JP2007169126A - Porous material and electric double layer capacitor - Google Patents

Porous material and electric double layer capacitor Download PDF

Info

Publication number
JP2007169126A
JP2007169126A JP2005371619A JP2005371619A JP2007169126A JP 2007169126 A JP2007169126 A JP 2007169126A JP 2005371619 A JP2005371619 A JP 2005371619A JP 2005371619 A JP2005371619 A JP 2005371619A JP 2007169126 A JP2007169126 A JP 2007169126A
Authority
JP
Japan
Prior art keywords
porous material
porous
carbon material
double layer
electric double
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005371619A
Other languages
Japanese (ja)
Other versions
JP4718320B2 (en
Inventor
嘉則 ▲高▼木
Yoshinori Takagi
Toshiharu Nonaka
俊晴 野中
Tetsuo Shiode
哲夫 塩出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2005371619A priority Critical patent/JP4718320B2/en
Publication of JP2007169126A publication Critical patent/JP2007169126A/en
Application granted granted Critical
Publication of JP4718320B2 publication Critical patent/JP4718320B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a porous material which hardly expands when electricity is charged or discharged from the porous material, is low in resistance and the capacitance of which per volume can be increased and to provide an electric double layer capacitor using the porous material in a polarizable electrode. <P>SOLUTION: The porous material is a mixture of a porous material A obtained by carbonizing an easy-to-graphitize carbon material at <550°C and activating the carbonized material with another porous material B obtained by carbonizing the easy-to-graphitize carbon material at ≥550°C and activating the carbonized material. The average particle size of the porous material A is 5-20 μm and that of the porous material B is 1/20 to 1/2 of that of the porous material A. The mixing mass ratio (A/B) of the porous material A to the porous material B is 1-10. The porous material is used in the electric double layer capacitor as an electrode active material. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、多孔質材料およびこの多孔質材料を使用した電気二重層キャパシタに関する。   The present invention relates to a porous material and an electric double layer capacitor using the porous material.

電気二重層キャパシタはエネルギー貯蔵デバイスのひとつであり、多孔質炭素材料を含む一対の分極性電極、セパレータ、電解質溶液などにより構成される。   An electric double layer capacitor is one of energy storage devices, and includes a pair of polarizable electrodes including a porous carbon material, a separator, an electrolyte solution, and the like.

このような電気二重層キャパシタは、充放電の機構が電気化学反応を伴わず、分極性電極界面への電解質の正・負イオンの単純な吸脱着によるため、一般的なエネルギー貯蔵デバイスである二次電池には無い特長を有する。すなわち瞬時充放電特性に優れ、広い温度範囲で安定した充放電特性を示し、かつ繰り返しによる性能低下が少ないという特性を有している。   Such an electric double layer capacitor is a general energy storage device because the charging / discharging mechanism does not involve an electrochemical reaction and is based on simple adsorption / desorption of positive and negative ions of the electrolyte to and from the polarizable electrode interface. It has a feature not found in secondary batteries. That is, it has excellent instantaneous charge / discharge characteristics, stable charge / discharge characteristics over a wide temperature range, and low performance degradation due to repetition.

上記電気二重層キャパシタの静電容量は分極性電極の表面積と比例的な関係にあるとされるため、従来は比表面積の大きな多孔質材料を分極性電極に使用し、静電容量の大きい電気二重層キャパシタを得ることが検討されてきた。このような多孔質材料としては、高い導電性を示し、電気化学的に比較的安定な炭素質であって、比表面積の大きい活性炭(多孔質炭素材料)が使用されている。前記分極性電極に使用される活性炭は、石炭、石炭コークス、ヤシ殻、木粉、樹脂などの炭素質原料に、水蒸気、空気、酸素、CO2、などの酸化性ガスまたは塩化亜鉛、水酸化カリウムなどの薬品により細孔を形成する賦活化(多孔質化)処理を施したものである。 Since the capacitance of the electric double layer capacitor is proportional to the surface area of the polarizable electrode, conventionally, a porous material having a large specific surface area is used for the polarizable electrode, It has been investigated to obtain a double layer capacitor. As such a porous material, activated carbon (porous carbon material) having high conductivity, electrochemically relatively stable carbonaceous material, and having a large specific surface area is used. Activated carbon used for the polarizable electrode is a carbonaceous raw material such as coal, coal coke, coconut husk, wood powder, resin, oxidizing gas such as water vapor, air, oxygen, CO 2 , or zinc chloride, hydroxide. An activation (porosification) treatment for forming pores with a chemical such as potassium is performed.

ところで近年開発される電子機器、電気自動車などは低抵抗化が求められており、これらの用途に使用されるエネルギーデバイスとしての電気二重層キャパシタに対する低抵抗化の要求が増している。   Incidentally, recently developed electronic devices, electric vehicles, and the like are required to have low resistance, and there is an increasing demand for low resistance for electric double layer capacitors as energy devices used in these applications.

低抵抗化のためには高い導電性を示す易黒鉛化性炭素材料(ソフトカーボン系炭素材料)を賦活化処理して得られる多孔質炭素材料を電気二重層キャパシタの分極性電極に使用することが好ましい。   To reduce resistance, use porous carbon materials obtained by activating a graphitizable carbon material (soft carbon-based carbon material) exhibiting high conductivity for the polarizable electrode of an electric double layer capacitor. Is preferred.

易黒鉛化性炭素材料を賦活処理して得られる多孔質炭素材料が高い導電性を示すのは結晶が比較的発達しているためと言われている。   It is said that the porous carbon material obtained by activating the graphitizable carbon material exhibits high conductivity because crystals are relatively developed.

ところがこのような結晶が比較的発達している易黒鉛化性炭素材料を賦活化処理した多孔質炭素材料をそのまま電気二重層キャパシタの分極性電極に使用すると充放電時において電極の膨張が顕著で、電気二重層キャパシタが膨張してしまうという問題点が指摘されている。   However, if a porous carbon material obtained by activating an easily graphitizable carbon material with relatively developed crystals is used as it is for a polarizable electrode of an electric double layer capacitor, the expansion of the electrode during charge / discharge is significant. The problem that the electric double layer capacitor expands has been pointed out.

この充放電時に生じる多孔質炭素材料の膨張を抑制させる方法として幾つかの技術が示されている。   Several techniques have been shown as methods for suppressing the expansion of the porous carbon material that occurs during this charge / discharge.

例えば、特許文献1(特開2002―83748号公報)には、結晶性が比較的低いため、充放電時の膨張が少ないフェノール樹脂とソフトカーボン系炭素材料との混合物に対して賦活化処理を施すことにより、膨張を抑制させた多孔質炭素材料が得られることが記載されている。   For example, Patent Document 1 (Japanese Patent Application Laid-Open No. 2002-83748) discloses an activation treatment for a mixture of a phenolic resin and a soft carbon-based carbon material that has a relatively low crystallinity and therefore has little expansion during charging and discharging. It is described that a porous carbon material in which expansion is suppressed can be obtained by applying.

また、特許文献2(特開2004―14762号公報)には、コールタールピッチを原料として、得られた易黒鉛化性炭素材料の結晶構造を制御し、最適な条件で賦活することにより膨張を抑制させた多孔質炭素材料が得られることが記載されている。
特開2002―83748号公報 特開2004―14762号公報
Further, Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-14762) discloses that expansion is achieved by controlling the crystal structure of the graphitizable carbon material obtained using coal tar pitch as a raw material and activating it under optimum conditions. It is described that a suppressed porous carbon material can be obtained.
JP 2002-83748 A JP 2004-14762 A

しかし、上記特許文献1に記載の方法は、炭素材料がフェノール樹脂を含むため、抵抗がソフトカーボン系炭素材料からなる多孔質炭素材料と比較して大きく、またソフトカーボン系と比較して充填密度が上がり難いため、体積容量が低くなるという問題がある。   However, in the method described in Patent Document 1, since the carbon material contains a phenol resin, the resistance is higher than that of the porous carbon material made of the soft carbon-based carbon material, and the packing density is higher than that of the soft carbon-based material. Since it is difficult to increase the volume capacity, there is a problem that the volume capacity is lowered.

また、上記特許文献2に記載の方法は、原料のコールタールピッチの1次QI含有量および軟化点、炭化処理時の雰囲気と温度、賦活化処理時の温度を厳密にコントロールする必要があり、工業的に実用化が困難であるという問題がある。   In addition, the method described in Patent Document 2 requires strict control of the primary QI content and softening point of the raw coal tar pitch, the atmosphere and temperature during carbonization, and the temperature during activation. There is a problem that practical application is difficult.

そこで、本発明は、充放電時における膨張が小さく、且つ、体積あたりの静電容量を高めることが可能な多孔質材料およびこの多孔質材料を分極性電極に使用した電気二重層キャパシタを提供することを目的とする。   Accordingly, the present invention provides a porous material that is small in expansion during charge and discharge and that can increase the capacitance per volume, and an electric double layer capacitor that uses this porous material for a polarizable electrode. For the purpose.

本発明者らは、上記課題を解決する手段について鋭意検討を行った。検討を行うなかで本発明者らは、電極の膨張に関しては賦活段階で制御を行わずとも、550℃以上の温度で炭化した炭素質粉末を原料として賦活化処理を施して得られた多孔質炭素材料(多孔質材料B)は充放電時における膨張が大きいのに対して、550℃未満の温度で炭化した原料では賦活後の多孔質炭素材料(多孔質材料A)は膨張の程度が小さいことを見出した。また、前記膨張が小さい多孔質炭素材料は、充填密度が小さく、電気二重層キャパシタの体積容量が上がり難いのに対して、前記膨張が大きい多孔質炭素材料は充填密度の向上が可能で、電気二重層キャパシタの体積容量の向上に有効となることを見出した。   The present inventors diligently studied on means for solving the above-described problems. During the examination, the present inventors have obtained a porous material obtained by subjecting the carbonaceous powder carbonized at a temperature of 550 ° C. or higher to the activation treatment without controlling the expansion of the electrode at the activation stage. The carbon material (porous material B) has a large expansion during charging / discharging, whereas the activated carbon material (porous material A) has a small degree of expansion when carbonized at a temperature of less than 550 ° C. I found out. In addition, the porous carbon material having a small expansion has a small filling density, and the volume capacity of the electric double layer capacitor is difficult to increase. On the other hand, the porous carbon material having a large expansion can improve the filling density. It has been found that this is effective in improving the volume capacity of the double layer capacitor.

そこで、本発明者らはさらに検討を重ねた結果、膨張が小さな多孔質炭素材料(多孔質材料A)の粉体の空隙を、膨張の大きな多孔質炭素材料(多孔質材料B)で埋めるように電極の配合を調整することで、前記膨張の大きな多孔質炭素材料(多孔質材料B)が自由度のある空隙の中で膨張するに止まるため、電極全体としては充放電時における膨張が顕著に抑制されることを見出した。   Therefore, as a result of further investigations, the present inventors have filled the voids in the powder of the porous carbon material (porous material A) having a small expansion with the porous carbon material (porous material B) having a large expansion. By adjusting the composition of the electrode, the porous carbon material having a large expansion (porous material B) only expands in a void having a degree of freedom, so that the expansion as a whole is remarkable during charging and discharging. It was found to be suppressed.

本発明は、以上のような知見に基づいてなされたものであり、以下のような特徴を有する。
[1]易黒鉛化性炭素材料を550℃未満の温度で炭化した後、賦活化処理してなる多孔質材料Aと、
易黒鉛化性炭素材料を550℃以上の温度で炭化した後、賦活化処理してなる多孔質材料Bとの混合物であり、
多孔質材料Aの平均粒径が5〜20μmであり、多孔質材料Bの平均粒径が前記多孔質材料Aの平均粒径の1/20〜1/2であり、
前記多孔質材料Aと、前記多孔質材料Bとの混合割合が、質量比で、
A/B=1〜10
であることを特徴とする多孔質材料。
[2]上記[1]に記載の多孔質材料を電極活物質として用いたことを特徴とする電気二重層キャパシタ。
The present invention has been made based on the above findings and has the following characteristics.
[1] Porous material A obtained by carbonizing an easily graphitizable carbon material at a temperature of less than 550 ° C. and then activation treatment;
It is a mixture with a porous material B obtained by carbonizing an easily graphitizable carbon material at a temperature of 550 ° C. or higher and then performing an activation treatment.
The average particle size of the porous material A is 5 to 20 μm, the average particle size of the porous material B is 1/20 to 1/2 of the average particle size of the porous material A,
The mixing ratio of the porous material A and the porous material B is a mass ratio.
A / B = 1-10
A porous material characterized in that
[2] An electric double layer capacitor using the porous material according to [1] as an electrode active material.

本発明によれば、充放電時における膨張が小さく、且つ、体積あたりの静電容量を高めることが可能な多孔質材料およびこの多孔質材料を分極性電極に使用した電気二重層キャパシタが提供される。   ADVANTAGE OF THE INVENTION According to this invention, the expansion | swelling at the time of charging / discharging is small, and the electric double layer capacitor which uses the porous material which can raise the electrostatic capacitance per volume, and this porous material for a polarizable electrode are provided. The

以下、本発明を実施するための形態の一例を説明する。   Hereinafter, an example of an embodiment for carrying out the present invention will be described.

なお、以下の記載において、充放電時における膨張率は、電気二重層キャパシタセルを組み付けた後、電極/セパレータ/電極の積層構造の初期値に対する鉛直方向への増加分から求める値により示す。この測定方法については、後述の実施例に詳細に記載する。   In the following description, the expansion coefficient at the time of charging / discharging is indicated by a value obtained from the increase in the vertical direction with respect to the initial value of the electrode / separator / electrode laminated structure after assembling the electric double layer capacitor cell. This measuring method will be described in detail in Examples described later.

本発明で用いる易黒鉛化性炭素材料とは、石炭系・石油系のピッチあるいはコークスを、酸素を含まない不活性雰囲気で熱処理することで炭素構造が層状に配列して黒鉛化し易い炭素である。これらの中でも特に、石炭系ピッチを液相で炭化して生成したメソカーボン小球体を用いることが好ましい。   The graphitizable carbon material used in the present invention is carbon that is easily graphitized by arranging the carbon structure in layers by heat-treating coal-based or petroleum-based pitch or coke in an inert atmosphere not containing oxygen. . Among these, it is preferable to use mesocarbon microspheres produced by carbonizing coal-based pitch in a liquid phase.

前記メソカーボン小球体とは、球状の黒鉛前駆体であり、熱処理により黒鉛状層構造を容易に形成するものをいう。   The mesocarbon microspheres are spherical graphite precursors that easily form a graphite layer structure by heat treatment.

メソカーボン小球体は、結晶性が比較的発達しており、黒鉛状層構造をとりやすいため、比較的低温の黒鉛化促進処理により、抵抗が小さいミクロ構造を形成することができるため好ましい。また、これらは市販品として入手容易である点も好ましい。   Mesocarbon spherules are preferable because they have a relatively high crystallinity and can easily form a graphite-like layer structure, and can form a microstructure with a low resistance by a graphitization promoting treatment at a relatively low temperature. Moreover, the point that these are easy to obtain as a commercial item is also preferable.

たとえばメソカーボン小球体は、石炭系タールあるいはそれらのピッチ、石油系重質油あるいはそれらのピッチなどのピッチ類を350℃程度以上に加熱することで生成できる。前記ピッチ類を加熱すると、ピッチ類の中にメソカーボン小球体が生成する。前記メソカーボン小球体の生成したピッチ類を、例えばキノリンやタール油などの溶剤を用いて分離操作をすることでメソカーボン小球体を得ることができる。   For example, mesocarbon microspheres can be produced by heating pitches such as coal-based tars or pitches thereof, petroleum-based heavy oils or pitches thereof to about 350 ° C. or more. When the pitches are heated, mesocarbon microspheres are generated in the pitches. The mesocarbon microspheres can be obtained by subjecting the pitches generated by the mesocarbon microspheres to a separation operation using a solvent such as quinoline or tar oil.

本発明では、充電時の膨張率の制御、および賦活時の融着防止のために必要に応じてメソカーボン小球体に炭化処理を施す。この場合、炭化処理の温度としては目的に応じて450〜850℃程度の範囲の中から任意に選択できる。   In the present invention, the mesocarbon microspheres are carbonized as necessary to control the expansion rate during charging and to prevent fusion during activation. In this case, the temperature of the carbonization treatment can be arbitrarily selected from the range of about 450 to 850 ° C. according to the purpose.

膨張が小さな多孔質炭素材料の炭化処理温度は550℃未満とする必要があり、480〜520℃の温度範囲とすることが好ましい。   The carbonization temperature of the porous carbon material having a small expansion needs to be less than 550 ° C., and is preferably in the temperature range of 480 to 520 ° C.

また、膨張の大きな多孔質炭素材料の炭化処理温度は550℃以上とする必要があり、600〜750℃の温度範囲とすることが好ましく、650〜750℃の温度範囲とすることがより好ましい。   Moreover, the carbonization temperature of the porous carbon material having a large expansion needs to be 550 ° C. or higher, preferably 600 to 750 ° C., more preferably 650 to 750 ° C.

また、電気二重層キャパシタの電極に用いる際の電極厚みは、通常150μm以下であることから、原料として用いる多孔質炭素材料の平均粒径は20μm以下に調整される。その際、上記メソカーボン小球体の形状は炭化処理および賦活処理後もほぼ保持され、最終的に得られる多孔質炭素材料は、本質的に原料として用いられる多孔質炭素材料の平均粒径に相当した平均粒径を有する。   Moreover, since the electrode thickness at the time of using for the electrode of an electric double layer capacitor is 150 micrometers or less normally, the average particle diameter of the porous carbon material used as a raw material is adjusted to 20 micrometers or less. At that time, the shape of the mesocarbon spherules is substantially retained after the carbonization treatment and activation treatment, and the finally obtained porous carbon material essentially corresponds to the average particle diameter of the porous carbon material used as a raw material. Average particle size.

最終的に得られるメソカーボン小球体の多孔質体の平均粒径を20μm以下に調整する方法としては、
(1)メソカーボン小球体の発生条件を制御して平均粒径を20μm以下に調整した後、炭化、賦活化処理を施す方法
(2)平均粒径が20μmより大きなメソカーボン小球体を粉砕処理、分級処理などにより平均粒径を20μm以下に調整した後、炭化、賦活化処理を施す方法
(3)平均粒径が20μmより大きなメソカーボン小球体を炭化、賦活化処理した後、粉砕処理、分級処理などにより平均粒径を20μm以下に調整する方法
(4)上記(1)〜(3)の方法の2以上を組み合わせた方法
などを用いることができる。
As a method of adjusting the average particle size of the porous mesocarbon spherules finally obtained to 20 μm or less,
(1) A method of controlling the generation conditions of mesocarbon spherules to adjust the average particle size to 20 μm or less, and then performing carbonization and activation treatment. (2) Crushing mesocarbon spherules having an average particle size larger than 20 μm. , A method of performing carbonization and activation treatment after adjusting the average particle size to 20 μm or less by classification treatment, etc. (3) carbonizing and activating the mesocarbon microspheres having an average particle size larger than 20 μm, followed by pulverization treatment, A method of adjusting the average particle size to 20 μm or less by classification treatment or the like (4) A method in which two or more of the methods (1) to (3) are combined can be used.

本発明で用いられる前記粉砕処理の方法としては、ボールミル、遊星ボールミル、ハンマーミル、ジェットミル、インペラーミル、アトマイザー、パルベライザー、ジョークラッシャーなど公知の方法を用いることができる。また、これらの方法を組み合わせて用いることもできる。   As the pulverization method used in the present invention, known methods such as a ball mill, a planetary ball mill, a hammer mill, a jet mill, an impeller mill, an atomizer, a pulverizer, and a jaw crusher can be used. A combination of these methods can also be used.

本発明で用いられる前記分級処理の方法としては、風力分級機、振動ふるい機、超音波発振器付き振動ふるい機、ロータップふるい機など公知の方法を用いることができる。また、これらの方法を組み合わせて用いることもできる。   As the classification method used in the present invention, a known method such as a wind classifier, a vibration sieve machine, a vibration sieve machine with an ultrasonic oscillator, or a low-tap sieve machine can be used. A combination of these methods can also be used.

本発明では、メソカーボン小球体炭化物の多孔質化(賦活化)として好ましくはアルカリ賦活処理を実施する。なお、賦活化は、炭化物毎に別々に行ってもよく、また、炭化物を混合した後に行ってもよい。   In the present invention, an alkali activation treatment is preferably performed as the porous (activation) of mesocarbon microsphere carbide. The activation may be performed separately for each carbide or after mixing the carbides.

メソカーボン小球体のアルカリ賦活による多孔質化は、通常のアルカリ賦活処理と同様な方法で実施することができるが、通常、メソカーボン小球体を、窒素ガス、アルゴンガスなどの不活性ガス雰囲気中、アルカリ金属化合物の存在下、600〜900℃で加熱することにより行われる。前記加熱温度が600℃より低温では十分な比表面積が得られにくく、体積固有抵抗値も小さくなり、低抵抗化を達成しにくい。一方、900℃を超える高温での加熱は、アルカリ金属化合物による装置腐食の問題が発生する。なお、好ましい加熱温度は650〜850℃である。   Porous formation by alkali activation of mesocarbon spherules can be carried out in the same manner as normal alkali activation treatment, but usually the mesocarbon spherules are placed in an inert gas atmosphere such as nitrogen gas or argon gas. It is performed by heating at 600 to 900 ° C. in the presence of an alkali metal compound. When the heating temperature is lower than 600 ° C., it is difficult to obtain a sufficient specific surface area, the volume specific resistance value becomes small, and it is difficult to achieve low resistance. On the other hand, heating at a high temperature exceeding 900 ° C. causes a problem of device corrosion due to an alkali metal compound. In addition, preferable heating temperature is 650-850 degreeC.

前記アルカリ金属化合物の種類は特に限定されず、また1種のみを使用してもよく、複数を組み合わせて使用してもよい。KOH、NaOH、CsOHなどが好ましく使用される。   The kind of the alkali metal compound is not particularly limited, and only one kind may be used, or a plurality may be used in combination. KOH, NaOH, CsOH and the like are preferably used.

前記アルカリ金属化合物の使用量は所望する比表面積によっても異なるが、原料のメソカーボン小球体炭化物に対する質量比で、通常、0.5〜4倍程度であればよい。   The amount of the alkali metal compound to be used varies depending on the desired specific surface area, but is usually about 0.5 to 4 times the mass ratio of the raw material mesocarbon microsphere carbide.

賦活処理は、0.5〜10時間程度行われる。0.5時間未満の処理時間では十分な比表面積が得られにくく、一方、10時間を超えると過賦活となりやすい。過賦活となると多孔質化が過度に進行し、本発明で必要とされる以上に比表面積が大きくなり、細孔同士の合一などにより密度が低下する。   The activation process is performed for about 0.5 to 10 hours. When the treatment time is less than 0.5 hours, it is difficult to obtain a sufficient specific surface area. On the other hand, when the treatment time exceeds 10 hours, overactivation is likely to occur. When it becomes excessively activated, the porosity is excessively increased, the specific surface area becomes larger than required in the present invention, and the density is lowered due to coalescence of pores.

アルカリ賦活処理の後、通常、塩酸溶液などで中和後、イオン交換水などで洗浄して多孔質炭素材料を得る。   After the alkali activation treatment, the porous carbon material is usually obtained by neutralizing with a hydrochloric acid solution or the like and then washing with ion exchange water or the like.

上記の方法により充放電時における膨張率が110%以下であり、静電容量の目標が30F/cm以上である多孔質炭素材料を得ることができる。また、このような多孔質炭素材料は、電気二重層キャパシタの分極性電極材料として好適であり、これを分極性電極に使用すれば、体積あたりの静電容量が高く、しかも充放電時における膨張率が小さい高性能な電気二重層キャパシタを得ることができる。 By the above method, it is possible to obtain a porous carbon material having an expansion rate of 110% or less during charge / discharge and a capacitance target of 30 F / cm 3 or more. Further, such a porous carbon material is suitable as a polarizable electrode material for an electric double layer capacitor. If this is used for a polarizable electrode, the capacitance per volume is high and the expansion during charge / discharge is also high. A high-performance electric double layer capacitor with a low rate can be obtained.

本発明では上記のような多孔質炭素材料を使用した分極性電極、さらにこの分極性電極を含む高性能な電気二重層キャパシタも提供される。   In the present invention, a polarizable electrode using the porous carbon material as described above and a high-performance electric double layer capacitor including the polarizable electrode are also provided.

本発明の多孔質炭素材料の特性は、電気二重層キャパシタの分極性電極に使用したときの充填密度、充放電時における膨張率および静電容量で評価することができる。   The characteristics of the porous carbon material of the present invention can be evaluated by the packing density when used for the polarizable electrode of the electric double layer capacitor, the expansion coefficient during charge and discharge, and the capacitance.

電気二重層キャパシタの分極性電極は、炭素材料として本発明の多孔質炭素材料を使用すること以外は、一般的な方法に準じて作製することができる。例えば、多孔質炭素材料に、必要に応じて結着剤、導電剤などを適宜添加し、ディスクまたはシート状に成形して多孔質炭素材料を含む活物質層を形成する。   The polarizable electrode of the electric double layer capacitor can be produced according to a general method except that the porous carbon material of the present invention is used as the carbon material. For example, a binder, a conductive agent, and the like are appropriately added to the porous carbon material as necessary, and are formed into a disk or a sheet to form an active material layer containing the porous carbon material.

前記結着剤としては、通常、ポリテトラフルオロエチレン、ポリフッ化ビニリデンなどを使用することができる。結着剤は多孔質炭素材料に対して、通常、0.1〜20質量%程度添加して使用される。   As the binder, polytetrafluoroethylene, polyvinylidene fluoride and the like can be usually used. The binder is usually used by adding about 0.1 to 20% by mass to the porous carbon material.

前記導電剤としては、通常、カーボンブラックなどを使用することができる。導電剤は多孔質炭素材料に対して、通常、1〜20質量%程度添加して使用される。   As the conductive agent, carbon black or the like can be usually used. About 1-20 mass% is normally added and used for a electrically conductive agent with respect to a porous carbon material.

電極は、集電材層の片面または両面に上記多孔質炭素材料を含む活物質層を有する構造とすることができる。集電材層は、多孔質炭素材料、結着剤および導電剤の混合物から活物質層を形成する際に同時に圧接成形してもよく、また、予め、圧縮成形などの方法により成形された活物質層の片面にアルミニウム溶射などの方法により集電材を電気的に接続してもよい。さらに、活物質層とアルミニウムなどの金属箔や金属網などからなる集電材を導電性接着剤によって接着してもよい。   The electrode may have a structure having an active material layer containing the porous carbon material on one side or both sides of the current collector layer. The current collector layer may be formed by pressure welding simultaneously with the formation of the active material layer from the mixture of the porous carbon material, the binder and the conductive agent, or may be formed in advance by a method such as compression molding. A current collector may be electrically connected to one side of the layer by a method such as aluminum spraying. Further, a current collector made of a metal foil such as aluminum or a metal net may be bonded to the active material layer with a conductive adhesive.

ディスク状またはシート状の多孔質炭素材料を含む活物質層を形成する場合は、結着剤としてポリテトラフルオロエチレンなどを使用することが好ましく、多孔質炭素材料、結着剤、必要により導電剤を常温または加熱下で混練し、常温または加熱下で成形する方法が好ましく用いられる。   When forming an active material layer containing a disk-like or sheet-like porous carbon material, it is preferable to use polytetrafluoroethylene or the like as the binder, and the porous carbon material, the binder, and optionally the conductive agent. A method of kneading at room temperature or under heating and molding at room temperature or under heating is preferably used.

厚さが200μm程度までの薄い活物質層を集電材上に形成させるには、スラリー化した活物質をドクターブレードなどにより塗工する方法が好ましい。例えば、ポリフッ化ビニリデンを結着剤として使用する場合は、これをN−メチル−2−ピロリドンなどの有機溶剤に溶解し、これに多孔質炭素材料、必要により導電剤を添加してスラリー状とし、集電材上に均一に塗工し乾燥することにより行うことができる。また、例えば、スチレン−ブタジエンゴム(SBR)を結着剤として使用する場合は、これを水に分散させ、これに多孔質炭素材料、必要に応じて導電剤および/またはカルボキシメチルセルローズ(CMC)を添加してスラリー状とし、集電材上に均一に塗工し乾燥することにより行うことができる。   In order to form a thin active material layer having a thickness of up to about 200 μm on the current collector, a method of applying the slurryed active material with a doctor blade or the like is preferable. For example, when using polyvinylidene fluoride as a binder, dissolve it in an organic solvent such as N-methyl-2-pyrrolidone, and add a porous carbon material, and if necessary, a conductive agent to form a slurry. It can be carried out by coating uniformly on the current collector and drying. Further, for example, when styrene-butadiene rubber (SBR) is used as a binder, it is dispersed in water, and a porous carbon material, if necessary, a conductive agent and / or carboxymethyl cellulose (CMC). Is added to form a slurry, which is uniformly coated on the current collector and dried.

また、乾燥後、次いで常温または加熱下でプレスすることによって活物質層の密度を大きくすることも可能である。   In addition, after drying, the density of the active material layer can be increased by pressing at room temperature or under heating.

電気二重層キャパシタの単位セルは、一般に上記のようにして得られた分極性電極を一対で使用し、必要に応じて不織布、紙、その他の多孔質材料からなる透液性セパレータを介して対向させ、電解液中に浸漬することにより形成する。なお、一対の分極性電極は、互いに同じであっても異なっていてもよい。電気二重層キャパシタの使用に当たっては、上記単位セルを単独であるいは複数の単位セルを直列および/または並列に接続して使用する。   The unit cell of an electric double layer capacitor generally uses a pair of polarizable electrodes obtained as described above, and faces each other through a liquid-permeable separator made of nonwoven fabric, paper, or other porous material as necessary. And formed by immersing in an electrolytic solution. The pair of polarizable electrodes may be the same as or different from each other. In using the electric double layer capacitor, the unit cell is used alone or a plurality of unit cells are connected in series and / or in parallel.

電気二重層キャパシタの電解液は、非水溶媒系または水系のいずれも使用可能である。非水溶媒系電解液は電解質を有機溶媒に溶解したものであり、電解質としては、例えば、(CPBF、(CPBF、(CNBF、(CCHNBF、(CNBF、(CPPF、(CPCFSO、LiBF、LiClO、LiCFSOなどを使用することができる。 As the electrolytic solution of the electric double layer capacitor, either a non-aqueous solvent system or an aqueous system can be used. The nonaqueous solvent-based electrolytic solution is obtained by dissolving an electrolyte in an organic solvent. Examples of the electrolyte include (C 2 H 5 ) 4 PBF 4 , (C 3 H 7 ) 4 PBF 4 , and (C 2 H 5 ). 4 NBF 4 , (C 2 H 5 ) 3 CH 3 NBF 4 , (C 3 H 7 ) 4 NBF 4 , (C 2 H 5 ) 4 PPF 6 , (C 2 H 5 ) 4 PCF 3 SO 3 , LiBF 4 LiClO 4 , LiCF 3 SO 3 and the like can be used.

有機溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、γ−ブチルラクトン、ジメチルスルフォキシド、ジメチルフォルムアミド、アセトニトリル、テトラヒドロフラン、ジメトキシエタンなどを使用することができる。また、これらの二種以上の混合物を使用することもできる。   As the organic solvent, for example, ethylene carbonate, propylene carbonate, γ-butyllactone, dimethyl sulfoxide, dimethylformamide, acetonitrile, tetrahydrofuran, dimethoxyethane and the like can be used. A mixture of two or more of these can also be used.

以下に本発明を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

[実施例1]
〈多孔質炭素材料の製造〉
〔多孔質材料A〕:平均粒径10μm、炭化温度500℃のメソカーボン小球体炭化物に、その2.0倍量(質量比)のKOHを加え、均一に混合し、窒素気流下、800℃で1時間加熱(賦活化処理)した。賦活化処理後は、試料を中和するために塩酸で洗浄し、洗浄液が中性を示すまでイオン交換水で洗浄した後、乾燥し、比表面積1550m/g、充填密度0.68g/cmの多孔質炭素材料を得た。
[Example 1]
<Manufacture of porous carbon material>
[Porous material A]: To mesocarbon microsphere carbide having an average particle size of 10 μm and a carbonization temperature of 500 ° C., 2.0 times (mass ratio) of KOH is added and mixed uniformly. And heated for 1 hour (activation treatment). After the activation treatment, the sample is washed with hydrochloric acid to neutralize the sample, washed with ion-exchanged water until the washing solution shows neutrality, and then dried to have a specific surface area of 1550 m 2 / g and a packing density of 0.68 g / cm. 3 porous carbon materials were obtained.

〔多孔質材料B〕:平均粒径2μm、炭化温度700℃のメソカーボン小球体炭化物に、その2.5倍量(質量比)のKOHを加え、均一に混合し、窒素気流下、800℃で1時間加熱(賦活化処理)した。賦活化処理後は、試料を中和するために塩酸で洗浄し、洗浄液が中性を示すまでイオン交換水で洗浄した後、乾燥し、比表面積950m/g、充填密度0.80g/cmの多孔質炭素材料を得た。 [Porous material B]: 2.5 times the mass (mass ratio) of KOH was added to mesocarbon microsphere carbide having an average particle diameter of 2 μm and a carbonization temperature of 700 ° C., and uniformly mixed, and then 800 ° C. under a nitrogen stream. And heated for 1 hour (activation treatment). After the activation treatment, the sample is washed with hydrochloric acid to neutralize the sample, washed with ion-exchanged water until the washing solution shows neutrality, and then dried, with a specific surface area of 950 m 2 / g and a packing density of 0.80 g / cm. 3 porous carbon materials were obtained.

上記で得られた各多孔質炭素材料を、多孔質材料A:多孔質材料Bを質量比で7:3(A/B=7/3)で混合し、多孔質炭素材料(配合材料)を調整した。   Each porous carbon material obtained above is mixed with porous material A: porous material B at a mass ratio of 7: 3 (A / B = 7/3), and the porous carbon material (mixed material) is mixed. It was adjusted.

〈分極性電極の作製〉
上記多孔質炭素材料(配合材料)80mg、カーボンブラック10mgおよびポリテトラフルオロエチレン(PTFE)5mgを乾式混合した後、アルミメッシュを集電体として、直径13mmのディスク(円盤)状に、プレス圧力148GPaにて加圧成形した。これを二枚作製し、減圧下(133.3Pa)、150℃で10時間乾燥した。このディスクの直径、厚さおよび質量より、電極の充填密度(単位:g/cm)を算出した。
<Preparation of polarizable electrode>
80 mg of the above porous carbon material (compounding material), 10 mg of carbon black and 5 mg of polytetrafluoroethylene (PTFE) were dry-mixed, and the aluminum mesh was used as a current collector to form a disk (disk) with a diameter of 13 mm and a press pressure of 148 GPa. Was pressure molded. Two of these were prepared and dried at 150 ° C. for 10 hours under reduced pressure (133.3 Pa). The packing density (unit: g / cm 3 ) of the electrode was calculated from the diameter, thickness and mass of the disk.

〈電気二重層キャパシタの作製〉
露点−80℃以下に管理されているアルゴンが流通しているグローブボックス内において、上記で作製した一組の分極性電極板の間に多孔質ポリエチレン(孔径0.20μm)を挟み込み、宝泉社製の2極式セル(膨張率測定タイプ)に組み込み、電解液を満たしてセルを作製した。
<Production of electric double layer capacitor>
Porous polyethylene (pore diameter 0.20 μm) is sandwiched between a pair of polarizable electrode plates prepared above in a glove box in which argon is controlled at a dew point of −80 ° C. or less. The cell was fabricated by incorporating it into a bipolar cell (expansion coefficient measurement type) and filling the electrolyte.

電解液にはプロピレンカーボネートに1Mの濃度でテトラエチルアンモニウムテトラフルオロボレート((CNBF)を溶解したものを使用した。 As the electrolytic solution, a solution obtained by dissolving tetraethylammonium tetrafluoroborate ((C 2 H 5 ) 4 NBF 4 ) in propylene carbonate at a concentration of 1M was used.

上記の多孔質炭素材料(配合材料)、電気二重層キャパシタについて、充填密度、電気二重層キャパシタの静電特性および充放電時における膨張率を評価した。これらの評価結果を下表1に示す。   About said porous carbon material (compounding material) and an electric double layer capacitor, the packing density, the electrostatic property of an electric double layer capacitor, and the expansion coefficient at the time of charging / discharging were evaluated. The evaluation results are shown in Table 1 below.

なお、上記平均粒径、比表面積、多孔質材料単独の充填密度、電気二重層キャパシタの静電特性および充放電時における膨張率の評価方法を以下に示す・
(a)平均粒径
メソカーボン小球体原料および多孔質炭素材料の平均粒径はレーザー回折法を基本原理とするセイシン企業製粒度分布測定装置LMS−30を使用して測定した。メソカーボン小球体および多孔質炭素材料はカチオン性界面活性剤を用いてイオン交換水に分散させ、超音波処理により均一なスラリーとしたのち、上記流度分布測定装置に供した。
The average particle size, specific surface area, packing density of the porous material alone, electrostatic characteristics of the electric double layer capacitor and the evaluation method of the expansion coefficient during charging / discharging are shown below.
(A) Average particle diameter The average particle diameter of the mesocarbon microsphere material and the porous carbon material was measured using a particle size distribution measuring apparatus LMS-30 manufactured by Seishin Enterprise based on the laser diffraction method. The mesocarbon spherules and the porous carbon material were dispersed in ion-exchanged water using a cationic surfactant, made into a uniform slurry by ultrasonic treatment, and then used in the flow rate distribution measuring apparatus.

(b)比表面積(BET比表面積)
多孔質炭素材料の比表面積はmicromeritis社製ASAP2400を使用して、77KにおけるN吸脱着による吸着等温線をもとにBET法により算出した。
(B) Specific surface area (BET specific surface area)
The specific surface area of the porous carbon material was calculated by BET method based on the adsorption isotherm by N 2 adsorption / desorption at 77K using ASAP2400 manufactured by micromeritis.

(c)多孔質材料単独の充填密度
多孔質炭素材料:バインダ(PTFE:三井-デュポンフロロケミカル-7J)=80mg:1mgを混合し、294MPa(3ton/cm)の圧力で13mmφの形状に成形し、140℃で3時間真空乾燥を行った後、直径、厚さ、重量を実測して下記式(1)より充填密度を算出した。
(C) Packing density of porous material alone Porous carbon material: Binder (PTFE: Mitsui-Dupont Fluorochemical-7J) = 80 mg: 1 mg is mixed and molded into a shape of 13 mmφ at a pressure of 294 MPa (3 ton / cm 2 ). Then, after vacuum drying at 140 ° C. for 3 hours, the diameter, thickness and weight were measured and the packing density was calculated from the following formula (1).

充填密度(g/cm3) =重量(g)/(円周率×(直径(cm)/2)2×厚さ(cm))・・・(1)
(d)電気二重層キャパシタの静電特性(静電容量)
静電容量は次のようにして算出した。
まず、充放電試験による放電曲線(放電電圧−放電時間)を作図する。ここで、充放電試験は、北斗電工社製充放電試験装置(HJ1001SM8)を使用して、0.5mA/cmの電流密度で0〜2.4Vの充放電電圧で充放電を3サイクル実施した。
3サイクル目の放電曲線から放電エネルギー(放電電圧×電流の時間積分としたときの合計放電エネルギー(W・s))を求め、この放電エネルギーの値から下記式(2)により静電容量を算出した。
Packing density (g / cm 3 ) = weight (g) / (circumference x (diameter (cm) / 2) 2 x thickness (cm)) (1)
(D) Electrostatic characteristics of the electric double layer capacitor (capacitance)
The capacitance was calculated as follows.
First, a discharge curve (discharge voltage-discharge time) by a charge / discharge test is drawn. Here, in the charge / discharge test, charge / discharge is performed for 3 cycles at a current density of 0.5 mA / cm 2 and a charge / discharge voltage of 0 to 2.4 V using a charge / discharge test apparatus (HJ1001SM8) manufactured by Hokuto Denko. did.
The discharge energy (total discharge energy (W · s) when time integration of discharge voltage x current) is obtained from the discharge curve at the third cycle, and the capacitance is calculated from the value of this discharge energy by the following equation (2). did.

静電容量(F)=2×放電エネルギー(W・s)/(放電開始電圧(V)) ・・・(2)
上記で求めた静電容量を、分極性電極を構成する多孔質炭素材料の質量(正極+負極、単位:g)で除し、単位重量当たりの静電容量(F/g)とした。また、単位重量当たりの静電容量に、分極性電極の電極密度(g/cm)を乗じた値を単位体積当たりの静電容量(F/cm)とした。
Capacitance (F) = 2 × discharge energy (W · s) / (discharge start voltage (V)) 2 (2)
The capacitance obtained above was divided by the mass of the porous carbon material constituting the polarizable electrode (positive electrode + negative electrode, unit: g) to obtain a capacitance per unit weight (F / g). In addition, a value obtained by multiplying the capacitance per unit weight by the electrode density (g / cm 3 ) of the polarizable electrode was defined as the capacitance per unit volume (F / cm 3 ).

(e)充放電時における膨張率
図1に、膨張率測定装置の概略構成を示す。膨張率測定装置1は、図1に示すレーザー式変位測定器2、デジタル式データ処理装置3から構成される。宝泉社製の2極式セル(膨張率測定タイプ)4は、セパレータ6を2枚の分極性電極5ではさみ、電解液7中に浸漬し、サンプル押さえブロック8で、分極性電極5とセパレータ6を上から押さえた構成である。2極式セル4を図1に示す膨張率測定装置1に組み込み、充放電試験の開始と同時に膨張率測定装置を作動させ、充放電時間に対する変位の変化を測定する。
(E) Expansion coefficient during charging / discharging FIG. 1 shows a schematic configuration of an expansion coefficient measuring apparatus. The expansion coefficient measuring device 1 includes a laser displacement measuring device 2 and a digital data processing device 3 shown in FIG. A bipolar cell (expansion coefficient measurement type) 4 manufactured by Hosen Co., Ltd. has a separator 6 sandwiched between two polarizable electrodes 5 and immersed in an electrolyte solution 7. The separator 6 is pressed from above. The bipolar cell 4 is incorporated in the expansion coefficient measuring apparatus 1 shown in FIG. 1, and the expansion coefficient measuring apparatus is operated simultaneously with the start of the charge / discharge test to measure the change in displacement with respect to the charge / discharge time.

膨張率は次のようにして算出した。
充放電が安定する3サイクル目の充電完了時のセルの変位△T(mm)を測定する。充放電開始前のセル厚みをT(mm)として下記式(3)より膨張率を算出した。
膨張率(%)=(T+△T)/T×100 ・・・(3)。
The expansion coefficient was calculated as follows.
The displacement ΔT (mm) of the cell at the completion of charging in the third cycle in which charging / discharging is stabilized is measured. The expansion rate was calculated from the following equation (3), where T (mm) was the cell thickness before the start of charge / discharge.
Expansion rate (%) = (T + ΔT) / T × 100 (3).

[実施例2]
上記実施例1と同様に、多孔質材料A、多孔質材料Bを下表1(実施例2)に示す条件で調整し、実施例1と同様に配合・評価し、その結果を下表1に示す。
[Example 2]
Similarly to Example 1 above, porous material A and porous material B were adjusted under the conditions shown in Table 1 (Example 2) below, and were blended and evaluated in the same manner as Example 1. The results are shown in Table 1 below. Shown in

[実施例3,4]
上記実施例1と同様に、多孔質材料A、多孔質材料Bを下表1(実施例3,4)に示す条件で調整し、実施例1と同様に配合・評価し、その結果を下表1に示す。
[Examples 3 and 4]
As in Example 1 above, porous material A and porous material B were adjusted under the conditions shown in Table 1 (Examples 3 and 4) below, and blended and evaluated in the same manner as in Example 1. Table 1 shows.

[実施例5]
上記実施例1と同様に、多孔質材料A、多孔質材料Bを下表1(実施例5)に示す条件で調整し、実施例1と同様に配合・評価し、その結果を下表1に示す。
[Example 5]
In the same manner as in Example 1, porous material A and porous material B were adjusted under the conditions shown in Table 1 (Example 5) below, and were blended and evaluated in the same manner as in Example 1. The results are shown in Table 1 below. Shown in

[実施例6]
上記実施例1と同様に、多孔質材料A、多孔質材料Bを下表1(実施例6)に示す条件で調整し、実施例1と同様に配合・評価し、その結果を下表1に示す。
[Example 6]
In the same manner as in Example 1, the porous material A and the porous material B were adjusted under the conditions shown in Table 1 (Example 6), blended and evaluated in the same manner as in Example 1, and the results are shown in Table 1 below. Shown in

[比較例1]
実施例1の多孔質材料Aを単独で、実施例1と同様に評価し、その結果を表1に示す。
[Comparative Example 1]
The porous material A of Example 1 alone was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[比較例2]
実施例1の多孔質材料Bを単独で、実施例1と同様に評価し、その結果を表1に示す。
[Comparative Example 2]
The porous material B of Example 1 alone was evaluated in the same manner as in Example 1, and the results are shown in Table 1.

[比較例3]
実施例1で、多孔質材料A、多孔質材料Bともに平均粒径を5μmとした以外は、実施例1と同様に配合・評価し、その結果を表1に示す。
[Comparative Example 3]
In Example 1, both the porous material A and the porous material B were blended and evaluated in the same manner as in Example 1 except that the average particle diameter was set to 5 μm, and the results are shown in Table 1.

[比較例4]
実施例1で、多孔質材料A:多孔質材料Bの配合比を質量比で1:2とした以外は、実施例1と同様に配合・評価し、その結果を表1に示す。
[Comparative Example 4]
In Example 1, except that the mixing ratio of porous material A: porous material B was 1: 2, the mixing and evaluation were performed in the same manner as in Example 1, and the results are shown in Table 1.

Figure 2007169126
Figure 2007169126

上記表1に示すように、本発明による方法では、充放電時における膨張が小さく、且つ、体積あたりの静電容量の高い電気二重層キャパシタを製造できることが確認できた。   As shown in Table 1 above, it was confirmed that the method according to the present invention can produce an electric double layer capacitor having a small expansion during charging and discharging and a high capacitance per volume.

本発明の実施例に係る膨張率測定装置の概略構成を示す図である。It is a figure which shows schematic structure of the expansion coefficient measuring apparatus which concerns on the Example of this invention.

符号の説明Explanation of symbols

1 膨張率測定装置
2 レーザー式変位測定器
3 デジタル式データ処理装置
4 宝泉社製2極式セル(膨張率測定タイプ)
5 分極性電極
6 セパレータ
7 電解液
8 サンプル押さえブロック
DESCRIPTION OF SYMBOLS 1 Expansion rate measuring device 2 Laser type displacement measuring device 3 Digital data processing device 4 Bipolar cell made by Hosen Co., Ltd.
5 Polarized electrode 6 Separator 7 Electrolyte 8 Sample holding block

Claims (2)

易黒鉛化性炭素材料を550℃未満の温度で炭化した後、賦活化処理してなる多孔質材料Aと、
易黒鉛化性炭素材料を550℃以上の温度で炭化した後、賦活化処理してなる多孔質材料Bとの混合物であり、
前記多孔質材料Aの平均粒径が5〜20μmであり、前記多孔質材料Bの平均粒径が前記多孔質材料Aの平均粒径の1/20〜1/2であり、
前記多孔質材料Aと、前記多孔質材料Bとの混合割合が、質量比で、
A/B=1〜10
であることを特徴とする多孔質材料。
A porous material A obtained by carbonizing an easily graphitizable carbon material at a temperature of less than 550 ° C. and then activation treatment;
It is a mixture with a porous material B obtained by carbonizing an easily graphitizable carbon material at a temperature of 550 ° C. or higher and then performing an activation treatment.
The average particle size of the porous material A is 5 to 20 μm, the average particle size of the porous material B is 1/20 to 1/2 of the average particle size of the porous material A,
The mixing ratio of the porous material A and the porous material B is a mass ratio.
A / B = 1-10
A porous material characterized in that
請求項1に記載の多孔質材料を電極活物質として用いたことを特徴とする電気二重層キャパシタ。   An electric double layer capacitor using the porous material according to claim 1 as an electrode active material.
JP2005371619A 2005-12-26 2005-12-26 Porous material and electric double layer capacitor Expired - Fee Related JP4718320B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005371619A JP4718320B2 (en) 2005-12-26 2005-12-26 Porous material and electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005371619A JP4718320B2 (en) 2005-12-26 2005-12-26 Porous material and electric double layer capacitor

Publications (2)

Publication Number Publication Date
JP2007169126A true JP2007169126A (en) 2007-07-05
JP4718320B2 JP4718320B2 (en) 2011-07-06

Family

ID=38296187

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005371619A Expired - Fee Related JP4718320B2 (en) 2005-12-26 2005-12-26 Porous material and electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP4718320B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914643B1 (en) 2007-09-13 2009-08-28 재단법인서울대학교산학협력재단 Method of manufacturing electric double-layer capacitor
CN114122393A (en) * 2021-11-11 2022-03-01 深圳市翔丰华科技股份有限公司 Preparation method of high-power-density negative electrode material for lithium ion battery

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317333A (en) * 1998-03-03 1999-11-16 Jeol Ltd Carbon material for electric double-layer capacitor and manufacture of the same, and electric double-layer capacitor and manufacture of the same
JP2001146410A (en) * 1999-11-17 2001-05-29 Showa Denko Kk Active carbon and method for producing the same
JP2002083748A (en) * 2000-06-27 2002-03-22 Asahi Glass Co Ltd Activated carbon, manufacturing method therefor and electric double-layer capacitor
JP2003183014A (en) * 2001-10-10 2003-07-03 Jfe Steel Kk Porous carbon material, its producing method and electric double layer capacitor
JP2004175660A (en) * 2002-11-13 2004-06-24 Showa Denko Kk Activated carbon, method of manufacturing the same and polarizable electrode

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11317333A (en) * 1998-03-03 1999-11-16 Jeol Ltd Carbon material for electric double-layer capacitor and manufacture of the same, and electric double-layer capacitor and manufacture of the same
JP2001146410A (en) * 1999-11-17 2001-05-29 Showa Denko Kk Active carbon and method for producing the same
JP2002083748A (en) * 2000-06-27 2002-03-22 Asahi Glass Co Ltd Activated carbon, manufacturing method therefor and electric double-layer capacitor
JP2003183014A (en) * 2001-10-10 2003-07-03 Jfe Steel Kk Porous carbon material, its producing method and electric double layer capacitor
JP2004175660A (en) * 2002-11-13 2004-06-24 Showa Denko Kk Activated carbon, method of manufacturing the same and polarizable electrode

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100914643B1 (en) 2007-09-13 2009-08-28 재단법인서울대학교산학협력재단 Method of manufacturing electric double-layer capacitor
CN114122393A (en) * 2021-11-11 2022-03-01 深圳市翔丰华科技股份有限公司 Preparation method of high-power-density negative electrode material for lithium ion battery

Also Published As

Publication number Publication date
JP4718320B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
US20200227747A1 (en) Carbonaceous composite materials with snowball-like morphology
US8273683B2 (en) Active carbon, production method thereof and polarizable electrode
TWI487180B (en) Anode material for nonaqueous lithium type electrical storage element
KR20110063472A (en) Carbon material for electric double layer capacitor and process for producing the carbon material
JP2001284188A (en) Manufacturing method of carbon material for electric double-layer capacitor electrode, and manufacturing method of electric double-layer capacitor using the carbon material
EP3076416B1 (en) Lithium ion capacitor
JP2012074467A (en) Anode material, method of manufacturing the same, and electricity-storage device
CN107665775A (en) Ultracapacitor based on porous carbon nanosheet and preparation method thereof
JP2010034300A (en) Carbon material for use of polarizable electrode of electric double-layer capacitor, its manufacturing method, and the electric double-layer capacitor
Phattharasupakun et al. Sodium-ion diffusion and charge transfer kinetics of sodium-ion hybrid capacitors using bio-derived hierarchical porous carbon
JP4838152B2 (en) Porous carbon material, method for producing the same, and electric double layer capacitor
WO2022085694A1 (en) Nonaqueous alkali metal power storage element and positive electrode coating liquid
JP6453560B2 (en) Negative electrode for non-aqueous lithium storage element and non-aqueous lithium storage element using the same
JP4718320B2 (en) Porous material and electric double layer capacitor
JP2017092303A (en) Active carbon for electrode for high potential capacitor, manufacturing method thereof, and electric double-layer capacitor with the active carbon
JP2013080780A (en) Negative electrode material for nonaqueous lithium type power storage element, and nonaqueous lithium type power storage element using the same
US10256049B2 (en) Positive electrode for a lithium ion capacitor and lithium ion capacitor
JP2003183014A (en) Porous carbon material, its producing method and electric double layer capacitor
JP2006131464A (en) Porous carbon material, manufacturing method thereof and electric double layer capacitor
JP5604227B2 (en) Method for producing activated carbon for capacitor and activated carbon
JP2018056425A (en) Nonaqueous lithium power storage element
JP2000124084A (en) Electric double-layer capacitor
JP2011258643A (en) Porous carbon material for electric double layer capacitor and method for producing the same, and electric double layer capacitor
JP2006131465A (en) Porous carbon material, manufacturing method thereof and electric double layer capacitor
JP2018056401A (en) Nonaqueous lithium power storage element

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110329

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110331

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees