JP2589634B2 - Electroacoustic integrated circuit and manufacturing method thereof - Google Patents
Electroacoustic integrated circuit and manufacturing method thereofInfo
- Publication number
- JP2589634B2 JP2589634B2 JP26615892A JP26615892A JP2589634B2 JP 2589634 B2 JP2589634 B2 JP 2589634B2 JP 26615892 A JP26615892 A JP 26615892A JP 26615892 A JP26615892 A JP 26615892A JP 2589634 B2 JP2589634 B2 JP 2589634B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- lithium borate
- integrated circuit
- silicon
- electroacoustic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 59
- 239000000758 substrate Substances 0.000 claims description 207
- RIUWBIIVUYSTCN-UHFFFAOYSA-N trilithium borate Chemical compound [Li+].[Li+].[Li+].[O-]B([O-])[O-] RIUWBIIVUYSTCN-UHFFFAOYSA-N 0.000 claims description 94
- 239000004065 semiconductor Substances 0.000 claims description 46
- 238000005530 etching Methods 0.000 claims description 38
- 238000010438 heat treatment Methods 0.000 claims description 30
- 238000010897 surface acoustic wave method Methods 0.000 claims description 30
- 150000003377 silicon compounds Chemical class 0.000 claims description 27
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 26
- 229910052710 silicon Inorganic materials 0.000 claims description 26
- 239000010703 silicon Substances 0.000 claims description 26
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 24
- 239000013078 crystal Substances 0.000 claims description 24
- 238000000034 method Methods 0.000 claims description 24
- 150000001875 compounds Chemical class 0.000 claims description 13
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 13
- 230000002378 acidificating effect Effects 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 238000005304 joining Methods 0.000 claims description 3
- 239000007788 liquid Substances 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims 1
- 230000005660 hydrophilic surface Effects 0.000 claims 1
- 239000010408 film Substances 0.000 description 49
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 38
- 230000000694 effects Effects 0.000 description 31
- 229910052814 silicon oxide Inorganic materials 0.000 description 25
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 21
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 18
- 229910021417 amorphous silicon Inorganic materials 0.000 description 17
- 239000000243 solution Substances 0.000 description 14
- 239000010453 quartz Substances 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 11
- 239000000470 constituent Substances 0.000 description 8
- 230000007246 mechanism Effects 0.000 description 8
- 230000010355 oscillation Effects 0.000 description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 238000011282 treatment Methods 0.000 description 6
- WSMQKESQZFQMFW-UHFFFAOYSA-N 5-methyl-pyrazole-3-carboxylic acid Chemical compound CC1=CC(C(O)=O)=NN1 WSMQKESQZFQMFW-UHFFFAOYSA-N 0.000 description 5
- 230000005669 field effect Effects 0.000 description 5
- GQYHUHYESMUTHG-UHFFFAOYSA-N lithium niobate Chemical compound [Li+].[O-][Nb](=O)=O GQYHUHYESMUTHG-UHFFFAOYSA-N 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000002253 acid Substances 0.000 description 4
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 2
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 2
- 239000003929 acidic solution Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000007865 diluting Methods 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 238000005728 strengthening Methods 0.000 description 2
- PIGFYZPCRLYGLF-UHFFFAOYSA-N Aluminum nitride Chemical compound [Al]#N PIGFYZPCRLYGLF-UHFFFAOYSA-N 0.000 description 1
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910013641 LiNbO 3 Inorganic materials 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000006213 oxygenation reaction Methods 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 229910021426 porous silicon Inorganic materials 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Landscapes
- Oscillators With Electromechanical Resonators (AREA)
- Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)
Description
【0001】[0001]
【産業上の利用分野】本発明は、半導体素子と表面弾性
波素子やバルク型振動素子などの電気音響素子を一体に
集積した電子音響集積回路の構成とその製造方法に関す
るもので、特に電圧制御発振器などの高周波装置の小型
化,軽量化,高性能化,製造の容易さを目的とするもの
である。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electroacoustic integrated circuit in which a semiconductor device and an electroacoustic device such as a surface acoustic wave device and a bulk type vibrating device are integrated, and a method of manufacturing the same. It is intended to reduce the size, weight, performance, and ease of manufacture of high-frequency devices such as oscillators.
【0002】[0002]
【従来の技術】従来、電気音響素子、例えばニオブ酸リ
チウム(LiNbO3)またはタンタル酸リチウム(LiTaO
3)などを用いた表面弾性波素子(フィルタや共振子等)
や、水晶などのバルク型振動素子を用いた電子回路、例
えば電圧制御発振器(VCO)や高周波受信装置などは、
発振や増幅のための能動素子としてのトランジスタ、お
よび希望の周波数で発振ないしは共振させるための表面
弾性波素子やバルク型振動素子、および若干のコンデン
サや抵抗などの電気部品などにより構成される。2. Description of the Related Art Conventionally, an electroacoustic element such as lithium niobate (LiNbO 3 ) or lithium tantalate (LiTaO) has been used.
3 ) Surface acoustic wave device (filter, resonator, etc.)
Or, an electronic circuit using a bulk type vibrating element such as crystal, for example, a voltage controlled oscillator (VCO) or a high frequency receiving device,
It is composed of a transistor as an active element for oscillation and amplification, a surface acoustic wave element and a bulk type vibration element for oscillating or resonating at a desired frequency, and some electric components such as a capacitor and a resistor.
【0003】ここに用いられる表面弾性波素子やバルク
型振動素子は、その振動あるいは共振周波数として、所
定の値を持ち、その性能が十分長期間安定であるよう
に、金属容器などの容器に密封されている。そのため表
面弾性波素子やバルク型振動素子の形状寸法が振動ない
しは共振部分そのものの大きさの数倍になり、自動車電
話、携帯電話など小型であることが極めて重要な装置に
おいては、その小型化が極めて重要な課題となってい
る。[0003] The surface acoustic wave element or bulk type vibration element used here has a predetermined value as its vibration or resonance frequency, and is sealed in a container such as a metal container so that its performance is stable for a long period of time. Have been. As a result, the shape and dimensions of surface acoustic wave elements and bulk-type vibrating elements are several times larger than the size of the vibration or resonance part itself. It is a very important issue.
【0004】小型化を図るためには、トランジスタなど
を有する半導体素子と電気音響素子を集積化することが
望ましい。このような例として、例えばSi基板上に圧
電体である窒化アルミニウム(AlN)膜をエピタキシャ
ル成長させ、そこに表面弾性波(SAW)デバイスを形成
したことが報告されている。良好な振動または共振特性
を得るためには、エピタキシャル成長ないしは特定の結
晶軸方向に配向した膜が必要である。しかしながらエピ
タキシャル成長や配向できる膜は、AlNや酸化亜鉛(Z
nO)などの一部の材料に制約されている。In order to reduce the size, it is desirable to integrate a semiconductor element having a transistor and the like and an electroacoustic element. As such an example, it is reported that, for example, an aluminum nitride (AlN) film, which is a piezoelectric material, is epitaxially grown on a Si substrate, and a surface acoustic wave (SAW) device is formed thereon. In order to obtain good vibration or resonance characteristics, epitaxial growth or a film oriented in a specific crystal axis direction is required. However, films that can be epitaxially grown and oriented include AlN and zinc oxide (Z
nO) and other materials.
【0005】またバルク型振動素子の場合、例えば水晶
振動子では、自動車電話,携帯電話などで用いられる80
0MHzから1.9GHzといった準マイクロ波帯で使用できる高
周波の振動子を得るためには、水晶振動子の厚みを研磨
あるいはエッチングにより薄板化することが必要であ
る。例えば、精密研磨技術により厚み10μm程度まで水
晶を研磨し、数百MHzで発振したことが報告されてい
る。In the case of a bulk-type vibrating element, for example, a quartz vibrator is used for a mobile phone, a cellular phone, or the like.
In order to obtain a high-frequency vibrator that can be used in the quasi-microwave band such as 0 MHz to 1.9 GHz, it is necessary to reduce the thickness of the quartz vibrator by polishing or etching. For example, it has been reported that quartz was polished to a thickness of about 10 μm by a precision polishing technique and oscillated at several hundred MHz.
【0006】しかし、10μm以下に水晶素板を薄く加工
して振動子として用いるのは、保持や取り扱い上の機械
的強度の問題から、量産まで考えると極めて困難な状況
にある。したがって、実質的に水晶振動子の基本振動モ
ードを使用して、500MHzを越えるような高周波の電圧制
御発振器を得ることは極めて困難であった。高次の振動
モードを用いると、共振のQが低下するため、高性能で
安定な発振器を得るのはやはり困難であった。However, it is extremely difficult to process a thin quartz crystal plate having a thickness of 10 μm or less and use it as a vibrator due to the problem of mechanical strength in holding and handling, when considering mass production. Therefore, it has been extremely difficult to obtain a high-frequency voltage-controlled oscillator exceeding 500 MHz using substantially the fundamental oscillation mode of the crystal oscillator. When a higher-order vibration mode is used, the Q of resonance is reduced, so that it is still difficult to obtain a high-performance and stable oscillator.
【0007】電圧制御発振器の小型・軽量化と、発振周
波数の高周波化を同時に達成する方法の一つとして、例
えば、Grudkowski らによる、”Fundamental-mode VHF/
UHFMinature Acoustic Resonators and Filters on Sil
icon Applied PhysicsLetters Vol.37(11)(1980) pp.99
3-995 に、シリコン基板上にZnO薄膜共振子を形成
し、準マイクロ波帯の共振子を作成する方法が報告され
ている。この場合、膜厚数μmの共振子を容易に形成で
きるため、準マイクロ波帯の共振子を得ることが可能と
なる。しかしZnO薄膜振動素子は共振周波数の温度依
存性や共振のQが水晶などのバルク型振動素子に比べて
劣るため、性能的に十分なものでない。As one method for simultaneously achieving the reduction in size and weight of a voltage-controlled oscillator and the increase in the oscillation frequency, for example, Grundkowski et al., “Fundamental-mode VHF /
UHFMinature Acoustic Resonators and Filters on Sil
icon Applied PhysicsLetters Vol.37 (11) (1980) pp.99
3-995 reports a method of forming a ZnO thin film resonator on a silicon substrate to form a quasi-microwave band resonator. In this case, since a resonator having a thickness of several μm can be easily formed, a resonator in a quasi-microwave band can be obtained. However, the ZnO thin film vibrating element is not sufficient in performance because the temperature dependence of the resonance frequency and the resonance Q are inferior to those of a bulk type vibrating element such as quartz.
【0008】これらの課題を解決する方法として、半導
体基板に表面弾性波共振素子として優れた性質を示すニ
オブ酸リチウムやタンタル酸リチウム、あるいはバルク
型振動素子として優れた性質を示す水晶を接合し、エッ
チングなどの加工によって、集積化および圧電体の薄板
化および量産化を図る方法がある。しかしニオブ酸リチ
ウムやタンタル酸リチウム、また水晶は、化学的にかな
り安定な物質であるため、エッチング可能な物質の種類
が非常に限定される。具体的には弗酸を主成分とする強
酸性のエッチング液が用いられる。As a method for solving these problems, a semiconductor substrate is bonded to lithium niobate or lithium tantalate exhibiting excellent properties as a surface acoustic wave resonance element, or quartz crystal exhibiting excellent properties as a bulk type vibrating element. There is a method of achieving integration, thinning and mass production of a piezoelectric body by processing such as etching. However, since lithium niobate, lithium tantalate, and quartz are chemically quite stable substances, the types of substances that can be etched are very limited. Specifically, a strongly acidic etchant containing hydrofluoric acid as a main component is used.
【0009】さらに弗酸系エッチング液を用いてもエッ
チング速度は遅いため、エッチングすべき深さが深い場
合、エッチング時間として数時間を必要とする。弗酸系
エッチング液は半導体基板を極めて容易に侵食するた
め、エッチング時に半導体基板の所定の部所を保護膜で
覆う必要がある。しかしながら弗酸系エッチング液に長
時間安定でかつ微細加工の可能な保護膜として有効なも
のがなく、前記圧電体のエッチング加工は、特に精密な
形状加工を行おうとする場合、製造歩留まりおよび製造
時間の面から生産が容易でないという課題がある。Further, since the etching rate is low even when a hydrofluoric acid-based etching solution is used, when the depth to be etched is deep, several hours are required as the etching time. Since the hydrofluoric acid-based etchant erodes the semiconductor substrate very easily, it is necessary to cover a predetermined portion of the semiconductor substrate with a protective film during etching. However, there is no hydrofluoric acid-based etchant which is stable for a long time and is not effective as a protective film capable of microfabrication, and the etching of the piezoelectric body is particularly difficult when a precise shape processing is to be performed. There is a problem that the production is not easy from the aspect of.
【0010】[0010]
【発明が解決しようとする課題】上記の如く、容器に収
納した表面弾性波素子やバルク型振動素子とトランジス
タおよび関連部品を個別に基板上に接続する方法で構成
した高周波装置では、大きくかつ重くなるため、自動車
電話,携帯電話など小型,軽量を最も重要な要素とする
装置においては好ましくない。また圧電特性に優れたニ
オブ酸リチウムやタンタル酸リチウム,水晶を基板に接
合して、エッチングにより形状加工する方法の場合、前
記材料が化学的に安定なため、基板材料の選択に制限が
加わる、エッチング時の保護膜作成が難しい、エッチン
グに時間がかかる、精度の高い微細加工が困難などの種
々の製造上の課題があった。As described above, a high-frequency device constructed by a method of individually connecting a transistor and related components to a surface acoustic wave device or a bulk type vibrating device housed in a container, and a transistor and related components is large and heavy. Therefore, it is not preferable for a device such as a mobile phone or a mobile phone in which small and light weight is the most important factor. In the case of bonding lithium niobate, lithium tantalate, or quartz having excellent piezoelectric properties to a substrate and performing shape processing by etching, the material is chemically stable, which limits the selection of the substrate material. There have been various manufacturing problems such as difficulty in forming a protective film at the time of etching, time required for etching, and difficulty in fine processing with high precision.
【0011】本発明は上記従来の問題を解決し、特に電
圧制御発振器などの高周波装置の小型・軽量化,製造の
容易を目的とするものである。An object of the present invention is to solve the above-mentioned conventional problems, and in particular, to reduce the size and weight of a high-frequency device such as a voltage-controlled oscillator and to facilitate the manufacture thereof.
【0012】[0012]
【課題を解決するための手段】本発明は、上記課題を解
決するため、半導体基板上に、硼酸リチウム単結晶圧電
基板からなる表面弾性波素子やバルク型振動素子を、直
接または珪素または珪素化合物によって接合し、半導体
基板上に一体に集積化するようにして電子音響集積回路
を構成し、硼酸リチウム単結晶圧電基板の形状加工を弱
酸性エッチング液で行うようにしたものである。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, the present invention is to directly or directly apply a surface acoustic wave element or a bulk type vibration element made of a lithium borate single crystal piezoelectric substrate to a semiconductor substrate. And an electroacoustic integrated circuit is integrally formed on the semiconductor substrate, and the shape processing of the lithium borate single crystal piezoelectric substrate is performed with a weakly acidic etching solution.
【0013】[0013]
【作用】上記のような構成および製造方法を用いること
により、小型,軽量,高性能,およびエッチング加工が
極めて容易で、製造の容易な電子音響集積回路が得られ
る。By using the configuration and the manufacturing method as described above, an electroacoustic integrated circuit which is small, lightweight, high-performance, extremely easy to etch, and easy to manufacture can be obtained.
【0014】[0014]
【実施例】以下本発明の各実施例の電子音響集積回路、
特に電圧制御発振器に適用した場合の構成とその製造方
法について、図面を参照しながら説明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, an electroacoustic integrated circuit according to each embodiment of the present invention,
In particular, a configuration when applied to a voltage controlled oscillator and a manufacturing method thereof will be described with reference to the drawings.
【0015】(実施例1)図1は本発明の第1の実施例
の電圧制御発振器の構成を示す模式断面図であり、図1
において、1は半導体基板で、この場合シリコン(Si)
基板で構成される。2はSi基板1の上に接合された硼
酸リチウム単結晶圧電基板(以下、単に硼酸リチウム基
板という)で表面に表面弾性波素子を有し、この場合に
は表面弾性波共振子が形成されている。3はSi基板1
上に形成された電界効果トランジスタ(FET)、4は電
圧により静電容量の変化する可変容量ダイオードチッ
プ、5はコンデンサやインダクタ、抵抗などの受動チッ
プ部品、6は表面弾性波共振子の電極であり、図では表
示されていないが、Si基板1上の各部品と表面弾性波
共振子の電極とは電圧制御発振器になるように配線接続
されている。(Embodiment 1) FIG. 1 is a schematic sectional view showing a configuration of a voltage controlled oscillator according to a first embodiment of the present invention.
Wherein 1 is a semiconductor substrate, in this case silicon (Si)
It is composed of a substrate. Reference numeral 2 denotes a lithium borate single crystal piezoelectric substrate (hereinafter simply referred to as a lithium borate substrate) bonded on the Si substrate 1 and having a surface acoustic wave element on its surface. In this case, a surface acoustic wave resonator is formed. I have. 3 is a Si substrate 1
The field effect transistor (FET) formed above, 4 is a variable capacitance diode chip whose capacitance changes according to voltage, 5 is a passive chip component such as a capacitor, an inductor and a resistor, and 6 is an electrode of a surface acoustic wave resonator. Although not shown in the drawing, each component on the Si substrate 1 and the electrode of the surface acoustic wave resonator are connected by wiring so as to be a voltage controlled oscillator.
【0016】また、硼酸リチウム基板2とSi基板1は
直接接合されている。さらに、このように一体に集積化
された電圧制御発振器を密封容器に収納する。電界効果
トランジスタ3と可変容量ダイオード4と各種受動チッ
プ部品5ならびに表面弾性波共振子(硼酸リチウム基板
2)により発振器が構成され、可変容量ダイオードチッ
プ4に加わる電圧を変えることにより、静電容量を変
え、発振周波数を変えることができる。The lithium borate substrate 2 and the Si substrate 1 are directly bonded. Further, the voltage-controlled oscillator integrated as above is housed in a sealed container. An oscillator is composed of a field effect transistor 3, a variable capacitance diode 4, various passive chip components 5, and a surface acoustic wave resonator (lithium borate substrate 2). By changing a voltage applied to the variable capacitance diode chip 4, the capacitance is changed. Can change the oscillation frequency.
【0017】このような構成とすることにより、発振回
路部と表面弾性波共振子を一体として集積化しているた
め、従来よりも大幅な小型化が可能となる。また、表面
弾性波共振子を容器に密閉したものを個別につけたもの
に比べ、体積で約1/10、重量で約1/5にすることは容易
である。With this configuration, since the oscillation circuit and the surface acoustic wave resonator are integrated into a single body, the size can be significantly reduced as compared with the related art. In addition, it is easier to reduce the volume to about 1/10 and the weight to about 1/5 as compared with the case where the surface acoustic wave resonator is sealed in a container and individually attached.
【0018】本実施例では、可変容量ダイオード4や各
種受動チップ部品5をSi基板1上に個別に実装してい
るが、半導体基板に同時に作り込むことも可能である。In this embodiment, the variable capacitance diode 4 and the various passive chip components 5 are individually mounted on the Si substrate 1, but they can be simultaneously formed on the semiconductor substrate.
【0019】半導体基板と電気音響素子との接合を一般
の樹脂などの接着剤を用いて行うと、耐熱性の面から、
その後は半導体プロセスが行えない、高温まで使用でき
ないなどの問題点があるが、本実施例を用いれば、Si
基板1と硼酸リチウム基板2は直接接合されたものであ
る。したがって界面に他の物質が介在せず、そのような
問題が大幅に改善される。When the bonding between the semiconductor substrate and the electroacoustic element is performed by using an adhesive such as a general resin, from the viewpoint of heat resistance,
After that, there are problems such as the inability to perform the semiconductor process and the use up to high temperatures.
The substrate 1 and the lithium borate substrate 2 are directly bonded. Therefore, no other substance is interposed at the interface, and such a problem is greatly improved.
【0020】また樹脂などの接着剤を用いて接着する
と、Si基板1とその上に貼り付けた硼酸リチウム基板
2の平行度が悪くなり、その後に硼酸リチウム基板上
に、ホトリソグラフィーで形成する表面弾性波素子用の
櫛型電極の寸法精度が悪くなる。例えば、共振周波数が
1GHz程度になると、電極寸法は約1μmのラインおよび
スペース幅となる。したがって平行度が悪いと、準マイ
クロ波帯の表面弾性波共振子を形成することはできな
い。しかし本実施例の方法では、直接接合しているた
め、それぞれの基板の表面形状の精度で決まることにな
るが、これはいずれも単結晶であることから極めて高精
度で加工することができる。この効果は特に高周波で大
きい。If an adhesive such as a resin is used for bonding, the parallelism between the Si substrate 1 and the lithium borate substrate 2 adhered thereon becomes poor, and then the surface formed on the lithium borate substrate by photolithography. The dimensional accuracy of the comb-shaped electrode for the acoustic wave device is deteriorated. For example, when the resonance frequency becomes about 1 GHz, the electrode size becomes a line and space width of about 1 μm. Therefore, if the parallelism is poor, a quasi-microwave band surface acoustic wave resonator cannot be formed. However, in the method of the present embodiment, since direct bonding is performed, the accuracy is determined by the accuracy of the surface shape of each substrate. However, since these are all single crystals, they can be processed with extremely high precision. This effect is particularly large at high frequencies.
【0021】また樹脂の接着剤を用いた場合、熱に弱い
問題や、熱膨張係数が有機物である樹脂と無機のSi基
板や硼酸リチウム基板とで大きく異なることによる、機
械的歪による長期信頼性の問題などがあったが、本実施
例のように、無機材料で接着することにより、そのよう
な問題も解決される。Further, when a resin adhesive is used, there is a problem that the resin is weak to heat, and the thermal expansion coefficient is greatly different between an organic resin and an inorganic Si substrate or a lithium borate substrate. However, such a problem can be solved by bonding with an inorganic material as in the present embodiment.
【0022】また硼酸リチウム基板のエッチング加工は
弱酸性エッチング液で行うことができるため、生産が極
めて容易である。Since the etching of the lithium borate substrate can be performed with a weakly acidic etching solution, the production is extremely easy.
【0023】硼酸リチウムは、電気機械結合係数が水晶
よりも大きく、温度依存性は水晶とほぼ同じ程度に良好
で、室温周辺でほぼ温度依存性0の条件があり、表面弾
性波素子として用いた場合、極めて優れた性能を示す。
したがって薄膜で集積化したものよりも共振子、発振子
としてより優れた性能を示す。Lithium borate has a condition that the electromechanical coupling coefficient is larger than that of quartz, the temperature dependency is almost as good as quartz, and there is a condition that the temperature dependency is almost zero around room temperature. In this case, it shows extremely excellent performance.
Therefore, it shows better performance as a resonator and an oscillator than those integrated with a thin film.
【0024】(実施例2)図2は本発明の第2の実施例
の電圧制御発振器の構成を示す模式図であり、図2にお
いて、前記図1と同じ各構成要素1〜6には同じ符号を
付し、その機能は実施例1と同様である。7はSi基板
1および硼酸リチウム基板2の接合に用いられた珪素ま
たは酸化珪素などの珪素化合物膜で、これによりSi基
板1と硼酸リチウム基板2は直接接合されている。それ
以外の構成は前記実施例1と同様であり、電圧制御発振
器を形成した場合の小型・軽量化の効果も同様である。(Embodiment 2) FIG. 2 is a schematic diagram showing the configuration of a voltage controlled oscillator according to a second embodiment of the present invention. In FIG. 2, the same components 1 to 6 as those in FIG. Reference numerals are used, and the functions are the same as those in the first embodiment. Reference numeral 7 denotes a silicon compound film such as silicon or silicon oxide used for bonding the Si substrate 1 and the lithium borate substrate 2, whereby the Si substrate 1 and the lithium borate substrate 2 are directly bonded. The other configuration is the same as that of the first embodiment, and the effect of reducing the size and weight when the voltage controlled oscillator is formed is also the same.
【0025】また本実施例では、Si基板1と硼酸リチ
ウム基板2の接合を珪素または酸化珪素などの珪素化合
物膜7で行っているが、耐熱性の効果は、珪素または酸
化珪素などの珪素化合物が無機物で、高温まで熱的に安
定であることから、実施例1と同様の効果が得られる。
また基板加工のための平行度の問題も、珪素や酸化珪素
など珪素化合物膜7の形成は一般にnmの程度で制御で
きるため、実施例1と同様解決される。また硼酸リチウ
ム基板を用いているため、エッチングによる形状の微細
加工の容易さも実施例1と同様である。In the present embodiment, the Si substrate 1 and the lithium borate substrate 2 are joined by the silicon compound film 7 such as silicon or silicon oxide. Is an inorganic substance, and is thermally stable up to a high temperature, so that the same effect as in the first embodiment can be obtained.
In addition, the problem of the parallelism for processing the substrate can be solved similarly to the first embodiment because the formation of the silicon compound film 7 such as silicon or silicon oxide can be generally controlled in the order of nm. Since a lithium borate substrate is used, the ease of fine processing of the shape by etching is also the same as in the first embodiment.
【0026】(実施例3)図1に示した本発明の電圧制
御発振器の製造方法の第1の実施例を以下説明する。(Embodiment 3) A first embodiment of the method of manufacturing the voltage controlled oscillator of the present invention shown in FIG. 1 will be described below.
【0027】まず、図1に示すところの半導体基板であ
るSi基板1と硼酸リチウム基板2の表面を極めて清浄
にした後、それぞれの表面を親水処理する。具体的に
は、Si基板表面は弗酸系エッチング液で、硼酸リチウ
ム基板表面は、非常に希釈したバッファード弗酸系エッ
チング液で軽く表面のエッチング処理を行う。First, after the surfaces of the Si substrate 1 and the lithium borate substrate 2 which are the semiconductor substrates shown in FIG. 1 are extremely cleaned, the respective surfaces are subjected to a hydrophilic treatment. Specifically, the surface of the Si substrate is lightly etched with a hydrofluoric acid-based etchant, and the surface of the lithium borate substrate is lightly etched with a very diluted buffered hydrofluoric acid-based etchant.
【0028】次に純水で十分洗浄し、すぐに一様に重ね
合わせると、それぞれの基板表面に吸着した水の構成成
分、例えば水酸基によって、容易に直接接合が得られ
る。この状態で100から300℃の低温で熱処理を行う。こ
の低温熱処理により接合の強度が強まる。Next, when the substrate is sufficiently washed with pure water and immediately superposed uniformly, direct bonding can be easily obtained by the constituents of water adsorbed on the respective substrate surfaces, for example, hydroxyl groups. In this state, heat treatment is performed at a low temperature of 100 to 300 ° C. This low-temperature heat treatment increases the bonding strength.
【0029】次に弱酸性エッチング液、例えば酢酸を純
水で希釈したエッチング液を用い、硼酸リチウム基板2
の必要部分、すなわち表面弾性波共振子を形成する部分
(図面で右側)のみを残して他の部品はエッチング除去す
る。硼酸リチウムは弱酸性溶液で極めて容易にエッチン
グされるため、硼酸リチウム基板2の厚みが通常のウェ
ーハとしての標準的厚み、例えば400μm程度あっても極
めて容易にエッチングすることができる。例えば、酢酸
を希釈したエッチング液を用いた場合のエッチング速度
は、pH4.5程度で10μm/h、pH3程度で100μm/h程度
であり、十分な速度を有している。また酢酸のような弱
酸エッチング液ではSi基板表面はほとんどエッチング
されないので、Si基板表面が損傷を受けることもな
い。これにより、硼酸リチウム基板2を島状、例えば2
×1.5mm角の矩形に加工する。Next, using a weakly acidic etching solution, for example, an etching solution obtained by diluting acetic acid with pure water, a lithium borate substrate 2
Necessary part, that is, the part forming the surface acoustic wave resonator
Other parts are etched away except for (right side in the drawing). Since lithium borate is very easily etched with a weakly acidic solution, it can be etched very easily even if the thickness of the lithium borate substrate 2 is a standard thickness of a normal wafer, for example, about 400 μm. For example, the etching rate when using an etching solution diluted with acetic acid is about 10 μm / h at about pH 4.5 and about 100 μm / h at about pH 3, which is a sufficient rate. Further, since the surface of the Si substrate is hardly etched by a weak acid etching solution such as acetic acid, the surface of the Si substrate is not damaged. Thereby, the lithium borate substrate 2 is formed into an island shape, for example, 2
Process into a rectangle of 1.5mm square.
【0030】次にこの状態で、必要に応じ更に最初の熱
処理温度よりも高い温度で熱処理を行うと、その接合は
更に強化される。熱処理温度が高い場合、Si基板1と
硼酸リチウム基板2の熱膨張率の差があるため、形状,
寸法などに多少の制約が加えられる。そのため大きいウ
ェーハでは高温の熱処理が困難であるが、本実施例のよ
うに小さい島状に形状加工しておくと容易に高温での熱
処理が可能で、接合強度,耐熱性ともに向上し、その後
の高温プロセス処理が可能となる。Next, in this state, if necessary, a heat treatment is performed at a temperature higher than the initial heat treatment temperature to further strengthen the bonding. When the heat treatment temperature is high, there is a difference in the coefficient of thermal expansion between the Si substrate 1 and the lithium borate substrate 2, so that the shape,
Some restrictions are imposed on dimensions and the like. Therefore, high-temperature heat treatment is difficult for a large wafer, but heat treatment at a high temperature can be easily performed by shaping into a small island shape as in this embodiment, and both bonding strength and heat resistance are improved. High temperature processing becomes possible.
【0031】また接合ムラなども小面積の方が発生しに
くいため製造歩留まりが向上する。この後電界効果トラ
ンジスタ3などの形成に必要な各種プロセス処理や配線
に必要な各種電極形成などを実施し、前記実施例1(図
1)で説明した素子の構成の電圧制御発振器が得られ
る。Also, unevenness in bonding and the like are less likely to occur in a small area, thereby improving the manufacturing yield. Thereafter, various processes required for forming the field-effect transistor 3 and the like and various electrodes required for wiring are performed, and the voltage-controlled oscillator having the element configuration described in the first embodiment (FIG. 1) is obtained.
【0032】また、電極6はアルミニウムやクロムを下
地にした金などが用いられる。接合強化の熱処理効果
は、例えば、200℃で、1時間程度保持するだけでも接
合強度は数倍に上がり、数十kg/cm2の強度が得られる。
実質的には100℃以上で効果がある。800℃以上に温度を
上げると、硼酸リチウム基板表面からリチウムが抜けて
いくため表面の特性劣化が大きく表面弾性波共振子とし
ての性能が劣化するので、接合熱処理温度は800℃以下
が好ましい。The electrode 6 is made of gold or the like on the basis of aluminum or chromium. The effect of the heat treatment for strengthening the bonding is, for example, that the bonding strength is increased several times even when the temperature is maintained at 200 ° C. for about one hour, and a strength of several tens kg / cm 2 is obtained.
Practically effective above 100 ° C. When the temperature is raised to 800 ° C. or higher, lithium is released from the surface of the lithium borate substrate, so that surface characteristics are greatly deteriorated and performance as a surface acoustic wave resonator is deteriorated. Therefore, the bonding heat treatment temperature is preferably 800 ° C. or lower.
【0033】直接接合のメカニズムは、それぞれの基板
表面に吸着した水酸基などのファンデアワールス力によ
り初期の接合が起こり、その後熱処理することによっ
て、接合界面から水の構成成分である水素などが抜けて
いき、Si基板表面の珪素、および硼酸リチウム基板中
の酸素が結合して、接合強度が上がるものと考えられ
る。また接合部に電圧を加えることによって接合温度を
下げることも可能である。The mechanism of direct bonding is that initial bonding occurs due to van der Waals' force of a hydroxyl group or the like adsorbed on the surface of each substrate, and then heat treatment is performed to remove hydrogen, which is a constituent component of water, from the bonding interface. It is considered that silicon on the surface of the Si substrate and oxygen in the lithium borate substrate are bonded together to increase the bonding strength. It is also possible to lower the junction temperature by applying a voltage to the junction.
【0034】硼酸リチウムは、エッチングに酢酸などの
弱酸を用いても、高速でエッチング可能であるため本実
施例の構成の素子の製造に極めて都合が良い。水晶やニ
オブ酸リチウム、タンタル酸リチウムは100%の弗酸な
いしは弗硝酸などの強酸を用いてもそのエッチング速度
は1時間あたりでもμmオーダーと極めて遅く、また、
これに耐えられる微細加工可能な保護膜に良いものがな
いとか、エッチング中に半導体基板が先に侵食されるな
どの問題があるが、本実施例で用いた酢酸などの弱酸に
よるエッチングであればそのような問題は一挙に解決さ
れる。Since lithium borate can be etched at a high speed even when a weak acid such as acetic acid is used for etching, it is very convenient for manufacturing the device having the structure of this embodiment. Quartz, lithium niobate, and lithium tantalate use a 100% strong acid such as hydrofluoric acid or hydrofluoric nitric acid, but the etching rate is extremely slow, on the order of μm per hour, and
There is a problem that there is no good protective film that can withstand this, or the semiconductor substrate is eroded first during etching, but if etching with a weak acid such as acetic acid used in this example, Such problems are solved at once.
【0035】(実施例4)図2に示した本発明の電圧制
御発振器の製造方法の第2の実施例を以下説明する。(Embodiment 4) A second embodiment of the method of manufacturing the voltage controlled oscillator of the present invention shown in FIG. 2 will be described below.
【0036】まず、半導体基板であるSi基板1および
硼酸リチウム基板2の基板表面上に化学気相成長法(C
VD)などにより珪素化合物膜(酸化珪素膜)7を形成す
る。膜厚は0.1−3μm程度であり、この厚みの実現なら
びに均一性の制御はCVDなどの製造方法を用いれば容
易である。もちろんスパッタリングや真空蒸着でも可能
である。その後、珪素化合物膜表面を親水処理した後、
純水で洗浄して、すぐに一様に重ね合わせると、表面に
吸着した水の構成成分、例えば水酸基によって、容易に
直接接合が得られる。この状態で100から300℃の低温で
熱処理を行う。この低温熱処理により接合の強度が強ま
る。この後、前記実施例3(製造方法の第1の実施例)と
同様にして、弱酸性エッチング液によるエッチング形状
加工、その後の必要に応じた熱処理、各種プロセス処理
を行うことにより前記実施例2(図2)で説明した素子の
構成の電圧制御発振器を得る。これにより前記実施例3
で述べたと同様の各種効果、特に製造の容易さの効果が
得られる。First, chemical vapor deposition (C) is performed on the substrate surfaces of the Si substrate 1 and the lithium borate substrate 2 which are the semiconductor substrates.
VD) or the like to form a silicon compound film (silicon oxide film) 7. The thickness is about 0.1 to 3 μm, and it is easy to realize the thickness and control the uniformity by using a manufacturing method such as CVD. Of course, sputtering or vacuum deposition is also possible. Then, after hydrophilic treatment of the silicon compound film surface,
If the substrate is washed with pure water and immediately superimposed uniformly, direct bonding can be easily obtained by a component of water adsorbed on the surface, for example, a hydroxyl group. In this state, heat treatment is performed at a low temperature of 100 to 300 ° C. This low-temperature heat treatment increases the bonding strength. Thereafter, in the same manner as in the third embodiment (first embodiment of the manufacturing method), the etching shape processing using a weakly acidic etching solution, the subsequent heat treatment as necessary, and various process treatments are performed. A voltage controlled oscillator having the configuration of the element described in FIG. 2 is obtained. Thus, the third embodiment
Various effects similar to those described above, in particular, the effect of ease of manufacture can be obtained.
【0037】直接接合のメカニズムは、実施例3とほぼ
同様で、珪素化合物膜(酸化珪素)表面に吸着した水酸
基のファンデアワールスカにより初期の接合が起こり、
その後熱処理することによって、接合界面から水酸基の
構成成分である水素が抜けていき、残った酸素と、酸化
珪素および硼酸リチウム基板の構成元素が結合して、接
合強度が上がるものと考えられる。したがってこの場
合、一方の基板、例えば硼酸リチウム基板の表面にの
み、あるいはSi基板表面にのみ酸化珪素膜を形成した
場合でも、直接接合は可能である。また接合部に電圧を
加えることによって接合温度を下げることも可能であ
る。The mechanism of the direct bonding is almost the same as that of the third embodiment, and the initial bonding occurs due to van der Waalska of the hydroxyl group adsorbed on the surface of the silicon compound film (silicon oxide).
After that, by heat treatment, hydroxyl group
Hydrogen, which is a constituent component, escapes and the remaining oxygen and oxidation
It is considered that the constituent elements of the silicon and lithium borate substrates combine to increase the bonding strength. Therefore, in this case, direct bonding is possible even when a silicon oxide film is formed only on the surface of one substrate, for example, a lithium borate substrate, or only on the surface of a Si substrate. It is also possible to lower the junction temperature by applying a voltage to the junction.
【0038】(実施例5)図2に示した本発明の電圧制
御発振器の製造方法の第3の実施例を以下説明する。(Embodiment 5) A third embodiment of the method of manufacturing the voltage controlled oscillator of the present invention shown in FIG. 2 will be described below.
【0039】前記実施例4(製造方法の第2の実施例)と
同様にして、半導体基板としてのSi基板1および硼酸
リチウム基板2の表面に、非晶質珪素の珪素化合物膜7
を、プラズマCVDなどにより形成する。形成する非晶
質珪素の珪素化合物膜厚は、実施例4の場合とほぼ同
様、0.1−3μm程度である。その後、実施例4と同様
に、非晶質珪素の珪素化合物膜表面を極めて清浄にし、
純水で十分洗浄して、すぐに一様に重ね合わせることに
より、表面に吸着した水の構成成分、例えば水酸基によ
って容易に直接接合が得られる。この状態で100から300
℃の低温で熱処理を行う。この低温熱処理により接合の
強度が強まる。この後、実施例3(製造方法の第1の実
施例)と同様にして、弱酸性エッチング液によるエッチ
ング形状加工、その後の必要に応じた熱処理、各種プロ
セス処理を行うことにより実施例2(図2)で説明した素
子の構成の電圧制御発振器を得る。これにより前記実施
例3で述べたと同様の各種効果、特に製造の容易さの効
果を得られる。本実施例においても接合部に電圧を加え
ることによって接合温度を下げることも可能である。In the same manner as in the fourth embodiment (second embodiment of the manufacturing method), the silicon compound film 7 of amorphous silicon is formed on the surfaces of the Si substrate 1 and the lithium borate substrate 2 as the semiconductor substrates.
Is formed by plasma CVD or the like. The film thickness of the silicon compound of the amorphous silicon to be formed is approximately 0.1 to 3 μm, almost similarly to the case of the fourth embodiment. Thereafter, similarly to Example 4, the surface of the silicon compound film of amorphous silicon was extremely cleaned,
By sufficiently washing with pure water and immediately superimposing uniformly, direct bonding can be easily obtained by a component of water adsorbed on the surface, for example, a hydroxyl group. 100 to 300 in this state
Heat treatment is performed at a low temperature of ° C. This low-temperature heat treatment increases the bonding strength. Thereafter, in the same manner as in Example 3 (the first example of the manufacturing method), an etching shape processing using a weakly acidic etching solution, a subsequent heat treatment as necessary, and various process treatments are performed to obtain Example 2 (FIG. A voltage controlled oscillator having the element configuration described in 2) is obtained. As a result, various effects similar to those described in the third embodiment, in particular, the effect of easy manufacturing can be obtained. Also in this embodiment, it is possible to lower the junction temperature by applying a voltage to the junction.
【0040】直接接合のメカニズムは、実施例3とほぼ
同様で、非晶質珪素の珪素化合物膜表面に吸着した水酸
基のファンデアワールスカにより初期の接合が起こり、
その後熱処理することによって、接合界面から水酸基の
構成成分である水素が抜けていき、残った酸素と、非晶
質珪素および硼酸リチウム基板の構成元素が結合して、
接合強度が上がるものと考えられる。したがってこの場
合も実施例4と同様、一方の基板、例えば硼酸リチウム
基板の表面にのみ、あるいはSi基板表面にのみ非晶質
珪素膜を形成した場合でも、直接接合は可能である。ま
た接合部に電圧を加えることによって接合温度を下げる
ことも可能である。The mechanism of the direct bonding is almost the same as that of the third embodiment. The initial bonding occurs due to van der Waalska of the hydroxyl group adsorbed on the surface of the silicon compound film of amorphous silicon.
After that, by heat treatment, hydroxyl group
Constituent hydrogen escapes, leaving oxygen and amorphous
The constituent elements of the porous silicon and lithium borate substrates combine,
It is considered that the joining strength is increased. Therefore, in this case as well as in Example 4, the amorphous state was formed only on the surface of one substrate, for example, only on the surface of the lithium borate substrate, or only on the surface of the Si substrate.
Even when a silicon film is formed, direct bonding is possible. It is also possible to lower the junction temperature by applying a voltage to the junction.
【0041】(実施例6)図3は本発明の電圧制御発振
器の構成を示す第3の実施例の模式断面図である。図3
において、1は半導体基板であるSi基板、11はSi基板
1の上に接合された硼酸リチウムバルク型振動素子、そ
の他図1と同じ各構成要素3〜5には同じ符号を付し、
その機能は実施例1と同様である。12は硼酸リチウムバ
ルク型振動素子の上電極、13は同下電極であり、下電極
13とSi基板1上の配線とは、図では表示されていない
が、バイアホール(基板に貫通孔を設け、その内部を導
体で被い、基板の上下を電気的に接続したもの)などで
接続されている。(Embodiment 6) FIG. 3 is a schematic sectional view of a third embodiment showing the configuration of the voltage controlled oscillator of the present invention. FIG.
1, 1 is a Si substrate which is a semiconductor substrate, 11 is a lithium borate bulk type vibrating element bonded on the Si substrate 1, and other components 3 to 5 which are the same as those in FIG.
Its function is the same as that of the first embodiment. 12 is the upper electrode of the lithium borate bulk type vibrating element, 13 is the lower electrode,
13 and the wiring on the Si substrate 1 are not shown in the figure, but are formed by via holes (through holes are provided in the substrate, the inside thereof is covered with a conductor, and the upper and lower sides of the substrate are electrically connected) and the like. It is connected.
【0042】さらにSi基板1上の各部品と硼酸リチウ
ムバルク型振動素子11の上下電極12,13とは、図ではや
はり表示されていないが、電圧制御発振器になるように
配線接続されている。Si基板1と硼酸リチウムバルク
型振動素子11は直接接合されている。さらに、このよう
に一体に集積化された電圧制御発振器を密封容器に収納
する。電界効界トランジスタ3と可変容量ダイオード4
や各種受動チップ部品5ならびに硼酸リチウムバルク型
振動素子11により発振器が構成されている。Further, although not shown in the figure, each component on the Si substrate 1 and the upper and lower electrodes 12 and 13 of the lithium borate bulk type vibrating element 11 are connected by wiring so as to become a voltage controlled oscillator. The Si substrate 1 and the lithium borate bulk type vibration element 11 are directly joined. Further, the voltage-controlled oscillator integrated as above is housed in a sealed container. Field effect transistor 3 and variable capacitance diode 4
An oscillator is composed of the passive chip components 5 and the lithium borate bulk type vibration element 11.
【0043】ここで、可変容量ダイオード4に加わる電
圧を変えることにより、静電容量を変え、発振周波数を
変えることができる。このような構造とすることによ
り、発振回路部と水晶振動子を一体として集積化してい
るため、従来よりも大幅な小型化が可能となる。また、
硼酸リチウムバルク型振動素子11を容器に密閉したもの
を個別につけたものに比べ、体積で約1/10、重量で約1/
5にすることは容易である。Here, by changing the voltage applied to the variable capacitance diode 4, the capacitance can be changed and the oscillation frequency can be changed. With such a structure, the oscillation circuit unit and the crystal unit are integrated into a single body, so that the size can be significantly reduced as compared with the related art. Also,
Compared to the case where the lithium borate bulk type vibrating element 11 is individually sealed in a container, the volume is about 1/10 and the weight is about 1 /
5 is easy to do.
【0044】本実施例では、接合をSi基板と硼酸リチ
ウム基板の直接接合で行っており、耐熱性,耐環境性,
微細加工性などすべて前記実施例1で述べたと同じ効果
が得られるものである。In this embodiment, the bonding is performed by direct bonding between the Si substrate and the lithium borate substrate, and the heat resistance, the environmental resistance,
The same effects as described in the first embodiment can be obtained in all aspects such as fine workability.
【0045】また、硼酸リチウムは、水晶よりも電気機
械結合係数が大きく、かつ温度依存性は水晶と同程度に
良好であることから、薄膜でバルク型振動素子を形成し
たものよりもはるかに優れた性能が得られる。Further, since lithium borate has a larger electromechanical coupling coefficient than quartz and has a temperature dependency as good as quartz, it is far superior to a bulk type vibrating element formed of a thin film. Performance is obtained.
【0046】(実施例7)図4は本発明の電圧制御発振
器の構成を示す第4の実施例の模式断面図である。図4
において、7を除く各構成素子1〜5,11〜13は前記図
3に示す実施例6と同様である。7はSi基板1と硼酸
リチウム基板に有するバルク型振動素子11の接合に用い
られた珪素または酸化珪素などの珪素化合物膜で、これ
によりSi基板1と硼酸リチウムバルク型振動素子11は
直接接合されている。それ以外の構成は実施例6(図3)
と同様であり、電圧制御発振器を形成した場合の小型軽
量化の効果も同様である。(Embodiment 7) FIG. 4 is a schematic sectional view of a fourth embodiment showing the configuration of the voltage controlled oscillator of the present invention. FIG.
In this example, the constituent elements 1 to 5 and 11 to 13 except for 7 are the same as those in the sixth embodiment shown in FIG. Reference numeral 7 denotes a silicon compound film such as silicon or silicon oxide used for bonding the Si substrate 1 and the bulk type vibration element 11 provided on the lithium borate substrate, whereby the Si substrate 1 and the lithium borate bulk type vibration element 11 are directly bonded. ing. The other configuration is the same as that of the sixth embodiment (FIG. 3).
The same applies to the effect of reducing the size and weight when the voltage controlled oscillator is formed.
【0047】また本実施例では、Si基板と硼酸リチウ
ムバルク型振動子11の接合を珪素または酸化珪素などの
珪素化合物膜7で行っているが、耐熱性の効果は、珪素
または酸化珪素などの珪素化合物が無機物で、高温まで
熱的に安定であることから、実施例1(図1)と同様の効
果が得られる。また基板加工のための平行度の問題も、
珪素や酸化珪素などの珪素化合物膜の形成は一般にnm
の程度で制御できるため、実施例1と同様解決される。
また硼酸リチウム基板を用いているため、エッチングに
よる形状の微細加工の容易さも実施例1と同様である。In this embodiment, the Si substrate and the lithium borate bulk type vibrator 11 are joined by the silicon compound film 7 such as silicon or silicon oxide. Since the silicon compound is an inorganic substance and is thermally stable up to a high temperature, the same effects as in Example 1 (FIG. 1) can be obtained. Also, the problem of parallelism for substrate processing,
The formation of a silicon compound film such as silicon or silicon oxide is generally performed in nm
Therefore, the problem can be solved as in the first embodiment.
Since a lithium borate substrate is used, the ease of fine processing of the shape by etching is also the same as in the first embodiment.
【0048】(実施例8)図3で示した本発明の電圧制
御発振器の製造方法の第4の実施例を以下説明する。(Embodiment 8) A fourth embodiment of the method of manufacturing the voltage controlled oscillator according to the present invention shown in FIG. 3 will be described below.
【0049】硼酸リチウムバルク型振動素子11を形成す
べき部所の半導体基板であるSi基板1に貫通部1aを予
め形成しておく。次にSi基板1と硼酸リチウム基板で
なるバルク型振動素子11の表面を極めて清浄にし、それ
ぞれの表面を親水処理する。具体的には、Si基板表面
は弗酸系エッチング液で、硼酸リチウム基板(硼酸リチ
ウムバルク型振動素子11)表面は、非常に希釈したバッ
ファード弗酸系エッチング液で軽く表面のエッチング処
理を行う。A through portion 1a is formed in advance on the Si substrate 1, which is the semiconductor substrate where the lithium borate bulk type vibration element 11 is to be formed. Next, the surface of the bulk type vibration element 11 composed of the Si substrate 1 and the lithium borate substrate is extremely cleaned, and each surface is subjected to a hydrophilic treatment. Specifically, the surface of the Si substrate is lightly etched with a hydrofluoric acid-based etchant, and the surface of the lithium borate substrate (lithium borate bulk type vibration element 11) is lightly etched with a very diluted buffered hydrofluoric acid-based etchant. .
【0050】次に純水で十分洗浄し、すぐに一様に重ね
合わせると、それぞれの基板表面に吸着した水の構成成
分、例えば水酸基によって容易に直接接合が得られる。
この状態で100から300℃の低温で熱処理を行う。この低
温熱処理により接合の強度が強まる。次に弱酸性エッチ
ング液、例えば酢酸を純水で希釈したエッチング液を用
い、硼酸リチウム基板の必要部分、すなわちバルク型振
動素子11を形成する部分で、これは予めSi基板に貫通
部1aを設けた部分に対応するが、ここの必要部分のみ
を残して他の部分はエッチング除去する。Next, when the substrate is sufficiently washed with pure water and immediately superposed uniformly, direct bonding can be easily obtained by the constituents of water adsorbed on the respective substrate surfaces, for example, hydroxyl groups.
In this state, heat treatment is performed at a low temperature of 100 to 300 ° C. This low-temperature heat treatment increases the bonding strength. Next, using a weakly acidic etching solution, for example, an etching solution obtained by diluting acetic acid with pure water, a necessary portion of the lithium borate substrate, that is, a portion where the bulk type vibration element 11 is formed, is provided with a through portion 1a in advance on the Si substrate. The remaining portions are etched away except for the necessary portions.
【0051】硼酸リチウムは弱酸性溶液で極めて容易に
エッチングされるため、硼酸リチウム基板の厚みが通常
のウェーハの厚み、500μm程度あっても極めて容易にエ
ッチングすることができる。またこのようなエッチング
液ではSi基板表面はほとんどエッチングされないの
で、Si基板が損傷を受けることもない。これにより硼
酸リチウム基板を島状、例えば1.5×1mm角の矩形に加
工する。この状態で、必要に応じて更に、最初の熱処理
温度よりも高い温度で熱処理を行うと、この接合は更に
強化される。熱処理温度が高い場合、Si基板と硼酸リ
チウム基板の熱膨張率に差があるため、形状,寸法など
に多少の制約が加えられる。Since lithium borate is very easily etched with a weakly acidic solution, it can be etched very easily even if the thickness of the lithium borate substrate is about 500 μm, which is the thickness of a normal wafer. Moreover, since the Si substrate surface is hardly etched by such an etching solution, the Si substrate is not damaged. Thus, the lithium borate substrate is processed into an island shape, for example, a rectangle of 1.5 × 1 mm square. In this state, if necessary, a heat treatment is performed at a temperature higher than the initial heat treatment temperature to further strengthen the bonding. When the heat treatment temperature is high, there is a difference in the coefficient of thermal expansion between the Si substrate and the lithium borate substrate, so that some restrictions are imposed on the shape and dimensions.
【0052】そのため大きいウェーハでは高温の熱処理
が困難であるが、本実施例のように小さい島状に形状加
工しておくと容易に高温での熱処理が可能で、接合強
度、耐熱性ともに向上し、その後の高温プロセス処理が
可能となる。また接合ムラなども小面積の方が発生しに
くいため製造歩留まりが向上する。For this reason, it is difficult to perform high-temperature heat treatment on a large wafer. However, if a small island is formed as in this embodiment, high-temperature heat treatment can be easily performed, and both bonding strength and heat resistance can be improved. Then, high-temperature processing can be performed thereafter. In addition, unevenness in bonding and the like are less likely to occur in a small area, so that the production yield is improved.
【0053】さらにこの後、矩形状に残した硼酸リチウ
ム基板の薄板化処理を行う。エッチング液は先ほどの弱
酸性エッチング液を用いる。弱酸性エッチング液ではS
i基板表面はほとんど損傷を受けないので、とくにSi基
板部に保護膜の形成を必要としない。またエッチング速
度は十分速いので、厚みを5μm以下にエッチング加工
することは容易である。これにより硼酸リチウム基板を
薄板化する。この後トランジスタなどの形成に必要な各
種プロセス処理や配線に必要な各種電極形成などを実施
する。Thereafter, the lithium borate substrate left in a rectangular shape is subjected to a thinning treatment. As the etching solution, the aforementioned weakly acidic etching solution is used. S for weakly acidic etchant
Since the surface of the i-substrate is hardly damaged, it is not particularly necessary to form a protective film on the Si substrate. Further, since the etching rate is sufficiently high, it is easy to perform the etching processing to a thickness of 5 μm or less. This makes the lithium borate substrate thinner. Thereafter, various processes required for forming transistors and the like, various electrodes necessary for wiring, and the like are performed.
【0054】バルク型振動素子11の部分には上下には電
極12,13を形成する。この部分はSi基板貫通部1aに形
成されているのでバルク振動が可能となる。効果的に振
動が起こるように、電極によるエネルギー閉じこめ構造
にしたり、振動部のみをさらにエッチングにより形状加
工することによって、形状的にエネルギー閉じこめを行
ったり、Si基板との接合部の形状をできるだけ応力の
入らないような形にすることにより、バルク型振動に悪
影響がでないような処理を行う。下電極13は、ビアホー
ルなどによって半導体基板上面に導かれ電気的に接続さ
れる。これにより前記実施例6(図3)で説明した素子の
構成の電圧制御発振器が得られる。Electrodes 12 and 13 are formed above and below the bulk type vibration element 11. Since this portion is formed in the Si substrate penetrating portion 1a, bulk vibration becomes possible. In order to effectively generate vibrations, an energy trapping structure using electrodes is used, or only the vibrating part is further processed by etching to form a trapped energy, and the joint at the Si substrate is stressed as much as possible. By doing so, a process that does not adversely affect the bulk vibration is performed. The lower electrode 13 is guided and electrically connected to the upper surface of the semiconductor substrate by a via hole or the like. As a result, a voltage controlled oscillator having the element configuration described in the sixth embodiment (FIG. 3) is obtained.
【0055】また、電極12,13はアルミニウムやクロム
を下地にした金などが用いられる。接合強化の熱処理効
果は、例えば、200℃で、1時間程度保持するだけでも
接合強度は数倍に上がり、数十kg/cm2の強度が得られ
る。実質的には100℃以上で効果がある。800℃以上に温
度を上げると、硼酸リチウム基板表面からリチウムが抜
けていくため表面の特性劣化が大きく振動子としての性
能が劣化するので、接合熱処理温度は800℃以下が好ま
しい。The electrodes 12 and 13 are made of gold or the like with aluminum or chromium as a base. The effect of the heat treatment for strengthening the bonding is, for example, that the bonding strength is increased several times even when the temperature is maintained at 200 ° C. for about one hour, and a strength of several tens kg / cm 2 is obtained. Practically effective above 100 ° C. When the temperature is increased to 800 ° C. or higher, lithium is released from the surface of the lithium borate substrate, so that the surface characteristics are greatly deteriorated and the performance as a vibrator is deteriorated. Therefore, the bonding heat treatment temperature is preferably 800 ° C. or lower.
【0056】直接接合のメカニズムは、実施例1(図1)
と同様であり、効果も同様の効果が得られる。本実施例
の場合には、厚み5μm以下のバルク型振動素子が容易
に作成できるという製造上の効果も得られる。これによ
りGHz帯の超高周波振動素子を得ることができる。The mechanism of direct bonding is described in Example 1 (FIG. 1).
The same effect can be obtained. In the case of the present embodiment, there is also obtained a manufacturing effect that a bulk type vibration element having a thickness of 5 μm or less can be easily formed. This makes it possible to obtain a super-high frequency vibration element in the GHz band.
【0057】(実施例9)図2に示した本発明の電圧制
御発振器の製造方法の第5の実施例を以下説明する。(Embodiment 9) A fifth embodiment of the method of manufacturing the voltage controlled oscillator according to the present invention shown in FIG. 2 will be described below.
【0058】実施例4(製造方法の第2の実施例)と同様
にして、半導体基板としてのSi基板表面および硼酸リ
チウム基板表面に、酸化珪素膜を、CVDなどにより形
成し、酸化珪素によるSi基板と硼酸リチウム基板の接
合膜を形成する。その後は実施例8(製造方法の第4の
実施例)と同様にして、Si基板上に薄板の硼酸リチウム
バルク型振動素子を酸化珪素により接合した実施例4の
図2に示した構成の電圧制御発振器を得る。これにより
実施例8で述べたと同様の各種効果、特に製造の容易さ
の効果が得られる。In the same manner as in Example 4 (the second embodiment of the manufacturing method), a silicon oxide film is formed on the surface of a Si substrate as a semiconductor substrate and on the surface of a lithium borate substrate by CVD or the like. Forming a bonding film between the substrate and the lithium borate substrate; Thereafter, in the same manner as in Example 8 (fourth embodiment of the manufacturing method), the voltage of the configuration shown in FIG. 2 of Example 4 in which a thin lithium borate bulk type vibrating element was bonded on a Si substrate with silicon oxide. Obtain a controlled oscillator. As a result, various effects similar to those described in the eighth embodiment, in particular, the effect of easy manufacturing can be obtained.
【0059】(実施例10)図2に示した本発明の電圧制
御発振器の製造方法の第6の実施例を以下説明する。(Embodiment 10) A sixth embodiment of the method of manufacturing the voltage controlled oscillator according to the present invention shown in FIG. 2 will be described below.
【0060】実施例5(製造方法の第3の実施例)と同様
にして、半導体基板としてのSi基板表面および硼酸リ
チウム基板表面に、非晶質珪素の珪素化合物膜7を、プ
ラズマCVDなどにより形成し、非晶質珪素によるSi
基板と硼酸リチウム基板の接合膜を形成する。その後、
実施例8(製造方法の第4の実施例)と同様にして、Si
基板1上に薄板の硼酸リチウムバルク型振動素子11を非
晶質珪素により接合した実施例4の図2に示した構成の
電圧制御発振器を得る。これにより実施例8で述べたと
同様の各種効果、特に製造の容易さの効果が得られる。In the same manner as in Example 5 (third embodiment of the manufacturing method), a silicon compound film 7 of amorphous silicon was formed on the surface of a Si substrate as a semiconductor substrate and on the surface of a lithium borate substrate by plasma CVD or the like. Formed by amorphous silicon
Forming a bonding film between the substrate and the lithium borate substrate; afterwards,
As in Example 8 (fourth embodiment of the manufacturing method), Si
Embodiment 4 A voltage-controlled oscillator having the configuration shown in FIG. 2 of Embodiment 4 in which a thin lithium borate bulk type vibration element 11 is bonded on a substrate 1 with amorphous silicon. As a result, various effects similar to those described in the eighth embodiment, in particular, the effect of easy manufacturing can be obtained.
【0061】(実施例11)図5は本発明の電圧制御発振
器の構成を示す第5の実施例の模式断面図である。図5
において、14はIII−V化合物半導体基板であるGaAs
基板、2はGaAs基板14の上に接合された硼酸リチウム
基板であって表面弾性波素子を有し、この場合には表面
弾性波共振子が形成されている。その他7を除く各構成
要素3〜6は、前記実施例1(図1)と同様である。7は
GaAs基板14と硼酸リチウム基板2を接合している珪素
または珪素化合物膜である。回路構成は実施例1と同様
で、電圧制御発振器になるように配線接続されている。
このように一体に集積化された電圧制御発振器を密封容
器に収納することにより、実施例1と同様、小型・軽量
化面で実施例1と同様の効果が得られる。(Embodiment 11) FIG. 5 is a schematic sectional view of a fifth embodiment showing the configuration of the voltage controlled oscillator of the present invention. FIG.
In the above, reference numeral 14 denotes GaAs which is a III-V compound semiconductor substrate.
The substrate 2 is a lithium borate substrate bonded on the GaAs substrate 14 and has a surface acoustic wave element. In this case, a surface acoustic wave resonator is formed. The other components 3 to 6 except for 7 are the same as those in the first embodiment (FIG. 1). Reference numeral 7 denotes a silicon or silicon compound film that joins the GaAs substrate 14 and the lithium borate substrate 2. The circuit configuration is the same as that of the first embodiment, and wiring is connected so as to be a voltage controlled oscillator.
By storing the integrated voltage-controlled oscillator in a sealed container as described above, the same effects as in the first embodiment can be obtained in terms of size and weight as in the first embodiment.
【0062】本実施例では、GaAs基板と硼酸リチウム
基板の接合を珪素または珪素化合物膜で行っており、耐
熱性,耐環境性,微細加工性などすべて実施例1で述べ
たと同じ効果が得られるものである。In this embodiment, the bonding between the GaAs substrate and the lithium borate substrate is performed by a silicon or silicon compound film, and the same effects as those described in the first embodiment, such as heat resistance, environmental resistance, and fine workability, can be obtained. Things.
【0063】GaAs,InP,InGaAsなどのIII−V
化合物半導体は一般にSiより電子移動度が大きい。Ga
Asの場合、Siよりも約6倍電子移動度が大きい。その
ためIII−V化合物半導体を用いれば、一般に高速のト
ランジスタの形成が可能である。トランジスタとして数
十Hzで動作するものをつくることが容易であり、Si基
板に集積したものよりもより高周波での動作が可能とな
る。III-V of GaAs, InP, InGaAs, etc.
Compound semiconductors generally have a higher electron mobility than Si. Ga
In the case of As, the electron mobility is about six times larger than that of Si. Therefore, when a III-V compound semiconductor is used, generally, a high-speed transistor can be formed. It is easy to make a transistor that operates at several tens of Hz as a transistor, and it is possible to operate at a higher frequency than a transistor integrated on a Si substrate.
【0064】(実施例12)図6は本発明の電圧制御発振
器の構成を示す第6の実施例の模式断面図である。図6
において、各構成要素は前記実施例7(図4)および実施
例11(図5)と同様である。すなわちこの構成は、実施例
7において半導体基板にSi基板1のかわりにIII−V化
合物半導体であるGaAs基板14を用いた点が異なるだけ
であり、その機能,効果は実施例7および実施例11とほ
ぼ同様である。すなわち実施例7よりもさらに高周波で
の動作に適している。(Embodiment 12) FIG. 6 is a schematic sectional view of a sixth embodiment showing the configuration of the voltage controlled oscillator of the present invention. FIG.
Are the same as in the seventh embodiment (FIG. 4) and the eleventh embodiment (FIG. 5). That is, this configuration is different from the seventh embodiment only in that a GaAs substrate 14, which is a III-V compound semiconductor, is used instead of the Si substrate 1 in the seventh embodiment. It is almost the same as That is, it is more suitable for operation at a higher frequency than the seventh embodiment.
【0065】(実施例13)図5に示した本発明の電圧制
御発振器の製造方法の第7の実施例を以下説明する。(Embodiment 13) A seventh embodiment of the method of manufacturing the voltage controlled oscillator according to the present invention shown in FIG. 5 will be described below.
【0066】実施例4(製造方法の第2の実施例)と同様
にして、III−V化合物半導体基板としてのGaAs基板1
4および硼酸リチウム基板2の各表面に、珪素化合物膜
(酸化珪素膜)7を、CVDなどにより形成し、酸化珪素
によるGaAs基板14と硼酸リチウム基板2の接合膜を形
成する。その後は実施例4と同様にして、GaAs基板上
に硼酸リチウム表面弾性波素子を酸化珪素により接合し
た実施例11(図5)の構成の電圧制御発振器を得る。これ
により実施例4で述べたと同様の各種効果、特に製造の
容易さの効果が得られる。A GaAs substrate 1 as a III-V compound semiconductor substrate was manufactured in the same manner as in Example 4 (second embodiment of the manufacturing method).
4 and a silicon compound film on each surface of the lithium borate substrate 2
A (silicon oxide film) 7 is formed by CVD or the like, and a bonding film of the GaAs substrate 14 and the lithium borate substrate 2 is formed by silicon oxide. Thereafter, in the same manner as in the fourth embodiment, a voltage controlled oscillator having the configuration of the eleventh embodiment (FIG. 5) in which a lithium borate surface acoustic wave device is bonded on a GaAs substrate by silicon oxide is obtained. As a result, various effects similar to those described in the fourth embodiment, in particular, the effect of easy manufacturing can be obtained.
【0067】直接接合のメカニズムは、実施例4とほぼ
同様であり、したがって、両基板表面に酸化珪素膜を形
成するか、あるいはGaAs基板表面にのみに酸化珪素膜
を形成した場合でも、直接接合は可能である。The mechanism of the direct bonding is almost the same as that of the fourth embodiment. Therefore, even if the silicon oxide film is formed on both substrate surfaces or the silicon oxide film is formed only on the GaAs substrate surface, the direct bonding is performed. Is possible.
【0068】(実施例14)図5に示した本発明の電圧制
御発振器の製造方法の第8の実施例を以下説明する。(Embodiment 14) An eighth embodiment of the method of manufacturing the voltage controlled oscillator according to the present invention shown in FIG. 5 will be described below.
【0069】前記実施例13と同様にして、III−V化合
物半導体基板としてのGaAs基板14および硼酸リチウム
基板2の表面に、非晶質珪素の珪素化合物膜7を、プラ
ズマCVDなどにより形成し、非晶質珪素によるGaAs
基板と硼酸リチウム基板の接合膜を形成する。その後、
実施例5(製造方法の第3の実施例)と同様にして、Ga
As基板上に硼酸リチウム表面弾性波素子を非晶質珪素
により接合した実施例11(図5)の構成の電圧制御発振器
を得る。これにより実施例5で述べたと同様の各種効
果、特に製造の容易さの効果が得られる。In the same manner as in Example 13, a silicon compound film 7 of amorphous silicon is formed on the surfaces of a GaAs substrate 14 and a lithium borate substrate 2 as III-V compound semiconductor substrates by plasma CVD or the like. GaAs by amorphous silicon
Forming a bonding film between the substrate and the lithium borate substrate; afterwards,
In the same manner as in Example 5 (third embodiment of the manufacturing method), Ga
A voltage controlled oscillator having the configuration of Example 11 (FIG. 5) in which a lithium borate surface acoustic wave device is bonded on an As substrate by amorphous silicon is obtained. As a result, various effects similar to those described in the fifth embodiment, in particular, the effect of easy manufacturing can be obtained.
【0070】直接接合のメカニズムは、実施例5とほぼ
同様であり、したがって、両基板表面に非晶質珪素膜を
形成するか、あるいはGaAs基板表面にのみに非晶質珪
素膜を形成した場合でも、直接接合は可能である。The mechanism of direct bonding is almost the same as that of the fifth embodiment. Therefore, when an amorphous silicon film is formed on both substrate surfaces, or when an amorphous silicon film is formed only on the GaAs substrate surface. However, direct bonding is possible.
【0071】(実施例15)図6で示した本発明の電圧制
御発振器の製造方法の第9の実施例を以下説明する。(Embodiment 15) A ninth embodiment of the method of manufacturing the voltage controlled oscillator according to the present invention shown in FIG. 6 will be described below.
【0072】実施例4(製造方法の第2および第5の実
施例)と同様にして、III−V化合物半導体基板としての
GaAs基板14および硼酸リチウム基板2の表面に、酸化
珪素膜7を、CVDなどにより形成し、酸化珪素による
GaAs基板と硼酸リチウム基板の接合膜を形成する。そ
の後は実施例9と同様にして、GaAs基板上に硼酸リチ
ウムバルク型振動素子を酸化珪素により接合した実施例
12(図6)の構成の電圧制御発振器を得る。これにより実
施例9で述べたと同様の各種効果、特に製造の容易さの
効果が得られる。In the same manner as in Example 4 (the second and fifth embodiments of the manufacturing method), a silicon oxide film 7 was formed on the surfaces of a GaAs substrate 14 and a lithium borate substrate 2 as III-V compound semiconductor substrates. A bonding film of a silicon oxide and a GaAs substrate and a lithium borate substrate is formed by CVD or the like. After that, in the same manner as in the ninth embodiment, the lithium borate bulk type vibration element was bonded to the GaAs substrate using silicon oxide.
A voltage-controlled oscillator having the configuration of FIG. 12 (FIG. 6) is obtained. As a result, various effects similar to those described in the ninth embodiment, in particular, the effect of easy manufacturing can be obtained.
【0073】直接接合のメカニズムは、実施例4とほぼ
同様であり、したがって、両基板表面に酸化珪素膜を形
成するか、あるいはGaAs基板表面にのみに酸化珪素膜
を形成した場合でも、直接接合は可能である。The mechanism of the direct bonding is almost the same as that of the fourth embodiment. Therefore, even if a silicon oxide film is formed on both substrate surfaces or a silicon oxide film is formed only on the GaAs substrate surface, the direct bonding is performed. Is possible.
【0074】(実施例16)図6に示した本発明の電圧制
御発振器の製造方法の第10の実施例を以下説明する。(Embodiment 16) A tenth embodiment of the method of manufacturing the voltage controlled oscillator according to the present invention shown in FIG. 6 will be described below.
【0075】実施例5および9(製造方法の第3の実施
例および第5の実施例)と同様にして、III−V化合物半
導体基板としてのGaAs基板14および硼酸リチウム基板
2の各表面に、非晶質珪素の珪素化合物膜を、プラズマ
CVDなどにより形成し、非晶質珪素によるGaAs基板
14と硼酸リチウム基板2の接合膜を形成する。その後、
実施例9と同様にして、GaAs基板上に硼酸リチウムバ
ルク型振動素子を非晶質珪素により接合した実施例12
(図6)の構成の電圧制御発振器を得る。これにより実施
例9で述べたと同様の各種効果、特に製造の容易さの効
果が得られる。In the same manner as in Examples 5 and 9 (the third and fifth embodiments of the manufacturing method), the respective surfaces of the GaAs substrate 14 and the lithium borate substrate 2 as III-V compound semiconductor substrates were A GaAs substrate made of amorphous silicon by forming a silicon compound film of amorphous silicon by plasma CVD or the like.
A bonding film between the substrate 14 and the lithium borate substrate 2 is formed. afterwards,
Example 12 In the same manner as in Example 9, a lithium borate bulk type vibration element was bonded on a GaAs substrate by using amorphous silicon.
A voltage controlled oscillator having the configuration shown in FIG. 6 is obtained. As a result, various effects similar to those described in the ninth embodiment, in particular, the effect of easy manufacturing can be obtained.
【0076】直接接合のメカニズムは、実施例5とほぼ
同様であり、したがって、両基板表面に非晶質珪素膜を
形成するか、あるいはGaAs基板表面のみに非晶質珪素
膜を形成した場合でも、直接接合は可能である。The mechanism of direct bonding is almost the same as that of the fifth embodiment. Therefore, even when an amorphous silicon film is formed on both substrate surfaces or an amorphous silicon film is formed only on a GaAs substrate surface. , Direct bonding is possible.
【0077】珪素化合物として、本実施例ではいずれも
酸化珪素の例で示したが、CVDなどで形成した酸化珪
素はその酸素含有量が条件によって多少異なる。また窒
素も含まれる場合がある。いずれの場合も直接接合が得
られる。直接接合の可否は、その物質の結合の性質が関
与しており、珪素または酸化珪素のように共有結合的性
質を有していれば、ほぼ同様の効果が得られものと思わ
れる。In this embodiment, as the silicon compound, silicon oxide is used, but the silicon oxide formed by CVD or the like has a slightly different oxygen content depending on conditions. It may also contain nitrogen. In either case, a direct bond is obtained. The possibility of direct bonding depends on the nature of the bonding of the substance, and it is considered that similar effects can be obtained if the material has a covalent bonding property such as silicon or silicon oxide.
【0078】また以上説明した各実施例では、いずれも
電圧制御発振器の回路例で説明したが、基本的には、電
気音響素子と半導体素子からなる電子音響集積回路一般
に広く適用できることは明らかである。In each of the embodiments described above, a circuit example of a voltage controlled oscillator has been described. However, it is apparent that the present invention can be widely applied to a general electroacoustic integrated circuit including an electroacoustic element and a semiconductor element. .
【0079】[0079]
【発明の効果】以上説明したような本発明の電子音響集
積回路とその製造方法は、以下に記載されるような効果
を有する。The above-described electroacoustic integrated circuit of the present invention and the method of manufacturing the same have the following effects.
【0080】いずれの実施例においても、まず第1に、
発振や増幅を起こす基本構成要素であるトランジスタと
硼酸リチウム表面弾性波素子やバルク型振動素子などの
電気音響素子を、一体に集積しているので、電圧制御発
振器などの高周波装置を大幅に小型・軽量化する事が可
能となり、従来の容器に収納した表面弾性波素子やバル
ク型振動素子を用いる場合に比べ、容積、重さとも大幅
に少なくすることができる。In any of the embodiments, first of all,
Transistors, which are the basic components that cause oscillation and amplification, and electroacoustic elements such as lithium borate surface acoustic wave elements and bulk-type vibrating elements are integrated into a single unit. The weight can be reduced, and both the volume and the weight can be significantly reduced as compared with the case where a surface acoustic wave element or a bulk type vibration element housed in a conventional container is used.
【0081】本実施例の接合方法は、半導体基板と電気
音響素子を直接または膜厚の制御された珪素系無機材料
で接合しているので、平面性が極めて良く、振動周波数
の設定に必要な、サブミクロンのホトリソグラフィーが
可能となるとともに、熱や振動などに対する信頼性も大
幅に向上するものである。In the bonding method of this embodiment, since the semiconductor substrate and the electroacoustic element are bonded directly or by using a silicon-based inorganic material having a controlled film thickness, the flatness is very good, and it is necessary to set the vibration frequency. In addition to enabling submicron photolithography, the reliability against heat, vibration, and the like is greatly improved.
【0082】本実施例では、電圧制御発振器の構成を示
したが、基本的には電気音響素子とトランジスタなどの
能動素子を一体に集積できるものであり、電圧制御発振
器に限らず、フィルタと増幅器を集積化した高周波受信
装置など広く電子音響集積回路一般に適用できるもので
ある。In this embodiment, the configuration of the voltage controlled oscillator is shown. However, basically, an electroacoustic element and an active element such as a transistor can be integrated integrally. The present invention can be widely applied to electroacoustic integrated circuits in general, such as a high-frequency receiver integrated with the above.
【0083】また実施例3,8等に示したように、硼酸
リチウム基板は酢酸などの弱酸性液体でエッチング形状
加工が可能であることから、本実施例で示した接合およ
び低温熱処理−硼酸リチウム基板のエッチング分離−高
温熱処理方式の製造方法をとることにより、接合ムラの
低減、より大きな半導体基板を用いての製造が可能にな
るなどから、製造歩留まりの向上など生産面での効果も
大きい。Further, as shown in Examples 3 and 8, etc., since the lithium borate substrate can be etched and formed with a weakly acidic liquid such as acetic acid, the bonding and low-temperature heat treatment-lithium borate shown in this example were performed. By adopting the manufacturing method of the etching separation-high temperature heat treatment method of the substrate, it is possible to reduce the bonding unevenness and to manufacture using a larger semiconductor substrate. Therefore, the effect on the production side such as the improvement of the manufacturing yield is great.
【0084】また、5μm以下の薄板を作るような微細
加工も容易に行えることから、従来困難であった、準マ
イクロ波帯(数百MHzから数GHz)での、基本波振動による
高周波装置の製造が容易となる。これにより高性能,低
価格化が可能となる。Further, since fine processing such as forming a thin plate of 5 μm or less can be easily performed, a high-frequency device using a fundamental wave vibration in a quasi-microwave band (several hundred MHz to several GHz), which has been difficult in the past, is used. Manufacturing becomes easy. This enables high performance and low cost.
【0085】またIII−V化合物半導体であるGaAs基
板上に集積化した場合、シリコントランジスタと集積化
した場合よりもトランジスタとしての高周波特性が数倍
よくなり、より高周波で動作することが可能となる。When integrated on a GaAs substrate, which is a III-V compound semiconductor, the high frequency characteristics of the transistor are several times better than when integrated with a silicon transistor, and operation at higher frequencies is possible. .
【図1】本発明の第1の実施例の電圧制御発振器の構成
を示す模式断面図である。FIG. 1 is a schematic sectional view showing a configuration of a voltage controlled oscillator according to a first embodiment of the present invention.
【図2】本発明の第2の実施例の電圧制御発振器の構成
を示す模式断面図である。FIG. 2 is a schematic sectional view showing a configuration of a voltage controlled oscillator according to a second embodiment of the present invention.
【図3】本発明の第3の実施例の電圧制御発振器の構成
を示す模式断面図である。FIG. 3 is a schematic sectional view showing a configuration of a voltage controlled oscillator according to a third embodiment of the present invention.
【図4】本発明の第4の実施例の電圧制御発振器の構成
を示す模式断面図である。FIG. 4 is a schematic sectional view showing a configuration of a voltage controlled oscillator according to a fourth embodiment of the present invention.
【図5】本発明の第5の実施例の電圧制御発振器の構成
を示す模式断面図である。FIG. 5 is a schematic sectional view showing a configuration of a voltage controlled oscillator according to a fifth embodiment of the present invention.
【図6】本発明の第6の実施例の電圧制御発振器の構成
を示す模式断面図である。FIG. 6 is a schematic sectional view showing a configuration of a voltage controlled oscillator according to a sixth embodiment of the present invention.
1…半導体(Si)基板、 2…硼酸リチウム単結晶圧電
基板(表面弾性波素子)、3…電界効果トランジスタ(F
ET)、 4…可変容量ダイオードチップ、 5…受動
チップ部品、 6…表面弾性波素子の電極、 7…珪素
または酸化珪素などの珪素化合物膜、 11…硼酸リチウ
ムバルク型振動素子、 12…上電極、 13…下電極、
14…III−V化合物半導体(GaAs)基板。1. Semiconductor (Si) substrate 2. Lithium borate single crystal piezoelectric substrate (surface acoustic wave device) 3. Field effect transistor (F
ET), 4: Variable capacitance diode chip, 5: Passive chip component, 6: Electrode of surface acoustic wave device, 7: Silicon compound film such as silicon or silicon oxide, 11: Lithium borate bulk type vibration device, 12: Upper electrode , 13 ... lower electrode,
14 ... III-V compound semiconductor (GaAs) substrate.
───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 H03H 9/25 H01L 41/22 Z (72)発明者 小掠 哲義 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (56)参考文献 特開 昭56−79487(JP,A) 特開 昭61−101200(JP,A) 特開 平3−296316(JP,A) 特開 昭61−232661(JP,A) 特開 昭61−183940(JP,A)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code Agency reference number FI Technical indication location H03H 9/25 H01L 41/22 Z (72) Inventor Tetsuyoshi Kotate 1006 Odakadoma, Kazuma, Kazuma, Osaka Matsushita Electric Industrial Co., Ltd. (56) Reference JP-A-56-79487 (JP, A) JP-A-61-101200 (JP, A) JP-A-3-296316 (JP, A) JP-A 61-794 232661 (JP, A) JP-A-61-183940 (JP, A)
Claims (15)
板が、基板接合部表面の水酸基または酸素により直接接
合されており、前記硼酸リチウム単結晶圧電基板に表面
弾性波素子を有することを特徴とする電子音響集積回
路。1. A lithium-borate single-crystal piezoelectric substrate is directly bonded to a semiconductor substrate by a hydroxyl group or oxygen on the surface of a substrate bonding portion , and the lithium-borate single-crystal piezoelectric substrate has a surface acoustic wave element. Electroacoustic integrated circuits.
板が、基板接合部表面の水酸基または酸素により直接接
合されており、前記硼酸リチウム単結晶圧電基板にバル
ク型振動素子を有することを特徴とする電子音響集積回
路。2. A lithium borate single crystal piezoelectric substrate is directly bonded to a semiconductor substrate by a hydroxyl group or oxygen on the surface of a substrate bonding portion , and the lithium borate single crystal piezoelectric substrate has a bulk type vibration element. Electroacoustic integrated circuits.
体基板に硼酸リチウム単結晶圧電基板が、前記珪素膜ま
たは珪素化合物膜表面の水酸基または酸素により直接接
合されており、前記硼酸リチウム単結晶圧電基板に表面
弾性波素子を有することを特徴とする電子音響集積回
路。3. A semiconductor substrate having a silicon film or a silicon compound film , wherein a lithium borate single crystal piezoelectric substrate is provided on the silicon film or the silicon film.
An electroacoustic integrated circuit which is directly bonded by a hydroxyl group or oxygen on the surface of a silicon compound film and has a surface acoustic wave element on the lithium borate single crystal piezoelectric substrate.
体基板に硼酸リチウム単結晶圧電基板が、前記珪素膜ま
たは珪素化合物膜表面の水酸基または酸素により直接接
合されており、前記硼酸リチウム単結晶圧電基板にバル
ク型振動素子を有することを特徴とする電子音響集積回
路。4. A silicon film or lithium borate single crystal piezoelectric substrate in semiconductor <br/> body substrate having a silicon compound film, the silicon Makuma
An electroacoustic integrated circuit which is directly bonded by a hydroxyl group or oxygen on the surface of a silicon compound film and has a bulk-type vibration element on the lithium borate single crystal piezoelectric substrate.
ることを特徴とする請求項3または4記載の電子音響集
積回路。5. The electroacoustic integrated circuit according to claim 3, wherein the semiconductor substrate is a silicon (Si) substrate.
板であることを特徴とする請求項3または4記載の電子
音響集積回路。6. The electroacoustic integrated circuit according to claim 3, wherein the semiconductor substrate is a III-V compound semiconductor substrate.
用いたことを特徴とする請求項6記載の電子音響集積回
路。7. The electroacoustic integrated circuit according to claim 6, wherein GaAs is used as the III-V compound semiconductor.
ることを特徴とする請求項1,2,3または4記載の電
子音響集積回路。8. The electroacoustic integrated circuit according to claim 1, wherein the electroacoustic integrated circuit is a voltage controlled oscillator.
請求項3または4記載の電子音響集積回路。9. The electroacoustic integrated circuit according to claim 3, wherein the silicon film is amorphous.
基板を、各接合部表面を清浄化する工程と、親水化する
工程と、重ね合わせて直接接合する工程を有することを
特徴とする電子音響集積回路の製造方法。10. A semiconductor substrate and a lithium borate single crystal piezoelectric element.
A step of cleaning the surface of each joint, and hydrophilizing the substrate.
Process and the process of superimposing and directly joining
A method for manufacturing an electroacoustic integrated circuit .
は珪素化合物膜 を設ける工程と、前記珪素または珪素化
合物膜および硼酸リチウム単結晶圧電基板表面を清浄化
する工程と、親水化する工程と、前記半導体基板と前記
硼酸リチウム単結晶圧電基板の親水化した表面同士を重
ね合わせて直接接合する工程を有することを特徴とする
電子音響集積回路の製造方法。11. A semiconductor device comprising : a silicon substrate;
Is a step of providing a silicon compound film ;
Cleans compound film and lithium borate single crystal piezoelectric substrate surface
Performing a step of making the semiconductor substrate hydrophilic,
The hydrophilic surfaces of the lithium borate single crystal piezoelectric substrate
A method for manufacturing an electroacoustic integrated circuit, comprising a step of joining and direct bonding .
800℃の温度範囲で熱処理を行う工程を有することを
特徴とする請求項10または11記載の電子音響集積回
路の製造方法。12. After 100 ° C., the temperature is reduced from 100 ° C.
Having a step of performing heat treatment in a temperature range of 800 ° C.
An electroacoustic integrated circuit according to claim 10 or 11, wherein:
Road manufacturing method .
よるエッチングによって、硼酸リチウム単結晶圧電基板
を島状に分離加工する工程と、その後さらに直接接合工
程後に行う熱処理工程における温度よりも、さらに高温
で熱処理を行う工程を有することを特徴とする請求項1
2記載の電子音響集積回路の製造方法。13. After the step of direct bonding, a weakly acidic liquid
Lithium borate single crystal piezoelectric substrate by etching
To separate islands into islands, followed by direct bonding
Even higher than the temperature in the heat treatment step performed later
2. The method according to claim 1, further comprising the step of:
3. The method for manufacturing an electroacoustic integrated circuit according to item 2 .
に、あらかじめ電子素子を形成する工程を有することを
特徴とする請求項10または11記載の電子音響集積回
路の製造方法。14. A method for manufacturing a semiconductor device, comprising:
Having a step of forming an electronic element in advance.
An electroacoustic integrated circuit according to claim 10 or 11, wherein:
Road manufacturing method .
単結晶圧電基板に電気音響素子を形成する工程と、半導
体基板上の電子素子との配線を形成する工程を有するこ
とを特徴とする請求項10または11記載の電子音響集
積回路の製造方法。15. After the step of direct bonding, lithium borate
Forming an electroacoustic element on a single-crystal piezoelectric substrate;
Having a step of forming wiring with electronic elements on the body substrate.
The electronic sound collection according to claim 10 or 11, wherein
Manufacturing method of integrated circuit .
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26615892A JP2589634B2 (en) | 1992-10-05 | 1992-10-05 | Electroacoustic integrated circuit and manufacturing method thereof |
NO19933534A NO310996B1 (en) | 1992-10-05 | 1993-10-04 | Electroacoustic hybrid integrated circuit and method for producing the same |
KR1019930020388A KR0158898B1 (en) | 1992-10-05 | 1993-10-04 | Electronic acoustic integrated circuit and its manufacturing method |
EP93116068A EP0591918B1 (en) | 1992-10-05 | 1993-10-05 | Electro-acoustic hybrid integrated circuit and manufacturing method thereof |
DE69325763T DE69325763T2 (en) | 1992-10-05 | 1993-10-05 | Electroacoustic hybrid integrated circuit and method for its production |
US08/182,561 US5747857A (en) | 1991-03-13 | 1994-01-18 | Electronic components having high-frequency elements and methods of manufacture therefor |
US08/473,932 US5668057A (en) | 1991-03-13 | 1995-06-07 | Methods of manufacture for electronic components having high-frequency elements |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP26615892A JP2589634B2 (en) | 1992-10-05 | 1992-10-05 | Electroacoustic integrated circuit and manufacturing method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH06120416A JPH06120416A (en) | 1994-04-28 |
JP2589634B2 true JP2589634B2 (en) | 1997-03-12 |
Family
ID=17427095
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP26615892A Expired - Fee Related JP2589634B2 (en) | 1991-03-13 | 1992-10-05 | Electroacoustic integrated circuit and manufacturing method thereof |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2589634B2 (en) |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3712035B2 (en) | 1999-04-28 | 2005-11-02 | 株式会社村田製作所 | Manufacturing method of surface wave device |
JP4385607B2 (en) | 2003-01-29 | 2009-12-16 | セイコーエプソン株式会社 | Surface acoustic wave device, frequency filter, oscillator, electronic circuit and electronic equipment |
JP2004297359A (en) | 2003-03-26 | 2004-10-21 | Seiko Epson Corp | Surface acoustic wave device, frequency filter, oscillator, electronic circuit, and electronic apparatus |
JP4071681B2 (en) | 2003-07-24 | 2008-04-02 | 株式会社東芝 | Voltage controlled oscillator, frequency synthesizer and communication system |
JP2006109400A (en) * | 2004-09-13 | 2006-04-20 | Seiko Epson Corp | Electronic component, circuit board, electronic apparatus, and method for manufacturing the electronic component |
JP4744849B2 (en) * | 2004-11-11 | 2011-08-10 | 株式会社東芝 | Semiconductor device |
US7406761B2 (en) * | 2005-03-21 | 2008-08-05 | Honeywell International Inc. | Method of manufacturing vibrating micromechanical structures |
JP2007204320A (en) * | 2006-02-02 | 2007-08-16 | Nec Tokin Corp | Composite piezoelectric board and its producing method |
KR100719123B1 (en) | 2006-07-27 | 2007-05-18 | 삼성전자주식회사 | Multi band filter module and manufacture method of the same |
US8910355B2 (en) * | 2011-12-12 | 2014-12-16 | International Business Machines Corporation | Method of manufacturing a film bulk acoustic resonator with a loading element |
JP2019062350A (en) | 2017-09-26 | 2019-04-18 | 株式会社村田製作所 | Compound device |
CN111448757B (en) | 2017-12-13 | 2023-04-04 | 株式会社村田制作所 | Electronic component |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5679487A (en) * | 1979-12-04 | 1981-06-30 | Fuji Photo Film Co Ltd | Amplefier for elastic surface wave |
JPS61101200A (en) * | 1984-10-24 | 1986-05-20 | Hitachi Ltd | Ultrasonic wave probe and its manufacture |
JPH0658934B2 (en) * | 1985-02-08 | 1994-08-03 | 株式会社東芝 | Method for manufacturing semiconductor device |
JPS61232661A (en) * | 1985-04-09 | 1986-10-16 | Toshiba Corp | Joining method for silicon crystal body |
JPH03296316A (en) * | 1990-04-13 | 1991-12-27 | Nikko Kyodo Co Ltd | Surface acoustic wave resonance filter |
-
1992
- 1992-10-05 JP JP26615892A patent/JP2589634B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JPH06120416A (en) | 1994-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5668057A (en) | Methods of manufacture for electronic components having high-frequency elements | |
EP0531985B1 (en) | Electro-acoustic hybrid integrated circuit and manufacturing method thereof | |
US5747857A (en) | Electronic components having high-frequency elements and methods of manufacture therefor | |
US5884378A (en) | Method of making an enhanced quality factor resonator | |
JP3435789B2 (en) | Surface acoustic wave device | |
US5696423A (en) | Temperature compenated resonator and method | |
US5446330A (en) | Surface acoustic wave device having a lamination structure | |
JP2589634B2 (en) | Electroacoustic integrated circuit and manufacturing method thereof | |
JP2643620B2 (en) | Voltage controlled oscillator and method of manufacturing the same | |
KR20020020850A (en) | Acoustic resonator | |
JP2002344279A (en) | Piezoelectric thin film resonator | |
US20230268904A1 (en) | Resonator device and method of manufacturing resonator device | |
KR0158898B1 (en) | Electronic acoustic integrated circuit and its manufacturing method | |
JP2001168674A (en) | Piezoelectric resonance element and electronic appliance | |
JPH08153915A (en) | Composite piezoelectric substrate and its manufacture | |
JP2574612B2 (en) | Electroacoustic integrated circuit and method of manufacturing the same | |
JP2007189492A (en) | Method of manufacturing piezoelectric substrate, piezoelectric substrate, piezoelectric transducer, and piezoelectric oscillator | |
WO2022188779A1 (en) | Resonator and manufacturing method therefor, filter, and electronic device | |
JPH0730354A (en) | Manufacture of composite single crystal piezoelectric substrate | |
JP2607199B2 (en) | Hybrid integrated circuit and manufacturing method thereof | |
JPH09221392A (en) | Composite piezoelectric substrate and its production | |
JPH0818115A (en) | Composite piezoelectric device | |
Eda et al. | Direct bonding of piezoelectric materials and its applications | |
JPH0786866A (en) | Composite single-crystal piezoelectric substrate and its production | |
JP2574565B2 (en) | Microwave integrated circuit and manufacturing method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |