JP2592077B2 - Fluid filled type vibration damping device - Google Patents

Fluid filled type vibration damping device

Info

Publication number
JP2592077B2
JP2592077B2 JP62280447A JP28044787A JP2592077B2 JP 2592077 B2 JP2592077 B2 JP 2592077B2 JP 62280447 A JP62280447 A JP 62280447A JP 28044787 A JP28044787 A JP 28044787A JP 2592077 B2 JP2592077 B2 JP 2592077B2
Authority
JP
Japan
Prior art keywords
liquid chamber
orifice passage
shaft member
main
rubber body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP62280447A
Other languages
Japanese (ja)
Other versions
JPH01126451A (en
Inventor
憲雄 依田
義也 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kinugawa Rubber Industrial Co Ltd
Original Assignee
Kinugawa Rubber Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kinugawa Rubber Industrial Co Ltd filed Critical Kinugawa Rubber Industrial Co Ltd
Priority to JP62280447A priority Critical patent/JP2592077B2/en
Publication of JPH01126451A publication Critical patent/JPH01126451A/en
Application granted granted Critical
Publication of JP2592077B2 publication Critical patent/JP2592077B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F13/00Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs
    • F16F13/04Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper
    • F16F13/06Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper
    • F16F13/08Units comprising springs of the non-fluid type as well as vibration-dampers, shock-absorbers, or fluid springs comprising both a plastics spring and a damper, e.g. a friction damper the damper being a fluid damper, e.g. the plastics spring not forming a part of the wall of the fluid chamber of the damper the plastics spring forming at least a part of the wall of the fluid chamber of the damper
    • F16F13/14Units of the bushing type, i.e. loaded predominantly radially

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)
  • Combined Devices Of Dampers And Springs (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、主に自動車のエンジンマウント等として
用いられる流体封入型防振装置に関する。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fluid filled type vibration damping device mainly used as an engine mount of an automobile.

従来の技術 エンジンマウントに好適な流体封入型防振装置とし
て、例えば特開昭56−124739号公報に記載のものが知ら
れている。これは、例えば車体側に固定される軸部材
と、これを囲んで配設され、かつ例えばエンジン側に固
定される外筒部材と、両者間に挿填されたゴム体とを有
し、上記ゴム体の内部に3個の液室が画成されていると
ともに、これらの液室を、軸部材内部のオリフィス通路
で互いに連通した構成となっている。
2. Description of the Related Art As a fluid-filled type vibration damping device suitable for an engine mount, for example, a device described in Japanese Patent Application Laid-Open No. Sho 56-124739 is known. This includes, for example, a shaft member fixed to the vehicle body side, an outer cylinder member arranged around the shaft member and fixed to the engine side, for example, and a rubber body inserted therebetween. Three liquid chambers are defined inside the rubber body, and these liquid chambers are configured to communicate with each other through an orifice passage inside the shaft member.

すなわち、軸部材と外筒部材とが相対変位すると、ゴ
ム体の弾性変形に伴って各液室の溶液が変化し、これに
より各液室内に封入されたエチレングリコール等の液体
が上記オリフィス通路を通して移動する結果、単にゴム
体のみを備えた防振装置に比べて非常に大きな減衰作用
が得られるのである。
That is, when the shaft member and the outer cylinder member are relatively displaced, the solution in each liquid chamber changes due to the elastic deformation of the rubber body, whereby the liquid such as ethylene glycol sealed in each liquid chamber passes through the orifice passage. As a result of the movement, an extremely large damping effect can be obtained as compared with a vibration isolator having only a rubber body.

発明が解決しようとする問題点 ところで、一般にエンジンマウントにおいては、低周
波域での振副の大きな振動に対して十分な減衰作用を果
たすべく低周波域でのロスファクタが大きいことが望ま
しく、他方、高周波の微小振動を車体側に伝達しないよ
うに、高周波域での動ばね定数が小さいことが望まし
い。すなわち、低周波域でロスファクタが大きく、かつ
高周波域で動ばね定数が小さい特性が望まれる。
Problems to be Solved by the Invention By the way, in general, in an engine mount, it is desirable that the loss factor in the low frequency range is large in order to perform a sufficient damping action on large vibrations in the low frequency range. It is desirable that the dynamic spring constant in a high frequency range be small so as not to transmit high frequency minute vibrations to the vehicle body. That is, it is desired that the loss factor be large in a low frequency range and the dynamic spring constant be small in a high frequency range.

しかしながら、上記従来の流体封入型防振装置におい
ては、3個の液室が全て同一のオリフィス通路を介して
互いに連通しており、ロスファクタや動ばね定数の特性
をある一つの周波数に対してしかチューニングすること
ができない。通常は、低周波域での振動減衰特性が重視
されるため、10Hz程度の低周波数にチューニングされる
ことになり、従って、第11図に示すように、例えば100H
z以上の高周波域での動ばね定数Kdがかなり大きくなっ
てしまう。そのため、この高周波域での微小なエンジン
振動を十分に遮断できないという欠点があった。
However, in the above-mentioned conventional fluid-filled type vibration damping device, all three liquid chambers communicate with each other through the same orifice passage, and the characteristics of the loss factor and the dynamic spring constant for a certain frequency. You can only tune. Usually, since the vibration damping characteristics in the low frequency range are emphasized, tuning to a low frequency of about 10 Hz is performed, and therefore, as shown in FIG.
The dynamic spring constant Kd in the high frequency range of z or more becomes considerably large. For this reason, there is a disadvantage that minute engine vibrations in the high frequency range cannot be sufficiently shut off.

問題点を解決するための手段 上記の問題点を解決するために、この発明に係る流体
封入型防振装置は、軸部材とこれを囲む外筒部材との間
に挿填されたゴム体の内部に、少なくとも3個の液室を
画成するとともに、これらの液室を個々にオリフィス通
路を介して連通させて少なくとも2つの振動系を構成
し、かつ各振動系を構成するオリフィス通路の通路断面
積および通路長で定まる等価質量を各振動系で異なる値
に設定したものである。
Means for Solving the Problems In order to solve the above problems, a fluid-filled type vibration damping device according to the present invention includes a rubber member inserted between a shaft member and an outer cylinder member surrounding the shaft member. Inside, at least three liquid chambers are defined, and these liquid chambers are individually communicated via orifice passages to form at least two vibration systems, and passages of the orifice passages constituting each vibration system The equivalent mass determined by the cross-sectional area and the passage length is set to a different value for each vibration system.

すなわち、第1の発明は、軸部材とこれを囲む外筒部
材との間にゴム体が挿填されてなる液体封入型防振装置
であって、上記ゴム体の一部をなし、かつ上記軸部材と
上記外筒部材とを互いに支持するように、上記軸部材か
ら放射状に延びた一対の主弾性部と、上記ゴム体の内部
で上記主弾性部の挟角側に形成された主液室と、上記軸
部材を挟んで上記主液室と対称となる位置に設けられ、
かつゴム体を軸方向に貫通した空隙部と、上記ゴム体の
内部で上記空隙部に隣接する位置に形成された複数の副
液室と、上記主液室と一つの副液室とを連通する第1の
オリフィス通路と、主液室と他の一つの副液室とを連通
し、かつ上記第1のオリフィス通路よりも通路長が短く
通路断面積が大きい第2のオリフィス通路と、を備えて
いる。
That is, a first invention is a liquid-enclosed type vibration damping device in which a rubber member is inserted between a shaft member and an outer cylindrical member surrounding the shaft member, and forms a part of the rubber member. A pair of main elastic portions radially extending from the shaft member so as to support the shaft member and the outer cylindrical member with each other; and a main liquid formed inside the rubber body on a narrow angle side of the main elastic portion. Chamber, provided at a position symmetrical with the main liquid chamber across the shaft member,
A gap that penetrates the rubber body in the axial direction, a plurality of sub liquid chambers formed at positions inside the rubber body adjacent to the gap, and the main liquid chamber and one sub liquid chamber communicate with each other. A first orifice passage, and a second orifice passage which communicates the main liquid chamber with another sub liquid chamber and has a shorter passage length and a larger passage cross-sectional area than the first orifice passage. Have.

また第2の発明は、軸部材とこれを囲む外筒部材との
間にゴム体が挿填されてなる液体封入型防振装置であっ
て、上記ゴム体の一部をなし、かつ上記軸部材と上記外
筒部材とを互いに支持するように、上記軸部材から放射
状に延びた一対の主弾性部と、同じく上記ゴム体の一部
をなし、かつ上記一対の主弾性部に挟まれた挟角側の部
分に形成された隔壁と、上記ゴム体の内部で上記主弾性
部と上記隔壁との間にそれぞれ形成された一対の主液室
と、上記軸部材を挟んで上記主液室と対称となる位置に
設けられ、かつゴム体を軸方向に貫通した空隙部と、上
記ゴム体の内部で上記隙部に隣接する位置に形成された
一対の副液室と、一つの主液室と一つの副液室とを連通
する第1のオリフィス通路と、他の主液室と他の副液室
とを連通し、かつ上記第1のオリフィス通路よりも通路
長が短く通路断面積が大きい第2のオリフィス通路と、
を備えている。
Further, a second invention is a liquid-filled type vibration damping device in which a rubber member is inserted between a shaft member and an outer cylindrical member surrounding the shaft member, wherein the rubber member is a part of the rubber member, and A pair of main elastic portions radially extending from the shaft member and also form a part of the rubber body, and are sandwiched between the pair of main elastic portions so as to support the member and the outer cylinder member with each other. A partition wall formed at the included angle side, a pair of main liquid chambers respectively formed between the main elastic portion and the partition wall inside the rubber body, and the main liquid chamber sandwiching the shaft member And a pair of sub-liquid chambers formed at positions adjacent to the gap inside the rubber body, and one main liquid. A first orifice passage communicating the chamber with one sub-liquid chamber, and another main liquid chamber communicating with another sub-liquid chamber; A second orifice passage is larger cross-sectional area short passage length than the first orifice passage,
It has.

作用 一般に流体封入型防振装置は、液体の共振現象を利用
したものであり、その共振周波数はオリフィス通路の等
価質量と液室の拡張ばね定数によって定まるので、上記
のようにオリフィス通路の等価質量を異ならせることに
より、各振動系の共振周波数は異なるものとなる。
In general, a fluid-filled type vibration damping device utilizes the resonance phenomenon of liquid, and its resonance frequency is determined by the equivalent mass of the orifice passage and the expansion spring constant of the liquid chamber. Are different, the resonance frequency of each vibration system is different.

すなわち、ある1つのオリフィス通路の通路断面積を
比較的小さく、かつ通路長を比較的長く設定すれば、等
価質量は大となり、その振動系は低周波域で共振する。
従って、低周波域でのロスファクタが大きく得られる。
That is, if the cross-sectional area of one orifice passage is set relatively small and the passage length is set relatively long, the equivalent mass becomes large and the vibration system resonates in a low frequency range.
Therefore, a large loss factor in a low frequency range can be obtained.

また、他の1つのオリフィス通路の通路断面積を比較
的大きく、かつ通路長を比較的短く設定すれば、等価質
量は小となり、その振動系は高周波域で共振する。従っ
て、高周波域での動ばね定数が非常に小さなものとな
る。
If the cross-sectional area of the other orifice passage is set relatively large and the passage length is set relatively short, the equivalent mass becomes small, and the vibration system resonates in a high frequency range. Therefore, the dynamic spring constant in a high frequency range becomes very small.

ここで、上記構成では、軸部材と外筒部材とが相対的
に変位すると、略V字形をなす主弾性部の内側に形成さ
れた主液室の容積が変化し、副液室との間で各オリフィ
ス通路を介して液体が確実に移動する。
Here, in the above configuration, when the shaft member and the outer cylinder member are relatively displaced, the volume of the main liquid chamber formed inside the substantially elastic V-shaped main elastic portion changes, and the volume between the main liquid chamber and the sub liquid chamber changes. As a result, the liquid reliably moves through each orifice passage.

実施例 第1図〜第5図は、例えばエンジンマウントとして用
いられる本発明の流体封入型防振装置の一実施例を示し
ている。
Embodiment FIGS. 1 to 5 show an embodiment of a fluid filled type vibration damping device of the present invention used as, for example, an engine mount.

図において、1は例えば車体側に固定される金属製の
軸部材、2はこの軸部材1を囲むように配設され、かつ
例えばエンジン側に固定される円筒状をなす金属製の外
筒部材、3は両者間に挿填されたゴム体である。
In the drawing, reference numeral 1 denotes a metal shaft member fixed to, for example, a vehicle body side, and 2 denotes a cylindrical metal outer cylinder member disposed around the shaft member 1 and fixed to, for example, an engine side. Reference numeral 3 denotes a rubber body inserted between the two.

この実施例では、上記外筒部材2は、インナカラー4
とアウタカラー5と両者間に介在する中間カラー6との
三重構造となっている。そして、上記インナカラー4と
中間カラー6は互いに密に圧入固定されており、またア
ウタカラー5は、中間カラー6の外周に圧入された上
で、両端縁5aをかしめて固定してある(第2図参照)。
In this embodiment, the outer cylinder member 2 is
And an outer collar 5 and an intermediate collar 6 interposed therebetween. The inner collar 4 and the intermediate collar 6 are press-fitted and fixed to each other densely, and the outer collar 5 is press-fitted to the outer periphery of the intermediate collar 6 and then caulked and fixed at both end edges 5a (the second color). 2).

上記ゴム体3は、その内周側が上記軸部材1に加硫接
着されており、かつ外周側が上記外筒部材2、詳しくは
インナカラー4に加硫接着されている。そして、このゴ
ム体3の内部に、3個の液室、つまり主液室となる第1
液室7と、副液室となる第2液室8および第3液室9が
画成されている。詳しくは、第1液室7は、ゴム体3の
下部中央に比較的大きく形成されており、また第2,第3
液室8,9は、上記第1液室7よりも容積が小さく、それ
ぞれ軸部材1の両側に対称形状に形成されていて、第1
液室7と第2,第3液室8,9との間に、逆V字形の主弾性
部3aが残るようにしてある。つまり、上記軸部材1は主
に上記主弾性部3aを介して外筒部材2に支持されるので
あり、エンジンの荷重が作用した状態で軸部材1と外筒
部材2とがちょうど同心状となるように構成されてい
る。また、上記ゴム体3の上部には、円弧状に空隙部10
が貫通形成されている。なお、11は上記ゴム体3の中心
部分を補強するとともに、過大な変位を阻止すべくゴム
体3内に埋設された金属製のストッパである。
The rubber body 3 has an inner peripheral side vulcanized and bonded to the shaft member 1 and an outer peripheral side vulcanized and bonded to the outer cylindrical member 2, specifically, the inner collar 4. Then, inside the rubber body 3, three liquid chambers, that is, a first liquid chamber serving as a main liquid chamber is provided.
A liquid chamber 7 and a second liquid chamber 8 and a third liquid chamber 9 serving as sub liquid chambers are defined. More specifically, the first liquid chamber 7 is formed relatively large in the center of the lower part of the rubber body 3 and the second and third liquid chambers 7 are formed.
The liquid chambers 8 and 9 have a smaller volume than the first liquid chamber 7 and are formed symmetrically on both sides of the shaft member 1, respectively.
An inverted V-shaped main elastic portion 3a remains between the liquid chamber 7 and the second and third liquid chambers 8,9. That is, the shaft member 1 is mainly supported by the outer cylinder member 2 via the main elastic portion 3a. When the load of the engine is applied, the shaft member 1 and the outer cylinder member 2 are exactly concentric. It is configured to be. In the upper part of the rubber body 3, a gap 10 is formed in an arc shape.
Are formed through. Reference numeral 11 denotes a metal stopper embedded in the rubber body 3 to reinforce the center portion of the rubber body 3 and prevent excessive displacement.

一方、上記インナカラー4においては、第5図に示す
ように、各液室7,8,9に対応する部分が矩形の窓状に開
口形成されている。つまり、この各液室7,8,9の部分で
は、側端部4aのみが帯状に残されている(第2図参
照)。そして、上記インナカラー4の外周に嵌合する中
間カラー6の外周面に、第1オリフィス通路12と第2オ
リフィス通路13とが凹設されている。
On the other hand, in the inner collar 4, as shown in FIG. 5, portions corresponding to the respective liquid chambers 7, 8, and 9 are formed as rectangular windows. That is, in the liquid chambers 7, 8, and 9, only the side end 4a is left in a band shape (see FIG. 2). A first orifice passage 12 and a second orifice passage 13 are recessed on the outer peripheral surface of the intermediate collar 6 fitted on the outer periphery of the inner collar 4.

上記第1オリフィス通路12は、第1図に示すように、
中間カラー6の略全周近くに亘って形成され、つまり通
路長が十分に長く形成されており、一端が開口部14を介
して第1液室7に連通し、かつ他端が開口部15を介して
第2液室8に連通している。そして、この第1液室7と
第2液室8とを連通した第1オリフィス通路12は、第2
図に示すように、その通路断面積が比較的小さく設定さ
れている。なお、上記開口部14,15は、上記第1オリフ
ィス通路12の通路長が最も長くなるように、それぞれ第
1液室7,第2液室8の端部に開口している。従って、上
記第1オリフィス通路12の等価質量は非常に大きなもの
となる。
The first orifice passage 12, as shown in FIG.
The intermediate collar 6 is formed substantially all around the circumference, that is, the passage length is formed sufficiently long. One end communicates with the first liquid chamber 7 through the opening 14, and the other end has the opening 15. Through the second liquid chamber 8. The first orifice passage 12 communicating the first liquid chamber 7 and the second liquid chamber 8 is
As shown in the figure, the cross-sectional area of the passage is set relatively small. The openings 14 and 15 are opened at the ends of the first liquid chamber 7 and the second liquid chamber 8, respectively, so that the path length of the first orifice path 12 is the longest. Therefore, the equivalent mass of the first orifice passage 12 becomes very large.

また上記第2オリフィス通路13は、第3図に示すよう
に、第1液室7と第3液室9とを直接につなぐ形に、つ
まり通路長が短く形成されており、一端が開口部16を介
して第1液室7に連通し、かつ他端が開口部17を介して
第3液室9に連通している。そして、第4図に示すよう
に、この第2オリフィス通路13は広い幅に形成されてお
り、つまりその通路断面積が比較的大きく設定されてい
る。なお、上記開口部16,17は、上記第2オリフィス通
路13が最も短くなるような位置に開口している。従っ
て、上記第2オリフィス通路13の等価質量は非常に小さ
なものとなる。
As shown in FIG. 3, the second orifice passage 13 is formed so as to directly connect the first liquid chamber 7 and the third liquid chamber 9, that is, has a short passage length. The other end communicates with the third liquid chamber 9 through the opening 17. As shown in FIG. 4, the second orifice passage 13 is formed to have a wide width, that is, the passage cross-sectional area is set to be relatively large. The openings 16 and 17 are opened at positions where the second orifice passage 13 is the shortest. Therefore, the equivalent mass of the second orifice passage 13 is very small.

上記のように第1オリフィス通路12,第2オリフィス1
3によって連通された各液室7,8,9の内部には、適宜な粘
度、例えば200CP程度のエチレングリコール等が密に充
填されている。
As described above, the first orifice passage 12 and the second orifice 1
The interior of each of the liquid chambers 7, 8, and 9 communicated by 3 is densely filled with an appropriate viscosity, for example, about 200 CP of ethylene glycol or the like.

さて上記のように構成された流体封入型防振装置にお
いては、軸部材1が外筒部材2に対し相対変位すると、
各液室7,8,9内の容積が変化し、第1液室7と第2液室
8との間、および第1液室7と第3液室9との間で液体
が移動する。このとき、第1液室7と第2液室8とは、
等価質量が大きいオリフィス通路つまり通路断面積が小
さく、かつ通路長が長い第1オリフィス通路12で連通さ
れているため、低周波域で共振して第1オリフィス通路
12内を多量の液体が通過する。従って、第12図の破線に
示すように、10Hz前後の低周波域で非常に大きなロスフ
ァクタlが得られ、エンジンの大振幅の振動を効果的に
抑制できる。
Now, in the fluid filled type vibration damping device configured as described above, when the shaft member 1 is relatively displaced with respect to the outer cylinder member 2,
The volume in each of the liquid chambers 7, 8, 9 changes, and the liquid moves between the first liquid chamber 7 and the second liquid chamber 8, and between the first liquid chamber 7 and the third liquid chamber 9. . At this time, the first liquid chamber 7 and the second liquid chamber 8
Since the orifice passage having a large equivalent mass, that is, the first orifice passage 12 having a small passage cross-sectional area and a long passage length communicates with each other, the first orifice passage resonates in a low frequency range.
A large amount of liquid passes through 12. Accordingly, as shown by the broken line in FIG. 12, a very large loss factor 1 is obtained in a low frequency range of about 10 Hz, and large-amplitude vibration of the engine can be effectively suppressed.

一方、第1液室7と第3液室9とは、等価質量が小さ
なオリフィス通路つまり通路断面積が大きく、かつ通路
長が短い第2オリフィス通路13で連通されているため、
高周波域で共振して第2オリフィス通路13内を多量の液
体が通過する。従って、第12図の実線に示すように、高
周波域での動ばね定数Kdを小さなものとすることがで
き、車体への微小振動の伝達を効果的に阻止できる。な
お、第12図の例では、高周波側のピークが200Hz前後に
チューニングされているが、これは第2オリフィス通路
13の通路断面積や通路長によって適宜変更し得るのは勿
論である。
On the other hand, the first liquid chamber 7 and the third liquid chamber 9 communicate with each other through the orifice passage having a small equivalent mass, that is, the second orifice passage 13 having a large passage cross-sectional area and a short passage length.
A large amount of liquid passes through the second orifice passage 13 while resonating in a high frequency range. Therefore, as shown by the solid line in FIG. 12, the dynamic spring constant Kd in the high frequency range can be reduced, and the transmission of minute vibration to the vehicle body can be effectively prevented. In the example of FIG. 12, the peak on the high frequency side is tuned to around 200 Hz.
Needless to say, it can be appropriately changed according to the passage sectional area and the passage length of the thirteenth passage.

因みに、上記実施例においては、第1オリフィス通路
12の断面積は7mm2、長さは150mm程度に設定されてお
り、また第2オリフィス通路13の断面積は50mm2、長さ
は15mm程度に設定されている。
Incidentally, in the above embodiment, the first orifice passage
The sectional area of 12 is set to about 7 mm 2 and the length is set to about 150 mm, and the sectional area of the second orifice passage 13 is set to about 50 mm 2 and the length is set to about 15 mm.

第10図は、上述した作用の理解を助けるために、上記
流入封入型防振装置の振動系をモデル化して示したもの
である。ここで、kはゴム体3のばね定数、k1は第1液
室7の拡張ばね定数、k2は第2液室8および第3液室9
の拡張ばね定数を示している。
FIG. 10 shows a model of a vibration system of the inflow-enclosed type vibration damping device in order to facilitate understanding of the above-mentioned operation. Here, k is the spring constant of the rubber body 3, k 1 extended spring constant of the first fluid chamber 7, k 2 is the second liquid chamber 8 and the third liquid chamber 9
2 shows the extended spring constant of the.

次に、第6図〜第9図は、この発明に係る流体封入型
防振装置の異なる実施例を示している。この実施例は、
外筒部材2がインナカラー4とアウタカラー18との二重
構造となっており、両者は密に圧入されて互いに固定さ
れている。そして、上記アウタカラー18の内周面に第1
オリフィス通路19および第2オリフィス通路20が凹設さ
れている。
6 to 9 show different embodiments of the fluid filled type vibration damping device according to the present invention. This example is
The outer cylinder member 2 has a double structure of an inner collar 4 and an outer collar 18, both of which are pressed tightly and fixed to each other. Then, the first inner surface of the outer collar 18 is
An orifice passage 19 and a second orifice passage 20 are recessed.

第1液室7と第2液室8とを連通する第1オリフィス
通路19は、やはり通路断面積が比較的小さく設定され
(第7図参照)、かつ通路長を長く確保すべくアウタカ
ラー18を略一周するように形成されているもので、特に
第7図に示すように、インナカラー4の帯状の側端部4a
によって覆われ得る位置に形成されている。そして、そ
の両端部に、アウタカラー18の軸方向に折曲した折曲部
21,22が設けられており、該折曲部21,22を介して第1液
室7および第2液室8にそれぞれ連通している。
The first orifice passage 19 communicating the first liquid chamber 7 and the second liquid chamber 8 also has a relatively small passage cross-sectional area (see FIG. 7), and has an outer collar 18 for ensuring a long passage length. Is formed so as to make substantially one round. Particularly, as shown in FIG. 7, the band-shaped side end 4a of the inner collar 4 is formed.
It is formed in a position that can be covered by And, at both ends, a bent portion bent in the axial direction of the outer collar 18
21 and 22 are provided, and communicate with the first liquid chamber 7 and the second liquid chamber 8 via the bent portions 21 and 22, respectively.

また、第1液室7と第3液室9とを連通する第2オリ
フィス通路20は、インナカラー4の第1液室7,第3液室
9に対応した窓状開口部と両端が一部ラップするように
形成されており、この結果、液室7,9内に露出した端部2
0a,20bを介して第1液室7および第3液室9にそれぞれ
連通している。なお、上記第2オリフィス通路20は、第
9図に示すように、十分に大きな通路断面積を有してい
る。
The second orifice passage 20 communicating the first liquid chamber 7 and the third liquid chamber 9 has a window-shaped opening corresponding to the first liquid chamber 7 and the third liquid chamber 9 of the inner collar 4 at one end. End portions 2 exposed in the liquid chambers 7, 9 as a result.
The first and third liquid chambers 7 and 9 communicate with each other via 0a and 20b. The second orifice passage 20 has a sufficiently large passage cross-sectional area as shown in FIG.

この実施例では、アウタカラー18に対する第1オリフ
ィス通路19,第2オリフィス20の溝加工が若干面倒にな
るものの、外筒部材2が二重構造となり、部品点数を削
減できる利点がある。
In this embodiment, although the groove processing of the first orifice passage 19 and the second orifice 20 with respect to the outer collar 18 is slightly complicated, there is an advantage that the outer cylinder member 2 has a double structure and the number of parts can be reduced.

次に、第13図に示す実施例は、ゴム体3内部に4個の
液室を画成した実施例を示している。すなわち、逆V字
形をなす主弾性部3aの下部に、略垂直な隔壁23を挟んで
第1液室24と第2液室25とが対称形状に形成されている
とともに、主弾性部3aの上部に、第3液室26と第4液室
27とが対称形状に形成されている。そして、主液室とな
る第1液室24と副液室となる第3液室26とが細くかつ長
い第1オリフィス通路28を介して連通しており、かつ主
液室となる第2液室25と副液室となる第4液室27とが太
くかつ短い第2オリフィス通路29を介して連通してい
る。
Next, the embodiment shown in FIG. 13 shows an embodiment in which four liquid chambers are defined inside the rubber body 3. That is, the first liquid chamber 24 and the second liquid chamber 25 are formed symmetrically with the substantially vertical partition wall 23 interposed therebetween under the inverted V-shaped main elastic part 3a. Above the third liquid chamber 26 and the fourth liquid chamber
27 are formed symmetrically. A first liquid chamber 24 serving as a main liquid chamber and a third liquid chamber 26 serving as a sub liquid chamber communicate with each other through a thin and long first orifice passage 28, and a second liquid chamber serving as a main liquid chamber is provided. The chamber 25 and a fourth liquid chamber 27 serving as a sub liquid chamber communicate with each other through a thick and short second orifice passage 29.

従って、上記実施例では、第1液室24と第3液室26と
第1オリフィス通路28とによって一方の振動系が構成さ
れ、かつ第2液室25と第4液室27と第2オリフィス通路
29とによって他方の振動系が構成される。そして、第1
オリフィス通路28の等価質量が第2オリフィス通路29の
等価質量よりも大となり、この結果、第1オリフィス通
路28側の振動系が比較的低周波域で共振し、かつ第2オ
リフィス通路29側の振動系が比較的高周波域で共振する
ことになる。
Therefore, in the above embodiment, one of the vibration systems is constituted by the first liquid chamber 24, the third liquid chamber 26, and the first orifice passage 28, and the second liquid chamber 25, the fourth liquid chamber 27, and the second orifice aisle
29 constitutes the other vibration system. And the first
The equivalent mass of the orifice passage 28 becomes larger than the equivalent mass of the second orifice passage 29. As a result, the vibration system of the first orifice passage 28 resonates in a relatively low frequency range and the equivalent mass of the second orifice passage 29 The vibration system resonates in a relatively high frequency range.

なお、上記のように多数の液室を備えたものにおいて
は、各液室の連通の態様を変えることで種々の組み合わ
せが可能である。
In the case where a large number of liquid chambers are provided as described above, various combinations are possible by changing the communication mode of each liquid chamber.

発明の効果 以上の説明で明らかなように、この発明に係る流体封
入型防振装置によれば、低周波域でのロスファクタを十
分に大きく確保できると同時に、高周波域での動ばね定
数を小さく抑制することができる。従って、低周波域に
チューニングした従来の防振装置に比べて、高周波振動
を一層効果的に遮断でき、例えばエンジンマウントとし
てエンジン振動に起因する騒音の低減が図れる。特に、
主液室が略V字形をなす主弾性部の挟角側に配置され、
その対称位置に空隙部が位置するので、入力に対し主液
室が確実に容積変化し、液柱振動による振動抑制作用が
一層良好に得られる。
As is clear from the above description, according to the fluid-filled type vibration damping device of the present invention, a sufficiently large loss factor in a low frequency range can be ensured, and a dynamic spring constant in a high frequency range can be reduced. It can be suppressed small. Therefore, compared to a conventional vibration isolator tuned to a low frequency range, high frequency vibration can be more effectively cut off, and noise caused by engine vibration can be reduced, for example, as an engine mount. Especially,
The main liquid chamber is arranged on the narrow angle side of the main elastic portion having a substantially V shape,
Since the gap is located at the symmetrical position, the volume of the main liquid chamber is reliably changed with respect to the input, and the vibration suppressing action by the liquid column vibration can be more favorably obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図〜第4図はこの発明に係る流体封入型防振装置の
一実施例を示す断面図であって、第1図は第2図のI−
I線に沿った断面図、第2図は第1図のII−II線に沿っ
た断面図、第3図は第2図のIII−III線に沿った要部の
みの断面図、第4図は第3図のIV−IV線に沿った要部の
みの断面図、第5図はこの実施例の分解斜視図、第6図
〜第9図はこの発明の異なる実施例を示す断面図であっ
て、第6図は第7図のVI−VI線に沿った断面図、第7図
は第6図のVII−VII線に沿った断面図、第8図は第7図
のVIII−VIII線に沿った断面図、第9図は第6図のIX−
IX線に沿った要部のみの断面図、第10図はこの発明の流
体封入型防振装置の振動モデルを示す説明図、第11図は
従来における流体封入型防振装置の周波数特性図、第12
図はこの発明に係る流体封入型防振装置の周波数特性
図、第13図は4個の液室を備えた実施例を示す断面図で
ある。 1……軸部材、2……外筒部材、3……ゴム体、7……
第1液室、8……第2液室、9……第3液室、12……第
1オリフィス通路、13……第2オリフィス通路。
1 to 4 are cross-sectional views showing one embodiment of a fluid-filled type vibration damping device according to the present invention, and FIG.
FIG. 2 is a sectional view taken along line II-II in FIG. 1, FIG. 3 is a sectional view taken along line III-III in FIG. 2, and FIG. FIG. 5 is a cross-sectional view of only essential parts taken along line IV-IV in FIG. 3, FIG. 5 is an exploded perspective view of this embodiment, and FIGS. 6 to 9 are cross-sectional views showing different embodiments of the present invention. 6 is a sectional view taken along line VI-VI of FIG. 7, FIG. 7 is a sectional view taken along line VII-VII of FIG. 6, and FIG. FIG. 9 is a cross-sectional view along the line VIII, FIG.
FIG. 10 is a cross-sectional view of only the main part along the line IX, FIG. 10 is an explanatory diagram showing a vibration model of the fluid-filled type vibration damping device of the present invention, FIG. 11 is a frequency characteristic diagram of the conventional fluid-filled type vibration damping device, Twelfth
FIG. 13 is a frequency characteristic diagram of the fluid filled type vibration damping device according to the present invention, and FIG. 13 is a sectional view showing an embodiment having four liquid chambers. 1 ... shaft member, 2 ... outer cylinder member, 3 ... rubber body, 7 ...
First liquid chamber, 8 second liquid chamber, 9 third liquid chamber, 12 first orifice passage, 13 second orifice passage.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】軸部材とこれを囲む外筒部材との間にゴム
体が挿填されてなる液体封入型防振装置であって、 上記ゴム体の一部をなし、かつ上記軸部材と上記外筒部
材とを互いに支持するように、上記軸部材から放射状に
延びた一対の主弾性部と、 上記ゴム体の内部で上記主弾性部の挟角側に形成された
主液室と、 上記軸部材を挟んで上記主液室と対称となる位置に設け
られ、かつゴム体を軸方向に貫通した空隙部と、 上記ゴム体の内部で上記空隙部に隣接する位置に形成さ
れた複数の副液室と、 上記主液室と一つの副液室とを連通する第1のオリフィ
ス通路と、 主液室と他の一つの副液室とを連通し、かつ上記第1の
オリフィス通路よりも通路長が短く通路断面積が大きい
第2のオリフィス通路と、 を備えていることを特徴とする液体封入型防振装置。
1. A liquid-filled type vibration damping device comprising a rubber member inserted between a shaft member and an outer cylinder member surrounding the shaft member, wherein the liquid member forms a part of the rubber member, and A pair of main elastic portions radially extending from the shaft member so as to support the outer cylindrical member with each other, and a main liquid chamber formed on the narrow side of the main elastic portion inside the rubber body. A void portion provided at a position symmetrical to the main liquid chamber with the shaft member interposed therebetween and penetrating the rubber body in the axial direction, and a plurality of voids formed at positions inside the rubber body adjacent to the void portion A first orifice passage communicating between the main liquid chamber and one sub liquid chamber; a first orifice passage communicating with the main liquid chamber and another sub liquid chamber; A second orifice passage having a shorter passage length and a larger passage cross-sectional area than the second orifice passage. Input type vibration isolator.
【請求項2】軸部材とこれを囲む外筒部材との間にゴム
体が挿填されてなる液体封入型防振装置であって、 上記ゴム体の一部をなし、かつ上記軸部材と上記外筒部
材とを互いに支持するように、上記軸部材から放射状に
延びた一対の主弾性部と、 同じく上記ゴム体の一部をなし、かつ上記一対の主弾性
部に挟まれた挟角側の部分に形成された隔壁と、 上記ゴム体の内部で上記主弾性部と上記隔壁との間にそ
れぞれ形成された一対の主液室と、 上記軸部材を挟んで上記主液室と対称となる位置に設け
られ、かつゴム体を軸方向に貫通した空隙部と、 上記ゴム体の内部で上記隙部に隣接する位置に形成され
た一対の副液室と、 一つの主液室と一つの副液室とを連通する第1のオリフ
ィス通路と、 他の主液室と他の副液室とを連通し、かつ上記第1のオ
リフィス通路よりも通路長が短く通路断面積が大きい第
2のオリフィス通路と、 を備えていることを特徴とする液体封入型防振装置。
2. A liquid-filled type vibration damping device comprising a rubber member inserted between a shaft member and an outer cylindrical member surrounding the shaft member. A pair of main elastic portions extending radially from the shaft member so as to support the outer cylinder member with each other, and an included angle which also forms a part of the rubber body and is interposed between the pair of main elastic portions. A partition formed on the side portion; a pair of main liquid chambers formed between the main elastic portion and the partition inside the rubber body; and a symmetrical shape with the main liquid chamber across the shaft member. And a gap portion penetrating the rubber body in the axial direction, a pair of sub-liquid chambers formed at a position adjacent to the gap inside the rubber body, and one main liquid chamber. A first orifice passage communicating with one sub-liquid chamber, and another main liquid chamber communicating with another sub-liquid chamber; A second orifice passage having a shorter passage length than the first orifice passage and a larger passage cross-sectional area;
JP62280447A 1987-11-06 1987-11-06 Fluid filled type vibration damping device Expired - Fee Related JP2592077B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62280447A JP2592077B2 (en) 1987-11-06 1987-11-06 Fluid filled type vibration damping device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62280447A JP2592077B2 (en) 1987-11-06 1987-11-06 Fluid filled type vibration damping device

Publications (2)

Publication Number Publication Date
JPH01126451A JPH01126451A (en) 1989-05-18
JP2592077B2 true JP2592077B2 (en) 1997-03-19

Family

ID=17625184

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62280447A Expired - Fee Related JP2592077B2 (en) 1987-11-06 1987-11-06 Fluid filled type vibration damping device

Country Status (1)

Country Link
JP (1) JP2592077B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2878286B2 (en) * 1988-08-02 1999-04-05 株式会社ブリヂストン Anti-vibration device
JPH02124338U (en) * 1989-03-23 1990-10-12
JPH03121327A (en) * 1989-10-02 1991-05-23 Tokai Rubber Ind Ltd Fluid sealed type cylindrical mount apparatus
JP2616064B2 (en) * 1989-11-29 1997-06-04 日産自動車株式会社 Fluid-filled power unit mount
JP2583145B2 (en) * 1990-05-22 1997-02-19 丸五ゴム工業株式会社 Fluid filled type vibration damping device
DE4137977C2 (en) * 1991-11-19 1995-06-14 Freudenberg Carl Fa Multi-chamber hydraulic bush
JP3662045B2 (en) * 1995-03-15 2005-06-22 日産自動車株式会社 Vehicle engine test pallet and test bench
DE102016001507B4 (en) * 2016-02-10 2020-06-18 Anvis Deutschland Gmbh Vibration damper

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0615894B2 (en) * 1985-02-22 1994-03-02 日産自動車株式会社 How to set resonance frequency of liquid in orifice of liquid-filled type vibration isolator
JPS6256643A (en) * 1985-09-04 1987-03-12 Nissan Motor Co Ltd Vibropreventive element with liquid encapsulated
JPS6288834A (en) * 1985-10-15 1987-04-23 Bridgestone Corp Vibro-isolator
JPS63111335A (en) * 1986-10-28 1988-05-16 Tokai Rubber Ind Ltd Cylindrical fluid-sealed type mounting device
JPS643342A (en) * 1987-06-25 1989-01-09 Tokai Rubber Ind Ltd Fluid-sealed type cylindrical mount device
JPH0643555Y2 (en) * 1987-10-27 1994-11-14 東海ゴム工業株式会社 Fluid-filled cylindrical mount device

Also Published As

Publication number Publication date
JPH01126451A (en) 1989-05-18

Similar Documents

Publication Publication Date Title
US4728086A (en) Vibration isolating apparatus
JPH01250637A (en) Viscosity variable fluid sealing control type vibrationproofing body
JP2592077B2 (en) Fluid filled type vibration damping device
JP3035222B2 (en) Liquid filled type vibration damping device
JPH01176827A (en) Inner and outer cylinder type fluid charged power unit mount
JPH0242227A (en) Vibration damping device
JPH0754131B2 (en) Anti-vibration device
JPS6288834A (en) Vibro-isolator
JPH0242225A (en) Controllable vibration damper charged with variable viscosity fluid
JP2613895B2 (en) Fluid filled type vibration damping device
JPH07280024A (en) Vibration proof device
JPH0460233A (en) Vibration isolator
JPH0655942A (en) Liquid sealed radiator support device
JPH0266335A (en) Cylinder-formed liquid sealing vibrationproofing mount
JP2592077C (en)
JPH06346943A (en) Liquid sealed type vibration control device
JPH0545810B2 (en)
JPH01193430A (en) Fluid-in type vibration isolating device
JPH0242226A (en) Vibration damping device
JPS6192331A (en) Vibration-proof bush containing liquid
JPH0226337A (en) Inner-outer cylinder type fluid sealed vibration isolator
JPH08277878A (en) Liquid-filled vibration control device
JPH11182613A (en) Liquid sealing type vibration control device
JP2000002286A (en) Liquid sealing vibration isolation device
JPH08166040A (en) Vibration control mount

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees