、少なくとも低内部抵抗の電気二重層キャパシタを製造するための電気二重層キャパシタ用電極材料、および当該電極材料の構成部材になる電極材料用添加材の提供を目的とする。   An object of the present invention is to provide an electrode material for an electric double layer capacitor for producing an electric double layer capacitor having at least a low internal resistance, and an additive for an electrode material which is a constituent member of the electrode material.

本発明は、平均粒径が1μm以下の第一活性炭と、平均粒径が1μmを超える第二活性炭とが混合されている電気二重層キャパシタ用電極材料である。前記第一活性炭の平均粒径は、内部抵抗および静電容量を一層良化させるには0.8μm以下が好ましく、内部抵抗を特に低くするためには0.5μm以下が好ましい。本発明に係る電極材料における前記第一活性炭量は、当該第一活性炭および第二活性炭の合計量100質量%に対して、2質量%以上であると良い。本発明に係る電極材料を使用して電気二重層キャパシタ用電極を製造でき、当該電極を使用して電気二重層キャパシタを製造できる。   The present invention is an electrode material for an electric double layer capacitor in which a first activated carbon having an average particle diameter of 1 μm or less and a second activated carbon having an average particle diameter exceeding 1 μm are mixed. The average particle diameter of the first activated carbon is preferably 0.8 μm or less for further improving internal resistance and capacitance, and 0.5 μm or less is particularly preferable for reducing the internal resistance. The amount of the first activated carbon in the electrode material according to the present invention is preferably 2% by mass or more with respect to 100% by mass of the total amount of the first activated carbon and the second activated carbon. An electrode for an electric double layer capacitor can be manufactured using the electrode material according to the present invention, and an electric double layer capacitor can be manufactured using the electrode.

なお、本発明における「平均粒径」とは、試料を水に分散し、レーザ回折式粒度分布測定装置を用いて求められるメジアン径である。   The “average particle diameter” in the present invention is a median diameter obtained by dispersing a sample in water and using a laser diffraction particle size distribution analyzer.

本発明は、平均粒径1μm以下の第一活性炭を有し、平均粒径が1μmを超える第二活性炭が混合されている電気二重層キャパシタ用電極材料に使用される電極材料用添加材である。当該添加材は、第一活性炭のみからなるもの、および第一活性炭以外の部材を含むもののいずれであっても良い。   The present invention is an additive for an electrode material used for an electrode material for an electric double layer capacitor having a first activated carbon having an average particle diameter of 1 μm or less and mixed with a second activated carbon having an average particle diameter exceeding 1 μm. . The additive may be either one made only of the first activated carbon or one containing a member other than the first activated carbon.

本発明に係る電気二重層キャパシタ用電極材料は、所定の平均粒径の第一活性炭と当該第一活性炭よりも平均粒径が大きな第二活性炭とが混合されているから、第二活性炭のみを活性炭として有する電極材料よりも、電気二重層キャパシタの内部抵抗を低くすることが可能である。そして、本発明に係る電気二重層キャパシタ用電極材料を使用して製造された電気二重層キャパシタの静電容量は、第二活性炭のみを活性炭として有する電極材料を使用して製造された電気二重層キャパシタと同等以上になる。   The electrode material for an electric double layer capacitor according to the present invention includes a mixture of a first activated carbon having a predetermined average particle diameter and a second activated carbon having an average particle diameter larger than that of the first activated carbon. The internal resistance of the electric double layer capacitor can be made lower than that of the electrode material having activated carbon. And the capacitance of the electric double layer capacitor manufactured using the electrode material for electric double layer capacitor according to the present invention is an electric double layer manufactured using an electrode material having only the second activated carbon as the activated carbon. It becomes equal to or better than the capacitor.

また、本発明に係る電極材料用添加材は、所定の平均粒径の第一活性炭を有するから、本発明に係る電気二重層キャパシタ用電極材料の一構成部材として好適である。   Moreover, since the additive for electrode materials which concerns on this invention has the 1st activated carbon of a predetermined average particle diameter, it is suitable as one structural member of the electrode material for electric double layer capacitors which concerns on this invention.

(電気二重層キャパシタ用電極材料)
本実施形態に係る電気二重層キャパシタ用電極材料は、所定の平均粒径の第一活性炭と所定の平均粒径の第二活性炭との混合物である。この混合物を調製するときの混合法は、特に限定されない。なお、以下においては、「電気二重層キャパシタ」を単に「キャパシタ」と称し、「電気二重層キャパシタ用電極」を単に「電極」と称し、「電気二重層キャパシタ用電極材料」を単に「電極材料」と称することがある。
(Electrode material for electric double layer capacitor)
The electrode material for an electric double layer capacitor according to this embodiment is a mixture of first activated carbon having a predetermined average particle diameter and second activated carbon having a predetermined average particle diameter. The mixing method for preparing this mixture is not particularly limited. In the following, “electric double layer capacitor” is simply referred to as “capacitor”, “electrode for electric double layer capacitor” is simply referred to as “electrode”, and “electrode material for electric double layer capacitor” is simply referred to as “electrode material”. May be called.

本実施形態における電極材料は、第一活性炭と第二活性炭とが混合されている限り、他の構成部材が混合されていても良い。その構成部材は、例えば、電極を低抵抗とする目的をもって活性炭に混合される一般的な導電性付与剤(例えば、アセチレンブラック)である。   As long as the first activated carbon and the second activated carbon are mixed, the electrode material in this embodiment may be mixed with other constituent members. The constituent member is, for example, a general conductivity imparting agent (for example, acetylene black) mixed with activated carbon for the purpose of reducing the resistance of the electrode.

(第一活性炭)
第一活性炭は、平均粒径が1μm以下の活性炭である。第一活性炭の平均粒径が1μmを超えると、電極材料用活性炭として第二活性炭のみを使用するよりも、キャパシタの静電容量が小さくなる場合がある。第一活性炭の平均粒径は、キャパシタの内部抵抗を一層低下させ且つ静電容量を大きくするには、0.8μm以下が好ましい。内部抵抗が特に低いキャパシタを実現するには、第一活性炭の平均粒径は、0.5μm以下が最適である。
(First activated carbon)
The first activated carbon is activated carbon having an average particle size of 1 μm or less. When the average particle diameter of the first activated carbon exceeds 1 μm, the capacitance of the capacitor may be smaller than when only the second activated carbon is used as the activated carbon for the electrode material. The average particle diameter of the first activated carbon is preferably 0.8 μm or less in order to further reduce the internal resistance of the capacitor and increase the capacitance. In order to realize a capacitor having a particularly low internal resistance, the average particle diameter of the first activated carbon is optimally 0.5 μm or less.

また、第一活性炭の比表面積および細孔容積は特に限定されないが、比表面積は500〜2000m/g、細孔容積は0.50〜1.3ml/gである。その比表面積については、多孔質炭素の窒素吸着等温線を測定するBET法により求められ、細孔容積については、相対圧P/P(P:吸着平衡にある吸着質の気体の圧力、P:吸着温度における吸着質の飽和蒸気圧)が0.93までの窒素吸着量を測定するBET法により求められる。 The specific surface area and pore volume of the first activated carbon are not particularly limited, but the specific surface area is 500 to 2000 m 2 / g, and the pore volume is 0.50 to 1.3 ml / g. The specific surface area is determined by the BET method of measuring the nitrogen adsorption isotherm of porous carbon. The pore volume is determined by relative pressure P / P 0 (P: pressure of adsorbate gas in adsorption equilibrium, P 0 : the saturated vapor pressure of the adsorbate at the adsorption temperature) is determined by the BET method for measuring the nitrogen adsorption amount up to 0.93.

本実施形態の電極材料における第一活性炭量が多い程、キャパシタの内部抵抗が低下すると共に、静電容量が向上する。そのため、第一活性炭の量は、所望の内部抵抗および静電容量に応じた量であると良い。第一活性炭の下限量は、通常、第一活性炭および第二活性炭の合計量100質量%に対して好ましくは2質量%であり、更に好ましくは5質量%である。一方、第一活性炭の上限量は、10質量%、20質量%、または30質量%と特に限定されるものではないが、第一活性炭が多量であると電極の成形性が低下する問題が生じる上に、30質量%以上からはキャパシタの内部抵抗が一定になると見込まれるので、第一活性炭および第二活性炭の合計量100質量%に対して30質量%であると良い。   As the amount of the first activated carbon in the electrode material of the present embodiment is larger, the internal resistance of the capacitor is lowered and the capacitance is improved. Therefore, the amount of the first activated carbon is preferably an amount according to the desired internal resistance and capacitance. The lower limit amount of the first activated carbon is usually preferably 2% by mass and more preferably 5% by mass with respect to 100% by mass of the total amount of the first activated carbon and the second activated carbon. On the other hand, the upper limit of the first activated carbon is not particularly limited to 10% by mass, 20% by mass, or 30% by mass. However, if the amount of the first activated carbon is large, there is a problem that the moldability of the electrode is lowered. In addition, since the internal resistance of the capacitor is expected to be constant from 30% by mass or more, it is preferably 30% by mass with respect to 100% by mass of the total amount of the first activated carbon and the second activated carbon.

公知の活性炭原料である炭素質物質を賦活処理することにより、第一活性炭を製造することができる。   A first activated carbon can be manufactured by activating the carbonaceous material which is a well-known activated carbon raw material.

上記炭素質物質は、特に限定されない。例えば、木材、おが屑、木炭、ヤシガラ、セルロース系繊維、合成樹脂(例えば、フェノール樹脂、フラン樹脂)等の難黒鉛化性炭素;ピッチ(例えば、メソフェーズピッチ)、コークス(例えば、ピッチコークス、ニードルコークス、フリュードコークス)、ポリ塩化ビニル、ポリイミド、PAN等の易黒鉛化性炭素;およびこれらの混合物が挙げられる。必要に応じて、賦活処理前に炭化処理が行われた炭素質物質が活性炭原料として使用される。ここで、炭化処理は、高温(例えば、900〜1000℃)の窒素等の不活性ガス中に炭素質物質を置き、炭素質物質の炭化を進行させる処理である。   The carbonaceous material is not particularly limited. For example, non-graphitizable carbon such as wood, sawdust, charcoal, coconut husk, cellulosic fiber, synthetic resin (eg, phenol resin, furan resin); pitch (eg, mesophase pitch), coke (eg, pitch coke, needle coke) ), Graphitizable carbon such as polyvinyl chloride, polyimide, and PAN; and mixtures thereof. If necessary, a carbonaceous material that has been carbonized before the activation treatment is used as the activated carbon raw material. Here, the carbonization treatment is a treatment in which a carbonaceous material is placed in an inert gas such as nitrogen at a high temperature (for example, 900 to 1000 ° C.) and carbonization of the carbonaceous material proceeds.

上記賦活処理とは、炭素質物質の表面に細孔を形成して、比表面積および細孔容積を大きくする処理である。この賦活処理としては、(1)ガスとの共存下で炭素質物質を加熱して活性炭を製造するガス賦活、および(2)賦活剤と炭素質物質との混合物を加熱して活性炭を製造する薬剤賦活、などが知られている。公知の賦活処理から任意に選択された処理により、第一活性炭を製造できる。   The activation treatment is a treatment for forming pores on the surface of the carbonaceous material and increasing the specific surface area and the pore volume. As this activation treatment, (1) gas activation in which activated carbon is produced by heating a carbonaceous substance in the presence of gas, and (2) activated carbon is produced by heating a mixture of the activator and the carbonaceous substance. Drug activation is known. The first activated carbon can be produced by a treatment arbitrarily selected from known activation treatments.

ガス賦活を選択した場合には、700〜1000℃の温度雰囲気で、水蒸気、空気、炭酸ガス、燃焼ガス等から選択される一種または二種以上の酸化性ガスと、炭素質物質とを接触させると良い。この接触で、炭素質物質の細孔径、比表面積、および細孔容積が大きくなり、第一活性炭が製造される。   When gas activation is selected, one or two or more oxidizing gases selected from water vapor, air, carbon dioxide, combustion gas, and the like are brought into contact with a carbonaceous material in a temperature atmosphere of 700 to 1000 ° C. And good. By this contact, the pore diameter, specific surface area, and pore volume of the carbonaceous material increase, and the first activated carbon is produced.

ガス賦活に比して大きな比表面積の第一活性炭を容易に製造できる薬剤賦活を選択することは好適である。この薬剤賦活は、上記の通り、賦活剤と炭素質物質との混合物を加熱して行なわれる。この場合、リン酸、硫酸、塩化カルシウム、塩化亜鉛、硫化カリウム、およびアルカリ金属化合物等の公知の賦活剤から選択した一種または二種以上を使用すると良い。賦活処理を容易に行える賦活剤としては、水酸化カリウム、水酸化ナトリウム等のアルカリ金属の水酸化物;炭酸カリウム、炭酸ナトリウム等のアルカリ金属の炭酸塩;硫酸カリウム、硫酸ナトリウムなどのアルカリ金属の硫酸塩;が好ましく、アルカリ金属の水酸化物がより好ましく、水酸化カリウムが更に好ましい。賦活剤の使用量は、例えばアルカリ金属の水酸化物を賦活剤として使用する場合、炭素質物質の質量の0.5〜10倍であると良い。この使用量が多量である程、比表面積および平均細孔径が大きな第一活性炭を製造でき、少量である程、活性炭の比表面積および平均細孔径が小さな第一活性炭を製造できる。   It is preferable to select a drug activation that can easily produce the first activated carbon having a large specific surface area compared to the gas activation. As described above, this drug activation is performed by heating a mixture of an activator and a carbonaceous substance. In this case, it is preferable to use one or more selected from known activators such as phosphoric acid, sulfuric acid, calcium chloride, zinc chloride, potassium sulfide, and alkali metal compounds. Activating agents that can be easily activated include alkali metal hydroxides such as potassium hydroxide and sodium hydroxide; alkali metal carbonates such as potassium carbonate and sodium carbonate; alkali metal such as potassium sulfate and sodium sulfate. Sulfates are preferred, alkali metal hydroxides are more preferred, and potassium hydroxide is even more preferred. The amount of the activator used is preferably 0.5 to 10 times the mass of the carbonaceous material when, for example, an alkali metal hydroxide is used as the activator. The larger the amount used, the more the first activated carbon with a larger specific surface area and average pore diameter can be produced, and the smaller the amount used, the more the activated carbon with the smaller specific surface area and average pore diameter of activated carbon can be produced.

なお、薬剤賦活においては、賦活剤を溶融容易とするために、炭素質物質および賦活剤と共に水を混合しても良い。このときの水の混合量は、アルカリ金属の水酸化物を賦活剤に使用する場合、賦活剤の質量の0.05〜10倍であると良い。   In drug activation, water may be mixed with the carbonaceous material and the activator in order to facilitate melting of the activator. The amount of water mixed at this time is preferably 0.05 to 10 times the mass of the activator when an alkali metal hydroxide is used as the activator.

薬剤賦活における加熱では、そのときの加熱温度が400〜900℃程度であると良い。加熱温度が低いと、比表面積および平均細孔径が小さくなる傾向があり、加熱温度が高いと、比表面積および平均細孔径が大きくなる傾向がある。なお、薬剤賦活における加熱は、アルゴン、窒素などの不活性ガス雰囲気下;または減圧下(真空中);等で行われる。   In heating in drug activation, the heating temperature at that time is preferably about 400 to 900 ° C. When the heating temperature is low, the specific surface area and the average pore diameter tend to decrease, and when the heating temperature is high, the specific surface area and the average pore diameter tend to increase. In addition, the heating in chemical | medical agent activation is performed by inert gas atmosphere, such as argon and nitrogen; or under reduced pressure (in a vacuum);

炭素質物質を賦活処理することにより第一活性炭を製造できるが、賦活処理後の第一活性炭表面には、活性炭原料(炭素質物質)および/または賦活処理に由来する不純物が吸着している場合がある。その不純物は金属元素(鉄、銅、ニッケル、アルカリ金属等)および金属元素化合物(以下、「金属元素および金属元素化合物」を「金属元素等」という)であり、当該金属元素等が多量に吸着した第一活性炭を電極材料に使用した場合、キャパシタの耐久性低下(キャパシタ寿命の短命化)を誘発することがある。そのため、通常、賦活処理で製造した第一活性炭の洗浄を行なう。   The first activated carbon can be manufactured by activating the carbonaceous material, but the activated carbon material (carbonaceous material) and / or impurities derived from the activating treatment are adsorbed on the surface of the first activated carbon after the activation treatment. There is. The impurities are metal elements (iron, copper, nickel, alkali metals, etc.) and metal element compounds (hereinafter “metal elements and metal element compounds” are referred to as “metal elements”), and a large amount of such metal elements adsorb. When the first activated carbon used is used as an electrode material, it may induce a decrease in the durability of the capacitor (shortening of the capacitor life). Therefore, the first activated carbon produced by the activation process is usually washed.

公知の洗浄方法により、第一活性炭の表面から金属元素等を除去できる。その公知の洗浄方法としては、例えば、(1)水のみを洗浄液に使用し、第一活性炭を洗浄する方法、(2)塩酸、硫酸等の強酸を一種または二種以上混合した強酸水溶液を洗浄液に使用し、第一活性炭を洗浄する方法、が挙げられる。   Metal elements and the like can be removed from the surface of the first activated carbon by a known cleaning method. The known cleaning methods include, for example, (1) a method in which only water is used as a cleaning solution to clean the first activated carbon, and (2) a strong acid aqueous solution in which one or more strong acids such as hydrochloric acid and sulfuric acid are mixed. And a method of washing the first activated carbon.

第一活性炭の平均粒径は上記所定の平均粒径であることから、第一活性炭の平均粒径調整が必要な場合には、適宜に選択された公知の粒径調整手段で第一活性炭の平均粒径を調整する。例えば、ボールミル、振動ミル、ジェットミル等の粉砕機を使用して第一活性炭の平均粒径を調整すると良い。   Since the average particle diameter of the first activated carbon is the above-mentioned predetermined average particle diameter, when adjustment of the average particle diameter of the first activated carbon is necessary, the well-known particle diameter adjusting means appropriately selected can be used to adjust the first activated carbon. Adjust the average particle size. For example, the average particle diameter of the first activated carbon may be adjusted using a pulverizer such as a ball mill, a vibration mill, or a jet mill.

本実施形態の第一活性炭は、以上に詳述したとおりである。本実施形態の第一活性炭は、それのみで本実施形態に係る電極材料の添加材となり得、第一活性炭以外の部材(例えば、アセチレンブラック等の導電性付与剤)と混合されたものも、その添加材となり得る。なお、第一活性炭は、水等の分散媒と混合してスラリー状態で使用することが好ましい。   The first activated carbon of this embodiment is as detailed above. The first activated carbon of the present embodiment can be an additive for the electrode material according to the present embodiment by itself, and is mixed with a member other than the first activated carbon (for example, a conductivity imparting agent such as acetylene black) It can be an additive. The first activated carbon is preferably mixed with a dispersion medium such as water and used in a slurry state.

(第二活性炭)
第二活性炭は、平均粒径が1μmを超える活性炭である。電極材料の低温特性を重視する場合、第二活性炭の平均粒径は、6μm以下であると良く、2〜4μmが好ましい。
(Second activated carbon)
The second activated carbon is activated carbon having an average particle size exceeding 1 μm. When importance is attached to the low temperature characteristics of the electrode material, the average particle diameter of the second activated carbon is preferably 6 μm or less, and preferably 2 to 4 μm.

また、第二活性炭の比表面積および細孔容積は特に限定されないが、通常、比表面積は1500〜2500m/g、細孔容積は1.0〜2.0ml/gである。これら比表面積および細孔容積は、上記第一活性炭と同様に求められる値である。 The specific surface area and pore volume of the second activated carbon are not particularly limited, but usually the specific surface area is 1500-2500 m 2 / g and the pore volume is 1.0-2.0 ml / g. These specific surface area and pore volume are values obtained in the same manner as the first activated carbon.

第一活性炭と同様、炭素質物質を賦活処理すれば第二活性炭を製造できる。このときに使用する炭素質物質は、第一活性炭を製造するために使用する炭素質物質と同種であっても良く、異種であっても良い。また、賦活処理も、第一活性炭の製造で使用される処理と同じ処理であっても、異なる処理であっても良い。そして、必要に応じて、第二活性炭を洗浄しても良い。   Similar to the first activated carbon, the second activated carbon can be produced by activating the carbonaceous material. The carbonaceous material used at this time may be the same as or different from the carbonaceous material used to produce the first activated carbon. Further, the activation process may be the same process as the process used in the production of the first activated carbon or a different process. And you may wash | clean a 2nd activated carbon as needed.

第二活性炭の平均粒径を調整する必要がある場合には、公知の粒径調整手段を使用すると良い。公知の粉砕機(例えば、ボールミル、振動ミル、ジェットミル)で平均粒径を小さくする調整が可能である。   When it is necessary to adjust the average particle size of the second activated carbon, a known particle size adjusting means may be used. It is possible to adjust the average particle size to be small with a known pulverizer (for example, ball mill, vibration mill, jet mill).

(電気二重層キャパシタ用電極)
本実施形態の電極材料は、電気二重層キャパシタ用電極の材料として使用できる。この電極の製造においては、公知の製法を使用すると良い。例えば、第一活性炭および第二活性炭が混合されている本実施形態の電極材料と、導電性付与剤と、バインダー溶液とを混練し、溶媒を添加してペーストを調製し、このペーストをアルミ箔等の集電板に塗布した後、溶媒を乾燥除去することにより、電極を製造することが可能である。
(Electrode for electric double layer capacitor)
The electrode material of the present embodiment can be used as a material for an electric double layer capacitor electrode. In manufacturing the electrode, a known manufacturing method may be used. For example, the electrode material of the present embodiment in which the first activated carbon and the second activated carbon are mixed, the conductivity-imparting agent, and the binder solution are kneaded, a solvent is added to prepare a paste, and this paste is aluminum foil. After applying to a current collector plate such as the like, it is possible to produce an electrode by drying and removing the solvent.

電極を製造する際に使用するバインダーとしては、例えば、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどのフッ素系高分子化合物、カルボキシメチルセルロース、スチレン−ブタジエンゴム、石油ピッチ、フェノール樹脂が挙げられる。また、導電性付与剤としては、例えば、カーボンブラック、アセチレンブラック、ケッチェンブラック等の炭素系導電性付与剤;酸化ルテニウム等の金属酸化物系導電性付与剤;が挙げられる。   Examples of the binder used when manufacturing the electrode include fluorine-based polymer compounds such as polytetrafluoroethylene and polyvinylidene fluoride, carboxymethyl cellulose, styrene-butadiene rubber, petroleum pitch, and phenol resin. Examples of the conductivity-imparting agent include carbon-based conductivity imparting agents such as carbon black, acetylene black, and ketjen black; metal oxide-based conductivity imparting agents such as ruthenium oxide.

(電気二重層キャパシタ)
コイン型、巻回型、積層型等の電気二重層キャパシタが知られており、当該キャパシタは、電極、電解液、およびセパレータを主要構成とし、一対の電極間にセパレータを配置した構造が一般的である。活性炭は、何れのキャパシタにおいても電極材料として使用されている。
(Electric double layer capacitor)
There are known electric double layer capacitors such as a coin type, a wound type, and a multilayer type, and the capacitor generally has an electrode, an electrolytic solution, and a separator, and a structure in which a separator is disposed between a pair of electrodes. It is. Activated carbon is used as an electrode material in any capacitor.

電解液には、分解電圧が高い非水系極性溶媒を主溶媒とする非水系電解的を選択することが好ましい。非水系電解液の溶媒には、プロピレンカーボネート、エチレンカーボネート、メチルエチルカーボネート等の非水系極性溶媒から選択された一種または二種以上を主溶媒にすることが好ましい。また、電解液の電解質としては、アミジンまたは第四級アンモニウムと、過塩素酸、四フッ化ホウ素または六フッ化リンとの塩等がある。また、セパレータを例示すれば、セルロース、ガラス繊維、又は、ポリエチレンやポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルムが挙げられる。   As the electrolytic solution, it is preferable to select a nonaqueous electrolytic solution having a nonaqueous polar solvent having a high decomposition voltage as a main solvent. As the solvent for the non-aqueous electrolyte solution, it is preferable to use one or two or more kinds selected from non-aqueous polar solvents such as propylene carbonate, ethylene carbonate, and methyl ethyl carbonate as the main solvent. Examples of the electrolyte of the electrolytic solution include salts of amidine or quaternary ammonium with perchloric acid, boron tetrafluoride or phosphorus hexafluoride. Moreover, if a separator is illustrated, the nonwoven fabric, cloth, and microporous film which have cellulose, glass fiber, or polyolefins, such as polyethylene and a polypropylene, as a main component are mentioned.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.

第一活性炭と第二活性炭の所定量を混合し、実施例および比較例の電極材料を作製した。また、これら電極材料を使用して電気二重層キャパシタを作製した。そして、作製した電気二重層キャパシタについては、その電極の密度、静電容量、および内部抵抗率を算出した。以上の詳細を以下に示す。   Predetermined amounts of the first activated carbon and the second activated carbon were mixed to prepare electrode materials for Examples and Comparative Examples. Moreover, an electric double layer capacitor was produced using these electrode materials. And about the produced electric double layer capacitor, the density of the electrode, an electrostatic capacitance, and an internal resistivity were computed. The details are as follows.

なお、以下における平均粒径は、試料を水に分散し、株式会社島津製作所製レーザ回折式粒度分布測定装置「SALD−2000」を用いて求められるメジアン径である。比表面積は、マイクロメリティックス社製ASAP−2400窒素吸着装置を使用し、多孔質炭素の窒素吸着等温線を測定するBET法により求めた値である。また、細孔容積は、マイクロメリティックス社製ASAP−2400窒素吸着装置を使用し、相対圧P/P(P:吸着平衡にある吸着質の気体の圧力、P:吸着温度における吸着質の飽和蒸気圧)が0.93までの窒素吸着量を測定するBET法により求めた値である。 The average particle diameter in the following is a median diameter obtained by dispersing a sample in water and using a laser diffraction particle size distribution measuring device “SALD-2000” manufactured by Shimadzu Corporation. A specific surface area is the value calculated | required by BET method which measures the nitrogen adsorption isotherm of porous carbon using the ASAP-2400 nitrogen adsorption apparatus by a micromeritics company. The pore volume was measured using an ASAP-2400 nitrogen adsorption device manufactured by Micromeritics, and the relative pressure P / P 0 (P: pressure of the adsorbate gas in the adsorption equilibrium, P 0 : adsorption at the adsorption temperature) (Saturated vapor pressure of the material) is a value determined by the BET method for measuring the nitrogen adsorption amount up to 0.93.

(第一活性炭)
遊星ボールミル(フリッチュジャパン社製「モデルP−5」)で活性炭を、適宜粉砕して第一活性炭を得た。実施例および比較例で使用した第一活性炭の詳細は、以下の通りである。
(First activated carbon)
Activated carbon was appropriately pulverized with a planetary ball mill ("Model P-5" manufactured by Fritsch Japan) to obtain first activated carbon. The details of the first activated carbon used in the examples and comparative examples are as follows.

実施例1a〜1b、2a〜2d、3a〜3b、9および11、並びに比較例2および3:
市販のフェノール樹脂系活性炭(カーボンテック社製「マックスソーブ」)を粉砕して第一活性炭を調製した。第一活性炭の平均粒径、比表面積および細孔容積は、夫々、実施例1aおよび1bが0.3μm、1570m/g、1.1ml/g;実施例2a〜2dが0.5μm、1700m/g、1.1ml/g;実施例3aおよび3bが1.0μm、1860m/g、0.94ml/g;実施例9および11が0.5μm、1700m/g、1.1ml/g;であった。
Examples 1a-1b, 2a-2d, 3a-3b, 9 and 11 and Comparative Examples 2 and 3:
Commercially available phenol resin activated carbon (“MAXSORB” manufactured by Carbontech Co., Ltd.) was pulverized to prepare first activated carbon. The average particle diameter, specific surface area and pore volume of the first activated carbon are 0.3 μm, 1570 m 2 / g, 1.1 ml / g in Examples 1a and 1b; 0.5 μm and 1700 m in Examples 2a to 2d, respectively. 2 /g,1.1ml/g; examples 3a and 3b is 1.0μm, 1860m 2 /g,0.94ml/g; examples 9 and 11 are 0.5μm, 1700m 2 /g,1.1ml/ g;

実施例4:
紙−フェノール樹脂積層板の水蒸気賦活により得られた活性炭を粉砕して実施例4の第一活性炭を調製した。平均粒径は0.5μm、比表面積は1830m/g、細孔容積は1.2ml/gであった。
Example 4:
The activated carbon obtained by steam activation of the paper-phenolic resin laminate was pulverized to prepare the first activated carbon of Example 4. The average particle size was 0.5 μm, the specific surface area was 1830 m 2 / g, and the pore volume was 1.2 ml / g.

実施例5、および10:
石油コークスのアルカリ賦活炭であるカーボンテック社製石油コークス系活性炭を、実施例5および10の第一活性炭とした。両活性炭の平均粒径は0.5μm、比表面積は1710m/g、細孔容積は0.95ml/gであった。
Examples 5 and 10:
Petroleum coke activated carbon manufactured by Carbontech Co., Ltd., which is an alkali activated carbon of petroleum coke, was used as the first activated carbon of Examples 5 and 10. Both activated carbons had an average particle size of 0.5 μm, a specific surface area of 1710 m 2 / g, and a pore volume of 0.95 ml / g.

実施例6:
ヤシガラの水蒸気賦活炭であるカーボンテック社製ヤシガラ系活性炭を、実施例6の第一活性炭とした。この活性炭の平均粒径は0.5μm、比表面積は1260m/g、細孔容積は0.72ml/gであった。
Example 6:
A coconut shell activated carbon manufactured by Carbontech, which is a steam activated carbon of coconut shell, was used as the first activated carbon of Example 6. The activated carbon had an average particle size of 0.5 μm, a specific surface area of 1260 m 2 / g, and a pore volume of 0.72 ml / g.

実施例7:
フラーレン製造の際に発生する煤(フロンティアカーボン社製「フロンティアブラック」)を950℃で水蒸気賦活して、実施例7の第一活性炭を得た。この活性炭の平均粒径は0.5μm、比表面積は1180m/g、細孔容積は0.87ml/gであった。
Example 7:
The soot generated during fullerene production (“Frontier Black” manufactured by Frontier Carbon Co., Ltd.) was steam-activated at 950 ° C. to obtain a first activated carbon of Example 7. The activated carbon had an average particle size of 0.5 μm, a specific surface area of 1180 m 2 / g, and a pore volume of 0.87 ml / g.

実施例8:
Cabot社製「BLACK PEARLS−1400(粒状品)」を実施例8の第一活性炭とした。この活性炭の平均粒径は0.7μm、比表面積は530m/g、細孔容積は0.54ml/gであった。
Example 8:
Cabot's “BLACK PEARLS-1400 (granular product)” was used as the first activated carbon of Example 8. The activated carbon had an average particle size of 0.7 μm, a specific surface area of 530 m 2 / g, and a pore volume of 0.54 ml / g.

(第二活性炭)
第一活性炭と同様、活性炭を適宜粉砕して第二活性炭を得た。実施例および比較例で使用した活性炭は、以下の通りである。
(Second activated carbon)
Similarly to the first activated carbon, the activated carbon was appropriately pulverized to obtain a second activated carbon. The activated carbon used in the examples and comparative examples is as follows.

実施例1a〜1b、2a〜2d、3a〜3b、および4〜8、並びに、比較例1〜3:
市販のフェノール樹脂系活性炭(カーボンテック社製「マックスソーブ」)を実施例1a等の第二活性炭とした。いずれの第二活性炭においても、平均粒径は3μm、比表面積は2310m/g、細孔容積は1.1ml/gであった。
Examples 1a-1b, 2a-2d, 3a-3b, and 4-8, and Comparative Examples 1-3:
Commercially available phenol resin activated carbon (“Maxsorb” manufactured by Carbontech Co., Ltd.) was used as the second activated carbon in Example 1a and the like. In any second activated carbon, the average particle size was 3 μm, the specific surface area was 2310 m 2 / g, and the pore volume was 1.1 ml / g.

実施例9〜11、および比較例4〜5:
石油コークスをアルカリ賦活して製造されたカーボンテック社製石油コークス系活性炭を、実施例9等の第二活性炭とした。実施例9、実施例10、および比較例4の平均粒径は3μm、比表面積は2280m/g、細孔容積は1.1ml/g;実施例11、および比較例5の平均粒径は5μm、比表面積は2380m/g、細孔容積は1.2ml/g;であった。
Examples 9-11 and Comparative Examples 4-5:
The carbon coke-based activated carbon coke activated carbon produced by alkali activation of petroleum coke was used as the second activated carbon in Example 9. The average particle size of Example 9, Example 10, and Comparative Example 4 is 3 μm, the specific surface area is 2280 m 2 / g, the pore volume is 1.1 ml / g; the average particle size of Example 11 and Comparative Example 5 is 5 μm, specific surface area was 2380 m 2 / g, and pore volume was 1.2 ml / g;

(キャパシタの作製)
1.電極の作製
実施例または比較例の電極材料それぞれに、水溶性バインダー(市販のCMC)とアセチレンブラックとを、電極材料:CMC:アセチレンブラック=8:1:1(質量比)になるように混合し、さらにペースト化してアルミニウム箔の表面に塗布し、乾燥してシート状の電極を作製した。乾燥後の塗布層の厚みは80μmであった。次に、前記アルミニウムを直径25.4mmの円形に打ち抜き、これを77MPaでプレスし、電極を作製した。
(Capacitor production)
1. Preparation of electrode A water-soluble binder (commercially available CMC) and acetylene black were mixed with each of the electrode materials of Examples or Comparative Examples so that the electrode material: CMC: acetylene black = 8: 1: 1 (mass ratio). Further, it was made into a paste, applied to the surface of the aluminum foil, and dried to produce a sheet-like electrode. The thickness of the coating layer after drying was 80 μm. Next, the aluminum was punched into a circle with a diameter of 25.4 mm, and this was pressed at 77 MPa to produce an electrode.

2.キャパシタの組み立て
真空条件下、200℃、1時間の条件で電極を乾燥した後、窒素ガスを流通させたグローブボックス内で電解液(テトラエチルアンモニウムテトラフルオロボレートが1mol/Lのプロピレンカーボネート溶液)を電極に真空含浸させた。この電極を、電解液を含浸させたポリプロピレン製セパレータ(Celgard社製「セルガード♯3501」)で挟み、更にアルミニウム板で挟んでキャパシタを組み立てた。
2. Assembling the capacitor After drying the electrode under vacuum conditions at 200 ° C. for 1 hour, the electrode was charged with an electrolyte (a propylene carbonate solution containing 1 mol / L of tetraethylammonium tetrafluoroborate) in a glove box in which nitrogen gas was circulated. Was vacuum impregnated. This electrode was sandwiched between polypropylene separators impregnated with electrolytic solution (Celgard “Celguard # 3501”), and further sandwiched between aluminum plates to assemble a capacitor.

(キャパシタ電極の密度)
電極材料を作製する際に使用した第一活性炭、第二活性炭、カルボキシメチルセルロース、アセチレンブラック、およびポリテトラフルオロエチレンの総質量を、電極材料層の体積で除することにより、電極の密度を算出した。
(Capacitor electrode density)
The density of the electrode was calculated by dividing the total mass of the first activated carbon, second activated carbon, carboxymethyl cellulose, acetylene black, and polytetrafluoroethylene used in preparing the electrode material by the volume of the electrode material layer. .

(キャパシタの静電容量)
充放電装置(アスカ電子株式会社製「ACD−01」)の充放電端子をキャパシタのアルミニウム板に接続し、−30℃で、集電板間電圧が2.5Vになるまで20mAの定電流充電を行い、続けて、2.5Vの定電圧で5分間充電した。充電後、定電流(放電電流=0.015A)でキャパシタの放電を行わせた。2.0〜1.0Vの間の放電曲線から、キャパシタの静電容量を求めた。そして、キャパシタの静電容量を第一活性炭と第二活性炭の総質量で除することで質量基準静電容量(単位:F/g)を算出し、キャパシタの静電容量を電極における電極材料層の総体積で除することで体積基準静電容量(単位:F/ml)を算出した。
(Capacitance of the capacitor)
Connect the charge / discharge terminal of the charge / discharge device ("ACD-01" manufactured by Asuka Electronics Co., Ltd.) to the aluminum plate of the capacitor, and charge at 20mA at -30 ° C until the voltage between the current collector plates reaches 2.5V. Then, the battery was charged with a constant voltage of 2.5 V for 5 minutes. After charging, the capacitor was discharged with a constant current (discharge current = 0.015 A). The capacitance of the capacitor was determined from the discharge curve between 2.0 and 1.0V. Then, the mass-based capacitance (unit: F / g) is calculated by dividing the capacitance of the capacitor by the total mass of the first activated carbon and the second activated carbon, and the capacitance of the capacitor is calculated as the electrode material layer in the electrode. The volume-based capacitance (unit: F / ml) was calculated by dividing by the total volume.

(キャパシタの内部抵抗率)
上記静電容量の評価と同じ条件でキャパシタの充電を行った後、定電流(放電電流=0.015A)でキャパシタの放電を行わせた。この放電開始直後の電圧降下から、内部抵抗率を求めた。つまり、放電開始後0.5〜2.0秒の間の各測定電圧から電圧勾配を導き出し、この電圧勾配から放電開始時の電圧を求め、当該電圧と充電電圧(2.5V)と電圧差を求めた。この電圧差、放電電流、電極材料層の厚み、および電極材料の面積からキャパシタの内部抵抗率(単位:Ω・m)を算出した。
(Internal resistivity of capacitor)
After charging the capacitor under the same conditions as the evaluation of the capacitance, the capacitor was discharged with a constant current (discharge current = 0.015 A). The internal resistivity was determined from the voltage drop immediately after the start of discharge. That is, a voltage gradient is derived from each measured voltage between 0.5 and 2.0 seconds after the start of discharge, a voltage at the start of discharge is obtained from this voltage gradient, and the voltage, charge voltage (2.5 V), and voltage difference Asked. The internal resistivity (unit: Ω · m) of the capacitor was calculated from the voltage difference, the discharge current, the thickness of the electrode material layer, and the area of the electrode material.

上記比表面積、細孔容積、電極密度、静電容量、および内部抵抗率の算出結果を、表1〜3に示す。   The calculation results of the specific surface area, pore volume, electrode density, capacitance, and internal resistivity are shown in Tables 1 to 3.

また、第一活性炭の平均粒径とキャパシタの内部抵抗率との相関関係を表すグラフ(実施例1a、実施例2b、実施例3a、および比較例1〜3のデータに基づくグラフ)を図1に示し、第一活性炭の平均粒径とキャパシタの静電容量との相関関係を表すグラフ(実施例1a、実施例2b、実施例3a、および比較例1〜3のデータに基づくグラフ)を図2に示し、第一活性炭の添加量とキャパシタの内部抵抗率との相関関係を表すグラフ(実施例1a〜1b、実施例2a〜2d、実施例3a〜3b、および比較例1〜3のデータに基づくグラフ)を図3に示す。   Moreover, the graph (graph based on the data of Example 1a, Example 2b, Example 3a, and Comparative Examples 1-3) showing the correlation between the average particle diameter of the first activated carbon and the internal resistivity of the capacitor is shown in FIG. And a graph showing the correlation between the average particle diameter of the first activated carbon and the capacitance of the capacitor (a graph based on data of Example 1a, Example 2b, Example 3a, and Comparative Examples 1 to 3). 2 is a graph showing the correlation between the added amount of the first activated carbon and the internal resistivity of the capacitor (data of Examples 1a to 1b, Examples 2a to 2d, Examples 3a to 3b, and Comparative Examples 1 to 3) FIG. 3 shows a graph based on the above.

Figure 2009135146
Figure 2009135146

Figure 2009135146
Figure 2009135146

Figure 2009135146
Figure 2009135146

図1に示すグラフおよび表1(実施例1a、2b、3a、比較例1〜3)より、第一活性炭の平均粒径が小さくなるとキャパシタの内部抵抗率が低くなり、平均粒径1.0μm以下では内部抵抗率の低下が大きくなり始め、平均粒径0.8μm以下では内部抵抗率の低下が更に大きくなっていたことを確認できる。また、図2に示すグラフおよび表3(実施例1a、2b、3a、比較例1〜3)より、平均粒径が1.0μmの第一活性炭を使用しても、静電容量が小さくならなかったことを確認でき、平均粒径が1.0μm未満の第一活性炭を使用すれば、静電容量が大きくなったことを確認できる。   From the graph shown in FIG. 1 and Table 1 (Examples 1a, 2b, 3a, Comparative Examples 1 to 3), when the average particle size of the first activated carbon is decreased, the internal resistivity of the capacitor is decreased, and the average particle size is 1.0 μm. In the following, it can be confirmed that the decrease in internal resistivity started to increase, and that the decrease in internal resistivity was further increased at an average particle size of 0.8 μm or less. Further, from the graph shown in FIG. 2 and Table 3 (Examples 1a, 2b, 3a, Comparative Examples 1 to 3), even if the first activated carbon having an average particle size of 1.0 μm is used, the capacitance is small. If the first activated carbon having an average particle size of less than 1.0 μm is used, it can be confirmed that the capacitance has increased.

また、表1における全実施例と全比較例との対比より、平均粒径が1.0μm以下の第一活性炭を使用した場合には、その第一活性炭の原料および賦活方法の種別とは無関係に内部抵抗率が低下し、静電容量が大きくなったことを確認できる。この傾向は、第二活性炭を替えても同様である(表2参照)。   Further, from the comparison between all examples and all comparative examples in Table 1, when the first activated carbon having an average particle size of 1.0 μm or less is used, it is irrelevant to the type of the first activated carbon raw material and the activation method. It can be confirmed that the internal resistivity decreased and the capacitance increased. This tendency is the same even if the second activated carbon is changed (see Table 2).

図3に示すグラフおよび表3(実施例1a〜1b、実施例2a〜2d、実施例3a〜3b、および比較例1〜3)より、平均粒径が1.0μm以下の第一活性炭を使用したときには、その使用量が増加するほど、キャパシタの内部抵抗率が低くなる傾向があったことを確認できる。   From the graph shown in FIG. 3 and Table 3 (Examples 1a to 1b, Examples 2a to 2d, Examples 3a to 3b, and Comparative Examples 1 to 3), the first activated carbon having an average particle size of 1.0 μm or less is used. In this case, it can be confirmed that the internal resistivity of the capacitor tended to decrease as the amount of use increased.

本発明に係る実施例および比較例の第一活性炭の平均粒径と、キャパシタの内部抵抗率との相関関係を表すグラフである。It is a graph showing the correlation with the average particle diameter of the 1st activated carbon of the Example which concerns on this invention, and the internal resistivity of a capacitor. 本発明に係る実施例および比較例の第一活性炭の平均粒径と、キャパシタの静電容量との相関関係を表すグラフである。It is a graph showing the correlation with the average particle diameter of the 1st activated carbon of the Example which concerns on this invention, and the electrostatic capacitance of a capacitor. 本発明に係る実施例および比較例の第一活性炭の添加量と、キャパシタの内部抵抗率との相関関係を表すグラフである。It is a graph showing the correlation with the addition amount of the 1st activated carbon of the Example which concerns on this invention, and the internal resistivity of a capacitor.

Claims (6)

平均粒径が1μm以下の第一活性炭と、平均粒径が1μmを超える第二活性炭とが混合されている電気二重層キャパシタ用電極材料。   An electrode material for an electric double layer capacitor in which a first activated carbon having an average particle diameter of 1 μm or less and a second activated carbon having an average particle diameter exceeding 1 μm are mixed. 前記第一活性炭の平均粒径が、0.8μm以下である請求項1に記載の電気二重層キャパシタ用電極材料。   2. The electrode material for an electric double layer capacitor according to claim 1, wherein the average particle diameter of the first activated carbon is 0.8 μm or less. 前記第一活性炭の平均粒径が、0.5μm以下である請求項1または2に記載の電気二重層キャパシタ用電極材料。   3. The electrode material for an electric double layer capacitor according to claim 1, wherein the average particle diameter of the first activated carbon is 0.5 μm or less. 請求項1〜3のいずれか1項に記載の電気二重層キャパシタ用電極材料を使用して製造された電気二重層キャパシタ用電極。   The electrode for electric double layer capacitors manufactured using the electrode material for electric double layer capacitors of any one of Claims 1-3. 請求項4に記載の電気二重層キャパシタ用電極を使用して製造された電気二重層キャパシタ。   The electric double layer capacitor manufactured using the electrode for electric double layer capacitors of Claim 4. 平均粒径1μm以下の第一活性炭を有し、平均粒径が1μmを超える第二活性炭が混合されている電気二重層キャパシタ用電極材料に使用される電極材料用添加材。
The additive for electrode materials used for the electrode material for electric double layer capacitors which has the 1st activated carbon with an average particle diameter of 1 micrometer or less, and the 2nd activated carbon with an average particle diameter exceeding 1 micrometer is mixed.
JP2007307822A 2007-11-28 2007-11-28 Electrode material for electric double layer capacitor and additive for the electrode material Active JP5367974B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007307822A JP5367974B2 (en) 2007-11-28 2007-11-28 Electrode material for electric double layer capacitor and additive for the electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007307822A JP5367974B2 (en) 2007-11-28 2007-11-28 Electrode material for electric double layer capacitor and additive for the electrode material

Publications (3)

Publication Number Publication Date
JP2009135146A true JP2009135146A (en) 2009-06-18
JP2009135146A5 JP2009135146A5 (en) 2011-01-13
JP5367974B2 JP5367974B2 (en) 2013-12-11

Family

ID=40866801

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007307822A Active JP5367974B2 (en) 2007-11-28 2007-11-28 Electrode material for electric double layer capacitor and additive for the electrode material

Country Status (1)

Country Link
JP (1) JP5367974B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150116905A1 (en) * 2013-10-24 2015-04-30 Corning Incorporated Ultracapacitor with improved aging performance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146410A (en) * 1999-11-17 2001-05-29 Showa Denko Kk Active carbon and method for producing the same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001146410A (en) * 1999-11-17 2001-05-29 Showa Denko Kk Active carbon and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150116905A1 (en) * 2013-10-24 2015-04-30 Corning Incorporated Ultracapacitor with improved aging performance
US9607776B2 (en) * 2013-10-24 2017-03-28 Corning Incorporated Ultracapacitor with improved aging performance
US10211001B2 (en) 2013-10-24 2019-02-19 Corning Incorporated Ultracapacitor with improved aging performance

Also Published As

Publication number Publication date
JP5367974B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
JP4616052B2 (en) Electrode material for electric double layer capacitor and manufacturing method thereof, electrode for electric double layer capacitor, and electric double layer capacitor
KR101470050B1 (en) Process for producing activated carbon for electric double layer capacitor electrode
JP7083343B2 (en) Modified activated carbon and its manufacturing method
JP5271851B2 (en) Method for producing activated carbon and electric double layer capacitor using activated carbon obtained by the method
JP2001284188A (en) Manufacturing method of carbon material for electric double-layer capacitor electrode, and manufacturing method of electric double-layer capacitor using the carbon material
KR20110063472A (en) Carbon material for electric double layer capacitor and process for producing the carbon material
JP5770550B2 (en) Activated carbon and manufacturing method thereof
KR20150119849A (en) Electrode, electric double-layer capacitor using same, and electrode manufacturing method
JP2010245482A (en) Carbon material for use of electric double-layer capacitor electrode and method for producing same
JP2013157603A (en) Activated carbon for lithium ion capacitor, electrode including the same as active material, and lithium ion capacitor using electrode
JP2001143973A (en) High density electrode made mainly of spherical activated carbon and electric double layer capacitor
JP5548837B1 (en) Carbon material for polarizable electrode and method for producing the same
TW201530582A (en) Carbon-based electrodes containing molecular sieve
KR20120126118A (en) Activated charcoal for electric double-layer capacitor electrode and method for producing the same
JP7462066B2 (en) Nonaqueous alkali metal storage element and positive electrode coating fluid
JP2005129924A (en) Metal collector for use in electric double layer capacitor, and polarizable electrode as well as electric double layer capacitor using it
JP4733707B2 (en) Carbon material for electric double layer capacitor, electric double layer capacitor, and method for producing carbon material for electric double layer capacitor
JP2009013012A (en) Method of producing active carbon for electric double-layer capacitor electrode
KR100911891B1 (en) Manufacturing method of activated carbon for electric double layer capacitor and the electric double layer capacitor electrode and the capacitor
JP5367974B2 (en) Electrode material for electric double layer capacitor and additive for the electrode material
JP6705899B2 (en) Non-aqueous alkali metal ion capacitor
WO2021241334A1 (en) Electrochemical device
JP2008108979A (en) Electrode material for electric double layer capacitor and manufacturing method thereof
JP5065856B2 (en) Electrode material for electric double layer capacitor, electrode and electric double layer capacitor
JP2007194614A (en) Electric double layer capacitor

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101122

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120703

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121003

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121015

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20121102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130709

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130912

R150 Certificate of patent or registration of utility model

Ref document number: 5367974

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250