JP2589179B2 - Method for producing lead-based ceramic powder - Google Patents

Method for producing lead-based ceramic powder

Info

Publication number
JP2589179B2
JP2589179B2 JP1100193A JP10019389A JP2589179B2 JP 2589179 B2 JP2589179 B2 JP 2589179B2 JP 1100193 A JP1100193 A JP 1100193A JP 10019389 A JP10019389 A JP 10019389A JP 2589179 B2 JP2589179 B2 JP 2589179B2
Authority
JP
Japan
Prior art keywords
lead
powder
raw material
based ceramic
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1100193A
Other languages
Japanese (ja)
Other versions
JPH02279551A (en
Inventor
章 中島
恒男 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Eneos Corp
Original Assignee
Japan Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Energy Corp filed Critical Japan Energy Corp
Priority to JP1100193A priority Critical patent/JP2589179B2/en
Publication of JPH02279551A publication Critical patent/JPH02279551A/en
Application granted granted Critical
Publication of JP2589179B2 publication Critical patent/JP2589179B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鉛系セラミックス粉末の製造方法に関するも
のであり,特にはペロブスカイト型鉛酸化物粉末を得る
技術に関する。
Description: TECHNICAL FIELD The present invention relates to a method for producing a lead-based ceramic powder, and more particularly to a technique for obtaining a perovskite-type lead oxide powder.

[従来技術] PZT,PLZT,PMN等に代表されるプロブスカイト型鉛系セ
ラミックスは,エレクトロニクスの分野で多くの用途が
期待されている。これらセラミックスの原料粉末の製造
方法には酸化物混合法,中和共沈法,アルコキシド法な
どがある。酸化物混合法は,主な処理設備が粉砕混合機
のみであり,もっとも安価で大量生産向きである。また
制御条件が少ないため比較的安定して一定の特性の粉体
が得られるが,最終的に得られる原料粉末が出発原料の
酸化物の粒径に依存するため,粒径が粗大化し,易焼結
性となりにくく,また組成の均一性が悪い。中和共沈法
は組成の均一な微細粉末が得られるが,大きな設備を必
要とするため酸化物混合法に比べコスト高となり,また
湿式のため一定の特性の粉末を安定的に得るには,かな
り多くの条件を制御しなくてはならない。アルコキシド
法は中和共沈法同様,組成の均一な微細粉末が得られる
が,制御する条件が多く,また原料のアルコキシドの価
格が高価なためこれら3つの方法の中で最も経済性にお
いて劣る。更に,原料のアルコキシドは空気中の水分で
加水分解するため,取り扱いが困難である。
[Prior art] Provskite-type lead-based ceramics represented by PZT, PLZT, PMN, etc. are expected to have many uses in the field of electronics. Methods for producing these ceramic raw material powders include an oxide mixing method, a neutralization coprecipitation method, and an alkoxide method. In the oxide mixing method, the main processing equipment is only a pulverizer and mixer, and it is the cheapest and suitable for mass production. In addition, although the control conditions are small, a powder with constant characteristics can be obtained relatively stably. However, since the raw material powder finally obtained depends on the particle size of the oxide of the starting material, the particle size becomes coarse, and Poor sintering and poor composition uniformity. The neutralization coprecipitation method can obtain a fine powder with a uniform composition, but it requires a large facility, so the cost is higher than the oxide mixing method. , Many conditions must be controlled. In the alkoxide method, a fine powder having a uniform composition can be obtained as in the neutralization coprecipitation method. However, the alkoxide method is the least economical of these three methods because there are many control conditions and the price of the raw material alkoxide is expensive. Further, the raw material alkoxide is hydrolyzed by moisture in the air, and is therefore difficult to handle.

このように各合成法には,それぞれ特徴があるが,現
在までのところペロブスカイト型鉛酸化物粉末を工業的
な規模で製造するにあたっては,酸化物混合法と中和共
沈法が主として採用されている。
As described above, each synthesis method has its own characteristics. However, to date, the perovskite-type lead oxide powder has been mainly produced on an industrial scale by the oxide mixing method and the neutralization coprecipitation method. ing.

[発明が解決しようとする問題点] 鉛系セラミックス原料粉末を酸化物混合法で得る際の
鉛源としては,PbO,PbO2,Pb2O3,等が用いられる。鉛系セ
ラミックス粉末を得るための仮焼は,高温で鉛が蒸発す
るため組成安定性の面から800℃以下に抑える必要があ
る。しかしながら酸化物混合法では,800℃以下の温度域
での仮焼で,単一結晶相からなる原料粉末が得られにく
い。これは組成の均一化が粉体同士の固相反応によって
進行するからであり,このような粉末を用いて成形,焼
結を行なうと,焼結過程で成形体内部に局部的な焼結速
度の不均一が生じ,気孔の少ない緻密な焼結体が得られ
にくい。一方,仮焼温度が800℃以上になると組成の均
一化は進行するが,単一結晶相からなる粉体を得るには
900℃より高い温度での仮焼を必要とする場合が多く,
これらの温度では鉛の蒸発が顕著になるため毎回の生産
における組成の安定性が悪くなる。また高温での仮焼は
粒成長を促進し,易焼結性の原料粉末は得られにくい。
[Problems to be Solved by the Invention] PbO, PbO 2 , Pb 2 O 3 , and the like are used as a lead source when a lead-based ceramic raw material powder is obtained by an oxide mixing method. In the calcination for obtaining lead-based ceramic powder, it is necessary to suppress the temperature to 800 ° C or less from the viewpoint of composition stability because lead evaporates at high temperatures. However, in the oxide mixing method, it is difficult to obtain a raw material powder composed of a single crystal phase by calcination in a temperature range of 800 ° C. or less. This is because the homogenization of the composition proceeds by the solid-phase reaction between the powders, and when such powders are used for molding and sintering, the local sintering rate is formed inside the compact during the sintering process. And it is difficult to obtain a dense sintered body with few pores. On the other hand, when the calcination temperature exceeds 800 ° C, the composition becomes uniform, but it is necessary to obtain a powder consisting of a single crystal phase.
In many cases, calcining at a temperature higher than 900 ° C is required.
At these temperatures, the stability of the composition in every production deteriorates due to the remarkable evaporation of lead. Calcination at a high temperature promotes grain growth, and it is difficult to obtain easily sinterable raw material powder.

以上の様な理由により,従来は酸化物混合法で単一結
晶相からなる,易焼結性を有する,組成均一性の良好な
鉛系セラミックス原料粉末が得られていなかった。本発
明は,酸化物混合法における上記の欠点を解決するため
になされたもので,800℃以下の温度での仮焼で単一結晶
相からなる鉛系セラミックス原料粉末を得ることを可能
にし,易焼結性を有する,組成均一性の良好な鉛系セラ
ミックス原料粉末を安価に工業的な規模で製造すること
ができる方法を提供することを目的とする。
For the reasons described above, a lead-based ceramic raw material powder having a single crystal phase, which has an easy sintering property, and has good composition uniformity has not been obtained by the oxide mixing method. The present invention has been made to solve the above-mentioned drawbacks in the oxide mixing method, and has made it possible to obtain a lead-based ceramic raw material powder composed of a single crystal phase by calcination at a temperature of 800 ° C. or less, It is an object of the present invention to provide a method capable of inexpensively producing a lead-based ceramic raw material powder having good composition uniformity having easy sinterability on an industrial scale.

[発明の構成] 即ち本発明は上記の問題点を解決するものであって,
酸化鉛を出発原料の1つとし,前記原料と他の酸化物や
無機塩を粉砕,混合後,焼成することによりセラミック
ス用原料粉末を製造する工程において,硝酸イオン、ま
たは有機酸イオンが存在するPH7〜11の水溶液中で出発
原料すべてを粉砕,混合し,酸化鉛を塩基性鉛組成物に
変質させた後,500℃〜900℃の範囲で仮焼することを特
徴とする鉛系セラミックス粉末の製造方法,及び,酸化
鉛を出発原料の1つとし,前記原料と他の酸化物や無機
塩を粉砕,混合後,焼成することによりセラミックス用
原料粉末を製造する工程において,硝酸イオン,または
有機酸イオンが存在するPH7〜11の水溶液中で,あらか
じめ酸化鉛を粉砕して,塩基性鉛組成物に変質させ,こ
れを濾過後または濾過,乾燥後,あるいはそのまま他の
出発原料を添加し,粉砕,混合処理を行ない,500℃〜90
0℃の範囲で仮焼することを特徴とする鉛系セラミック
ス粉末の製造方法に関する。
[Constitution of the Invention] That is, the present invention solves the above problems,
In a process of producing a raw material powder for ceramics by using lead oxide as one of the starting materials, pulverizing and mixing the raw material with other oxides and inorganic salts, and firing the mixture, nitrate ions or organic acid ions are present. Lead-based ceramic powder characterized by crushing and mixing all starting materials in an aqueous solution of PH7-11, transforming lead oxide into a basic lead composition, and then calcining at 500-900 ° C In the production method of the above, and in the step of producing a raw material powder for ceramics by pulverizing and mixing the above raw material and other oxides and inorganic salts with lead oxide as one of the starting raw materials, and then firing the mixture, nitrate ions or Lead oxide is crushed in advance in an aqueous solution of PH7 to 11, in which organic acid ions are present, to transform it into a basic lead composition, which is filtered or filtered, dried, or other starting materials are added as they are. , Crushing, Performs a case processing, 500 ℃ ~90
The present invention relates to a method for producing a lead-based ceramic powder, which is calcined at a temperature of 0 ° C.

[発明の具体的説明] 本発明に用いられる鉛源としては,PbO,PbO2,Pb2O3,等
がある。本発明者らは前記課題を解決するために,これ
らの酸化鉛を硝酸イオンが存在するPH7〜11の水溶液中
において粉砕を行なった。その結果,これらの酸化鉛が
本来の色から白色に変化することがわかった。この現象
について鋭意究明したところ,この反応はPH7〜11の範
囲の硝酸イオンが存在する水溶液中で起こり,且つ機械
的な力が共存すると急速に反応が進行することがわかっ
た。そして白色化したものを乾燥した。これは,塩基性
硝酸鉛組成物であり,乾燥温度により粒径が著しく変化
する熱的に不安定な物質であることが明らかになった。
第1図にPbOのX線回折図形(b)とSEM写真(a)を,
第2図にこれから得られた塩基性硝酸鉛組成物のX線回
折図形(b)とSEM写真(a)を示す。
[Detailed Description of the Invention] Lead sources used in the present invention include PbO, PbO 2 , Pb 2 O 3 , and the like. The present inventors crushed these lead oxides in an aqueous solution of PH7 to PH11 in which nitrate ions exist in order to solve the above problems. As a result, it was found that these lead oxides changed from the original color to white. Intensive studies on this phenomenon revealed that this reaction occurred in an aqueous solution containing nitrate ions in the range of pH 7 to 11, and that the reaction proceeded rapidly in the presence of mechanical force. Then, the whitened product was dried. This was a basic lead nitrate composition, and was found to be a thermally unstable substance whose particle size changes significantly with drying temperature.
Figure 1 shows the X-ray diffraction pattern (b) and SEM photograph (a) of PbO.
FIG. 2 shows an X-ray diffraction pattern (b) and an SEM photograph (a) of the basic lead nitrate composition obtained therefrom.

X線回折図形は横軸がCuのKα線に対する回折角度,
縦軸がX線強度(cps)である。JCPDSカードから第1図
は,マシコットと呼ばれる斜方晶PbOの反射で各回折ピ
ークの指数つけができ,第2図は,Pb2(NO3)(OH)
の反射で指数つけができる。このことからPbOが変質し
ていることが明らかである。この反応と同様の反応は酢
酸などの有機酸においても認められた。そして酸化鉛を
粉砕,混合の初め,あるいは途中でこの様な塩基性鉛組
成物の形にしておくと,500℃〜900℃好ましくは700℃〜
800℃の温度での仮焼で組成均一性の良好な鉛系セラミ
ックス粉末が製造できることがわかった。本発明におい
ては,酸化鉛と他の出発原料を初めから一緒に,硝酸イ
オン,または有機酸イオンが存在するPH7〜11の水溶液
中で粉砕,混合を行なっても,またあらかじめ鉛酸化物
のみを硝酸イオン,または有機酸イオンが存在するPH7
〜11の水溶液中で粉砕,混合を行なって塩基性鉛組成物
の形にしておき,それに他の出発原料を添加して更に適
当な条件で粉砕,混合を行なっても良い。他の出発原料
は金属酸化物でも無機塩でも良い。硝酸イオンが存在す
るPH7〜11の水溶液は,硝酸とアンモニア水を混合する
か,PH調整したNH4NO3水溶液を用いるのが望ましい。有
機酸イオンが存在するPH7〜11の水溶液についても同様
の作製方法が望ましい。粉砕,混合の装置には,一般に
ボールミル,擂かい機,振動ミル,ビーズミル等が用い
られる。また本発明に使用される有機酸は主として酢
酸,アクリル酸等の有機カルボン酸である。本発明にお
ける重要な点は,鉛酸化物の変質を充分に行なうことで
あり,硝酸イオン,または有機酸イオンの濃度と水溶液
のPH,あるいは粉砕混合の各条件はこのことを前提に決
定される。本発明により500℃〜900℃の仮焼温度で,従
来得られなかった単一結晶相からなる易焼結性の鉛系セ
ラミックス粉末が酸化物混合法により得られる理由とし
ては,硝酸塩または有機酸塩の分解時にHedvall効果が
起こり,反応時の粉末の組成均一性を高めたためと考え
ている。以下この発明の実施例について詳述する。
In the X-ray diffraction pattern, the horizontal axis is the diffraction angle of Cu to Kα radiation,
The vertical axis is the X-ray intensity (cps). Fig. 1 shows the index of each diffraction peak by reflection of orthorhombic PbO called Mascot from the JCPDS card. Fig. 2 shows Pb 2 (NO 3 ) (OH) 3
Index can be assigned by reflection of. From this, it is clear that PbO is altered. A similar reaction was observed for organic acids such as acetic acid. Then, when the lead oxide is formed into such a basic lead composition at the beginning or during the mixing of the lead oxide, the temperature is 500 ° C to 900 ° C, preferably 700 ° C to
It was found that calcining at 800 ° C could produce lead-based ceramic powder with good composition uniformity. In the present invention, the lead oxide and the other starting materials are pulverized and mixed together in the aqueous solution of PH7 to 11 in which nitrate ions or organic acid ions are present. PH7 containing nitrate or organic acid ions
The mixture may be ground and mixed in an aqueous solution of No. 11 to 11 to form a basic lead composition, to which other starting materials may be added and further ground and mixed under appropriate conditions. Other starting materials may be metal oxides or inorganic salts. Aqueous solution of PH7~11 the nitrate ions are present, or mixed nitric acid and ammonia water, to use NH 4 NO 3 aqueous solution PH adjusted desired. A similar production method is desirable for the aqueous solutions of PH7 to PH11 in which organic acid ions are present. As a device for pulverization and mixing, a ball mill, a grinder, a vibration mill, a bead mill and the like are generally used. The organic acids used in the present invention are mainly organic carboxylic acids such as acetic acid and acrylic acid. The important point in the present invention is to sufficiently modify the lead oxide, and the conditions of the concentration of nitrate ion or organic acid ion and the PH of the aqueous solution or the pulverization and mixing are determined on the premise of this. . The reason that the sinterable lead-based ceramic powder consisting of a single crystal phase, which has not been obtained conventionally, can be obtained by the oxide mixing method at the calcination temperature of 500 to 900 ° C according to the present invention is that nitrate or organic acid It is thought that the Hedvall effect occurred during the decomposition of the salt, and the composition uniformity of the powder during the reaction was improved. Hereinafter, embodiments of the present invention will be described in detail.

[実施例] PbO62.81g,La2O34.53g,ZrO224.21g,TiO28.45gをとり,
PH8.3のNH4NO3水溶液(濃度100g/l)とともにボールミ
ル中で15時間粉砕混合した。これをアンモニア水で洗浄
後,80℃で乾燥し,800℃で2時間の仮焼を行なった。こ
れをボールミルを用いてアルコール中で再度粉砕し,乾
燥後700℃2時間の仮焼を行ない,解砕してPLZT原料粉
末を得た。第3図にこの粉末のX線回折図形を示す。
[Example] Take 62.81 g of PbO, 4.53 g of La 2 O 3, 24.21 g of ZrO 2, and 8.45 g of TiO 2 ,
It was pulverized and mixed in a ball mill for 15 hours together with a PH8.3 aqueous NH 4 NO 3 solution (concentration: 100 g / l). This was washed with aqueous ammonia, dried at 80 ° C., and calcined at 800 ° C. for 2 hours. This was pulverized again in an alcohol using a ball mill, dried, calcined at 700 ° C. for 2 hours, and pulverized to obtain a PLZT raw material powder. FIG. 3 shows an X-ray diffraction pattern of this powder.

X線回折図形の縦軸,横軸は,第1図,第2図同様で
ある。各回折ピークはほぼ立方晶PLZTで指数つけができ
る。同粉は,800℃以下の仮焼にもかかわらず,PLZT単相
になっていることがわかる。これにより鉛の蒸発が少な
い条件で好ましい処理が可能である。この粉末のBET法
による比表面積は,5m2/gであり,後述する比較例の酸化
物混合法によるPLZT粉末の比表面積と比べ,倍近い値と
なり粉の焼結性も向上していることがわかった。
The vertical and horizontal axes of the X-ray diffraction pattern are the same as in FIGS. Each diffraction peak can be indexed approximately by cubic PLZT. It can be seen that the powder was PLZT single phase despite calcining below 800 ℃. Thereby, preferable treatment can be performed under the condition that the evaporation of lead is small. The specific surface area of this powder measured by the BET method is 5 m 2 / g, which is almost twice the specific surface area of the PLZT powder obtained by the oxide mixing method of the comparative example described later, and the powder sinterability is also improved. I understood.

[比較例] PbO62.81g,La2O34.53g,ZrO224.21g,TiO28.45gをとり,
PH7の水とともにボールミル中で15時間粉砕混合した。
これを80℃で乾燥し,900℃で2時間の仮焼を行なった。
これをボールミルを用いてアルコール中で再度粉砕し,
乾燥後700℃2時間の仮焼を行ない,解離してPLZT原料
粉末を得た。第4図にこの粉末のX線回折図形を示す。
[Comparative Example] Take 62.81 g of PbO, 4.53 g of La 2 O 3, 24.21 g of ZrO 2, and 8.45 g of TiO 2 .
The mixture was ground and mixed for 15 hours in a ball mill together with water of PH7.
This was dried at 80 ° C and calcined at 900 ° C for 2 hours.
This is crushed again in alcohol using a ball mill,
After drying, the powder was calcined at 700 ° C. for 2 hours and dissociated to obtain a PLZT raw material powder. FIG. 4 shows an X-ray diffraction pattern of this powder.

X線回折図形の縦軸,横軸は,第1図,第2図,第3
図と同様である。図中,矢印で示したところに明瞭なPb
TiO3のピークがみられる。同粉は実施例より100℃高温
で仮焼したにもかかわらずPLZTとPbTiO3の混合物になっ
ている。またこの粉体のBET法による比表面積は3m2/gで
あった。
The vertical and horizontal axes of the X-ray diffraction pattern are shown in FIG. 1, FIG.
It is the same as the figure. In the figure, clear Pb is indicated by the arrow.
TiO 3 peak is observed. This powder is a mixture of PLZT and PbTiO 3 despite being calcined at a high temperature of 100 ° C. as compared with the example. The specific surface area of this powder determined by the BET method was 3 m 2 / g.

[発明の効果] 以上説明した様に,本発明により500℃〜900℃の仮焼
により酸化物混合法で単一焼結相を鉛系セラミックス原
料粉末が得られる。仮焼温度が下げられることにより,
得られる粉末の比表面積は従来の酸化物混合法により得
られる粉末に比べ大きくなり易焼結性となる。これはペ
ロブスカイト型鉛系セラミックスの電気的,光学的用途
の拡大に対し,酸化物混合法が好適に実施可能になり,
原料粉体の量産化,低コスト化へ寄与するものである。
[Effects of the Invention] As described above, according to the present invention, a lead-based ceramic raw material powder having a single sintered phase by an oxide mixing method can be obtained by calcination at 500 ° C to 900 ° C. By lowering the calcination temperature,
The specific surface area of the obtained powder is larger than that of the powder obtained by the conventional oxide mixing method, and the powder is easily sintered. This means that the oxide mixing method can be suitably implemented to expand the electric and optical applications of perovskite-type lead-based ceramics.
This contributes to mass production of raw material powder and cost reduction.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は,出発物質の1つであるPbOの粒子構造
の写真であり,第1図(b)は,X線回折図形である。 第2図(a)は,塩基性硝酸鉛組成物の粒子構造の写真
であり,第2図(b)は,X線回折図形である。 第3図は,実施例により得られたPLZTの原料粉末のX線
回折図形 第4図は,比較例により得られたPLZTの原料粉末のX線
回折図形
FIG. 1 (a) is a photograph of the particle structure of PbO, one of the starting materials, and FIG. 1 (b) is an X-ray diffraction pattern. FIG. 2A is a photograph of the particle structure of the basic lead nitrate composition, and FIG. 2B is an X-ray diffraction pattern. FIG. 3 is an X-ray diffraction pattern of the PLZT raw material powder obtained by the example. FIG. 4 is an X-ray diffraction pattern of the PLZT raw material powder obtained by the comparative example.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】酸化鉛を出発原料の1つとし,前記原料と
他の酸化物や無機塩を粉砕,混合後,焼成することによ
りセラミックス用原料粉末を製造する工程において,硝
酸イオン,または有機酸イオンが存在するPH7〜11の水
溶液中で出発原料すべてを粉砕,混合し,酸化鉛を塩基
性鉛組成物に変質させた後,500℃〜900℃の範囲で仮焼
することを特徴とする鉛系セラミックス粉末の製造方
法。
1. A process for producing a raw material powder for ceramics by using lead oxide as one of the starting materials, pulverizing and mixing the raw material with other oxides or inorganic salts, and then firing the mixture to form nitrate ions or organic compounds. All the starting materials are ground and mixed in an aqueous solution of PH7-11 in which acid ions are present, lead oxide is transformed into a basic lead composition, and then calcined in the range of 500-900 ° C. For producing lead-based ceramic powder.
【請求項2】酸化鉛を出発原料の1つとし,前記原料と
他の酸化物や無機塩を粉砕,混合後,焼成することによ
りセラミックス用原料粉末を製造する工程において,硝
酸イオン,または有機酸イオンが存在するPH7〜11の水
溶液中で,あらかじめ酸化鉛を粉砕して,塩基性鉛組成
物に変質させ,これを濾過後または濾過,乾燥後,ある
いはそのまま他の出発原料を添加し,粉砕,混合処理を
行ない,500℃〜900℃の範囲で仮焼することを特徴とす
る鉛系セラミックス粉末の製造方法。
2. A process in which lead oxide is used as a starting material, and the raw material and other oxides and inorganic salts are pulverized, mixed, and fired to produce a ceramic raw material powder. In an aqueous solution of PH7 to 11 in which acid ions are present, lead oxide is preliminarily pulverized to be transformed into a basic lead composition, which is filtered or filtered, dried, or other starting materials are added as it is, A method for producing a lead-based ceramic powder, comprising crushing and mixing, and calcining at a temperature of 500 to 900 ° C.
JP1100193A 1989-04-21 1989-04-21 Method for producing lead-based ceramic powder Expired - Lifetime JP2589179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1100193A JP2589179B2 (en) 1989-04-21 1989-04-21 Method for producing lead-based ceramic powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1100193A JP2589179B2 (en) 1989-04-21 1989-04-21 Method for producing lead-based ceramic powder

Publications (2)

Publication Number Publication Date
JPH02279551A JPH02279551A (en) 1990-11-15
JP2589179B2 true JP2589179B2 (en) 1997-03-12

Family

ID=14267468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1100193A Expired - Lifetime JP2589179B2 (en) 1989-04-21 1989-04-21 Method for producing lead-based ceramic powder

Country Status (1)

Country Link
JP (1) JP2589179B2 (en)

Also Published As

Publication number Publication date
JPH02279551A (en) 1990-11-15

Similar Documents

Publication Publication Date Title
US3577487A (en) Preparation of submicron sized alkaline earth titanate and zirconate powders
US5096642A (en) Process for producing a high density ceramic of perovskite
KR100497938B1 (en) Method for producing complex oxide powder and complex oxide powder
US6136229A (en) Method for the mechanochemical preparation of high performance ceramics
JPS6214489B2 (en)
US5066617A (en) Method for producing plzt powder
US8431109B2 (en) Process for production of composition
JPS6214490B2 (en)
JP2589179B2 (en) Method for producing lead-based ceramic powder
JP2764111B2 (en) Method for producing perovskite ceramic powder
JPH0159967B2 (en)
JPH0832559B2 (en) Method for producing inorganic fine powder of perovskite type compound
Ahmad et al. Surface area, XRD, and FTIR spectral characterization of chemically derived PbTiO3 ceramics
JPH01294527A (en) Production of metallic oxide of perovskite type of abo3 type
JPH0262496B2 (en)
KR20000001995A (en) Process for preparing ceramic powder of barium titanate
JPH05116943A (en) Production of barium titanate powder
JP3412195B2 (en) Method for producing composite perovskite oxide powder
JPH0527570B2 (en)
JPH0258230B2 (en)
JP3309467B2 (en) Method for producing lead-containing composite oxide powder
JP3412187B2 (en) Preparation of composite perovskite oxide powder
JP3309466B2 (en) Method for producing lead-containing composite oxide powder
JPS6243929B2 (en)
KR20000040804A (en) Preparation method of barium titanate and perovskite-type complex oxide