JP2586572B2 - Refractive index distributed optical coupler and method for producing the same - Google Patents

Refractive index distributed optical coupler and method for producing the same

Info

Publication number
JP2586572B2
JP2586572B2 JP63112237A JP11223788A JP2586572B2 JP 2586572 B2 JP2586572 B2 JP 2586572B2 JP 63112237 A JP63112237 A JP 63112237A JP 11223788 A JP11223788 A JP 11223788A JP 2586572 B2 JP2586572 B2 JP 2586572B2
Authority
JP
Japan
Prior art keywords
refractive
refractive index
light
material layer
index material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63112237A
Other languages
Japanese (ja)
Other versions
JPH01282511A (en
Inventor
和也 滝
昭央 鈴木
鈴木  誠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brother Industries Ltd
Original Assignee
Brother Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brother Industries Ltd filed Critical Brother Industries Ltd
Priority to JP63112237A priority Critical patent/JP2586572B2/en
Priority to US07/262,693 priority patent/US4865407A/en
Publication of JPH01282511A publication Critical patent/JPH01282511A/en
Application granted granted Critical
Publication of JP2586572B2 publication Critical patent/JP2586572B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/30Optical coupling means for use between fibre and thin-film device
    • G02B6/305Optical coupling means for use between fibre and thin-film device and having an integrated mode-size expanding section, e.g. tapered waveguide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/1228Tapered waveguides, e.g. integrated spot-size transformers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B6/122Basic optical elements, e.g. light-guiding paths
    • G02B6/124Geodesic lenses or integrated gratings
    • G02B6/1245Geodesic lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12183Ion-exchange
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12166Manufacturing methods
    • G02B2006/12195Tapering

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Optical Integrated Circuits (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、薄膜光導波路に光の入出力結合を行う光カ
プラ,更に詳細には、その光導波路中の光の伝搬方向に
屈折率分布をもつ屈折率分布光カプラ及びその作製法に
関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical coupler for inputting / outputting light to / from a thin-film optical waveguide, and more particularly, to a refractive index distribution in a propagation direction of light in the optical waveguide. And a method for producing the same.

[従来技術] 従来、ガラス、SiO2等の基板上に基板より屈折率の高
い薄膜を設けたり、LiNbO3材料製の誘電体基板にTi等を
拡散して屈折率の高い領域を作成し、この屈折率の高い
領域に光を閉じ込めて転送する光カプラが既に知られて
いる。かかる光カプラにおいて光導波路に光を導波させ
るには、第6図のように基板61上の光導波路62にレンズ
63等で光を絞り込んで端面から入射する端面結合,第7
図のようにルチルプリズム等の導波路62より屈折率いの
高いプリズム71を用いるプリズム結合,第8図のように
導波路81の厚さを徐々に薄くすることにより光が基板側
へ放射されることを利用するテーパ結合が用いられてい
る。一方、導波路の屈折率分布の作製法としては、LiNb
O3基板に屈折率を増加させる働きを有するTiを拡散させ
た後、そのTi拡散層の上に屈折率を減少させるMgOを基
板に拡散させる方法が知られている。これは屈折率分布
が基板上に対し垂直方向に形成されるものである。
[Prior art] Conventionally, a thin film having a higher refractive index than a substrate such as glass or SiO 2 is provided on a substrate, or a region having a high refractive index is created by diffusing Ti or the like into a dielectric substrate made of LiNbO 3 material. Optical couplers for confining and transferring light in this high refractive index region are already known. In order to guide light to the optical waveguide in such an optical coupler, a lens is provided on the optical waveguide 62 on the substrate 61 as shown in FIG.
End face coupling that focuses light at 63 etc. and enters from the end face, 7th
As shown in the figure, prism coupling using a prism 71 having a higher refractive index than the waveguide 62 such as a rutile prism, and light is emitted to the substrate side by gradually reducing the thickness of the waveguide 81 as shown in FIG. Taper coupling that utilizes this fact is used. On the other hand, as a method of producing the refractive index distribution of the waveguide, LiNb
There is known a method in which Ti having a function of increasing the refractive index is diffused into an O 3 substrate, and then MgO, which reduces the refractive index, is diffused into the substrate on the Ti diffusion layer. This is one in which the refractive index distribution is formed in a direction perpendicular to the substrate.

[発明が解決しようとする課題] しかしながら、第6図に示す端面結合では、厚さ2〜
5μm程度の光導波路にレンズ等で光を集束させたとき
にその光スポットを一致させる必要があり、外部で数μ
mの精度で位置調整をしなければならず、また端面研磨
という工程が必要となる。また、第7図のプリズム結合
では、高価なプリズムが必要であり、光ファイバ等との
結合も困難である。また、第8図に示すような武田,宮
崎(電子情報通信学会技術研究報告MW87−112)による
導波路の厚さをテーパ状に減少させ光を導波路中に閉じ
込められなくなるカットオフを利用して基板側へ光を放
射するテーパ導波路においては、出射光のビーム径が大
きく単一モードの結合には効率が低かった。一方、LiNb
O3基板表面にTiを拡散させた後、MgOを拡散させて屈折
率分布を作成する方法では、拡散を2回行う等工程が複
雑であるばかりでなく、屈折率分布が基板に垂直な方向
にしか生じず、光の伝搬方向に変化する屈折率分布は得
られない。
[Problems to be solved by the invention] However, in the end face connection shown in FIG.
When light is focused on an optical waveguide of about 5 μm by a lens or the like, it is necessary to make the light spots coincide with each other.
The position must be adjusted with an accuracy of m, and a step of polishing the end face is required. In addition, the prism coupling shown in FIG. 7 requires an expensive prism, and it is difficult to couple with an optical fiber or the like. Also, as shown in Fig. 8, the cut-off by Takeda and Miyazaki (IEICE Technical Report MW87-112) is used to reduce the thickness of the waveguide in a tapered shape so that light cannot be confined in the waveguide. In a tapered waveguide that emits light toward the substrate side, the beam diameter of the emitted light is large and the efficiency for single mode coupling is low. On the other hand, LiNb
The method of creating a refractive index distribution by diffusing Mg after diffusing Ti on the surface of the O 3 substrate not only complicates the process such as performing diffusion twice, but also in a direction where the refractive index distribution is perpendicular to the substrate. And a refractive index distribution that changes in the light propagation direction cannot be obtained.

本発明は、上述した問題点を解決するためになされた
ものであり、Ti等の屈折率を増加させる働きを有する元
素あるいは化合物のMgO等の屈折率を減少させる働きを
有する元素あるいは化合物とを同時に蒸着した後、熱拡
散することにより、簡単な工程で光の伝搬方向に屈折率
分布を有する高効率な光カプラを提供することを目的と
している。
The present invention has been made to solve the above-described problems, and includes an element or a compound having a function of decreasing the refractive index such as MgO of an element or a compound having a function of increasing the refractive index such as Ti. An object of the present invention is to provide a highly efficient optical coupler having a refractive index distribution in a light propagation direction in a simple process by performing thermal diffusion after vapor deposition at the same time.

[課題を解決するための手段] この目的を達成するために、本発明の屈折率分布光カ
プラは、誘電体基板上に光導波路が形成されたものであ
って、前記誘電体基板の一面に、前記光導波路の構成材
料である高屈折率材料層と低屈折率材料層とを、その低
屈折率材料層が光の伝搬方向の先方側に位置するように
並べて配設し、その高屈折率材料層と低屈折率材料層と
の境界には、前記光導波路を伝搬される光の等価屈折率
がその伝搬方向の先方で漸次小さくなって光の拡散比率
が漸次増加する拡散層が設けられる。
[Means for Solving the Problems] In order to achieve this object, a gradient index optical coupler according to the present invention has a structure in which an optical waveguide is formed on a dielectric substrate. A high-refractive-index material layer and a low-refractive-index material layer, which are constituent materials of the optical waveguide, are arranged side by side so that the low-refractive-index material layer is located on the front side in the light propagation direction; At the boundary between the refractive index material layer and the low refractive index material layer, a diffusion layer is provided in which the equivalent refractive index of light propagating through the optical waveguide gradually decreases in the forward direction of the propagation direction and the light diffusion ratio gradually increases. Can be

また、誘電体基板の一面に、光導波路の構成材料であ
る高屈折率材料層と低屈折率材料層とを、その低屈折率
材料層が光の伝搬方向の先方側に位置するように並べて
面一に形成するとともに、その高屈折率材料層と低屈折
率材料層との境界におけるそれ等の材料層の層厚を、互
いに他の材料層側に近ずくに従って徐々に減少するよう
に形成し、その後に、前記両材料層の境界を熱処理する
ことによって光の等価屈折率がその伝搬方向の先方で漸
次小さくなって光の拡散比率が漸次増加する拡散層を形
成したことを特徴とする。
In addition, a high-refractive-index material layer and a low-refractive-index material layer, which are constituent materials of an optical waveguide, are arranged on one surface of a dielectric substrate such that the low-refractive-index material layer is located on the front side in the light propagation direction. The layers are formed flush with each other, and the thicknesses of the material layers at the boundary between the high-refractive-index material layer and the low-refractive-index material layer are formed so as to gradually decrease as they approach each other. After that, by heat-treating the boundary between the two material layers, a diffusion layer is formed in which the equivalent refractive index of light gradually decreases in the forward direction of the propagation direction and the diffusion ratio of light gradually increases. .

[作用] かかる構成による本発明の屈折率分布光カプラによれ
ば、光導波路中を光が伝搬されると、その先方で光導波
路中の光の等価屈折率が漸次小さくなっていくので該光
導波路中に光が閉じ込められなくなり、誘電体基板へ向
けて出射される。
[Operation] According to the refractive index distribution optical coupler of the present invention having such a configuration, when light propagates in the optical waveguide, the equivalent refractive index of the light in the optical waveguide gradually decreases in the forward direction. Light is no longer confined in the wave path and is emitted toward the dielectric substrate.

[実施例] 以下、本発明を具体化した一実施例を図面を参照して
説明する。
[Embodiment] An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の屈折率分布光カプラを作成するため
の蒸着装置の主要部を示したものである。例えばZ−カ
ット,LiNbO3等の誘電体基板1上にTi蒸気噴出用とMgO蒸
気噴出用の2つの穴のあいたマスク2を少し間隔をあけ
て平行に配置し、該マスク2の2つの穴を通してTi3とM
gO4を噴出させ、基板1上にTi層とMgO層とを面一に、か
つ境界で重なり合うように同時に真空蒸着する。なお、
第1図では真空排気系,チャンバ,ヒータや電子ビーム
等の加熱源は図示していない。
FIG. 1 shows a main part of a vapor deposition apparatus for producing a gradient index optical coupler of the present invention. For example, on a dielectric substrate 1 such as Z-cut or LiNbO 3 , a mask 2 having two holes for ejecting Ti vapor and for ejecting MgO vapor is arranged in parallel with a slight space therebetween. Through Ti3 and M
gO4 is ejected, and a Ti layer and an MgO layer are simultaneously vacuum-deposited on the substrate 1 so as to be flush with each other and overlap at the boundary. In addition,
FIG. 1 does not show a vacuum exhaust system, a chamber, a heater, a heating source such as an electron beam, or the like.

第2図にLiNbO3基板1上のTi3及びMgO4の膜厚分布を
示す。蒸着源の真上の部分21,22においては、Ti及びMgO
共に均一な分布となる。蒸着源の真上から離れた部分23
においては、膜厚を徐々に減少する。従って、基板上の
部分23において左の方ほどTiの量が減少し、MgOの量が
増大する。Ti,MgOの膜厚は例えばそれぞれ400Å及び800
Åである。これを1000℃で6時間拡散した後の屈折率分
布を第3図に示す。すなわち光導波路部分21ではTiの拡
散により異常光に対する屈折率が約0.004上昇する。ま
たMgOを拡散した部分22では逆に異常光に対する屈折率
が約0.004低下する。TiとMgOが重なった領域23では導波
路21から離れるに従い徐々に屈折率が小さくなる。な
お、屈折率は深さ方向にも変化しており、ほぼガウス分
布となっている。
Shows the Ti3 and thickness distribution of the MgO 4 on the LiNbO 3 substrate 1 in Figure 2. In the portions 21 and 22 directly above the deposition source, Ti and MgO
Both have a uniform distribution. Part 23 just above the evaporation source
In, the film thickness is gradually reduced. Therefore, in the portion 23 on the substrate, the amount of Ti decreases toward the left and the amount of MgO increases. The film thickness of Ti and MgO is, for example, 400 mm and 800 mm, respectively.
Å. FIG. 3 shows the refractive index distribution after this was diffused at 1000 ° C. for 6 hours. That is, in the optical waveguide portion 21, the refractive index with respect to extraordinary light increases by about 0.004 due to the diffusion of Ti. On the other hand, in the portion 22 where MgO is diffused, the refractive index for extraordinary light decreases by about 0.004. In the region 23 where Ti and MgO overlap, the refractive index gradually decreases as the distance from the waveguide 21 increases. Note that the refractive index also changes in the depth direction, and has a substantially Gaussian distribution.

光の伝搬のようすは、第4図に示す。光導波路部分21
ではTi拡散部41の屈折率が基板1よりも大きく光はTi拡
散部分41に閉じ込められて左方へ導波される。TiとMgO
の同時拡散領域23では左方ほど導波層41の屈折率が低下
している。光導波層41の屈折率が小さくなると光の分布
は基板に広がる。さらに、光導波層41の屈折率が小さく
なると光は光導波層41中には閉じ込められなくなり基板
1へ放射される。基板に放射された光は、例えば左端に
配置された光ファイバ42へ結合する。すなわち、領域23
が屈折率分布光カプラとなる。
The manner of light propagation is shown in FIG. Optical waveguide part 21
In this case, the refractive index of the Ti diffusion portion 41 is larger than that of the substrate 1 and light is confined in the Ti diffusion portion 41 and guided to the left. Ti and MgO
In the simultaneous diffusion region 23, the refractive index of the waveguide layer 41 decreases toward the left. When the refractive index of the optical waveguide layer 41 decreases, the light distribution spreads over the substrate. Further, when the refractive index of the optical waveguide layer 41 decreases, light is not confined in the optical waveguide layer 41 and is emitted to the substrate 1. The light emitted to the substrate is coupled to, for example, an optical fiber 42 disposed at the left end. That is, region 23
Becomes a refractive index distribution optical coupler.

本実施例において、マスクの穴の大きさ,間隔,形状
については限定しない。また、蒸着源,マスク,基板相
互間の位置関係についても限定しない。また、TiやMgO
等の膜の形成法は真空蒸着法だけでなく、スパッタ法,
イオンビーム・スパッタ法等特に限定しない。Ti,MgOの
各膜厚や拡散時間等についても限定しない。基板材料も
LiNbO3に限定しない。TiとMgOの同時蒸着部の膜厚分布
の形状についても限定しない。この膜厚分布の形状によ
り屈折率分布光カプラ部の屈折率分布を制御することが
できる。本実施例では、屈折率分布は直線的に変化して
いるが、例えば第5図のように屈折率が伝搬距離の約1/
2乗に比例するように上に凹状に変化させることにより
基板への出射光に集光作用をもたせることができる。こ
の屈折率分布の形状についても限定しない。さらに拡散
材料もTI,MgOに限定しない。
In this embodiment, the size, interval, and shape of the holes in the mask are not limited. Further, the positional relationship among the evaporation source, the mask, and the substrate is not limited. Also, Ti and MgO
The method of forming such films is not only the vacuum deposition method but also the sputtering method,
There is no particular limitation on the ion beam sputtering method or the like. The thickness and diffusion time of each of Ti and MgO are not limited. Substrate material also
Not limited to LiNbO 3. The shape of the film thickness distribution in the co-evaporation portion of Ti and MgO is not limited. The refractive index distribution of the refractive index distribution optical coupler can be controlled by the shape of the film thickness distribution. In this embodiment, the refractive index distribution changes linearly. For example, as shown in FIG.
The light emitted to the substrate can be condensed by changing the concave shape upward so as to be proportional to the square. The shape of the refractive index distribution is not limited. Further, the diffusion material is not limited to TI and MgO.

本実施例では、スラブ導波路について説明したが3次
元導波路についても同様である。この場合、Ti,MgO蒸着
後に所望の光導波路形状にTi,MgOをエッチング後拡散す
ればよい。
Although the slab waveguide has been described in the present embodiment, the same applies to a three-dimensional waveguide. In this case, after the Ti and MgO are deposited, the Ti and MgO may be diffused after etching into a desired optical waveguide shape.

[発明の効果] 以上詳述したことから明らかなように、本発明によれ
ば、TiとMgOを同時蒸着した後拡散させる簡単な工程で
光の伝搬方向に屈折率分布を有する屈折率分布光カプラ
の作製が可能となる。さらに拡散後基板の屈折率が増加
するTiと屈折率が減少するMgOを用いることにより大き
な屈折率変化が得られ、高効率の光カプラを作成するこ
とができる。
[Effects of the Invention] As is clear from the above description, according to the present invention, the refractive index distribution light having a refractive index distribution in the light propagation direction in a simple step of diffusing after co-evaporating Ti and MgO. It is possible to produce a coupler. Further, by using Ti in which the refractive index of the substrate increases after diffusion and MgO in which the refractive index decreases, a large change in the refractive index can be obtained, and a highly efficient optical coupler can be manufactured.

【図面の簡単な説明】[Brief description of the drawings]

第1図から第4図までは本発明を具体化した実施例を示
すもので、第1図は本発明の一実施例であるTi,MgOの同
時蒸着の説明図、第2図はTi及びMgOの膜厚分布を示す
断面図、第3図は拡散後の光導波路の屈折率分布を示す
図、第4図は屈折率分布光カプラの動作原理を示す説明
図、第5図は本発明の実施例の変形例である屈折率分布
を示す図、第6図は従来の端面結合の説明図、第7図は
従来のプリズム結合の説明図、第8図は従来のテーパ結
合の説明図である。 図中、1は基板、2はマスク、3はTi、4はMgOであ
る。
FIGS. 1 to 4 show an embodiment of the present invention. FIG. 1 is an explanatory view of the simultaneous vapor deposition of Ti and MgO, which is an embodiment of the present invention, and FIG. FIG. 3 is a cross-sectional view showing a film thickness distribution of MgO, FIG. 3 is a view showing a refractive index distribution of an optical waveguide after diffusion, FIG. 4 is an explanatory view showing an operation principle of a refractive index distribution optical coupler, and FIG. FIG. 6 is a diagram illustrating a refractive index distribution which is a modification of the embodiment of FIG. 6, FIG. 6 is a diagram illustrating a conventional end face coupling, FIG. 7 is a diagram illustrating a conventional prism coupling, and FIG. It is. In the figure, 1 is a substrate, 2 is a mask, 3 is Ti, and 4 is MgO.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】誘電体基板上に光導波路が形成されたもの
であって、前記誘導体基板の一面に、前記光導波路の構
成材料である高屈折率材料層と低屈折率材料層とを、そ
の低屈折率材料層が光の伝搬方向の先方側に位置するよ
うに並べて配設し、その高屈折率材料層と低屈折率材料
層との境界には、前記光導波路を伝搬される光の等価屈
折率がその伝搬方向の先方で漸次小さくなって光の拡散
比率が漸次増加する拡散層を設けたことを特徴とする屈
折率分布光カプラ。
An optical waveguide is formed on a dielectric substrate, and a high-refractive-index material layer and a low-refractive-index material layer, which are constituent materials of the optical waveguide, are provided on one surface of the dielectric substrate. The low-refractive-index material layers are arranged side by side so as to be located on the front side in the light propagation direction, and the boundary between the high-refractive-index material layer and the low-refractive-index material layer is located at the boundary between the light propagating through the optical waveguide. A refractive index distribution optical coupler characterized in that a diffusion layer is provided in which the equivalent refractive index gradually decreases in the forward direction of the propagation direction and the diffusion ratio of light gradually increases.
【請求項2】誘導体基板の一面に、光導波路の構成材料
である高屈折率材料層と低屈折率材料層とを、その低屈
折率材料層が光の伝搬方向の先方側に位置するように並
べて面一に形成するとともに、その高屈折率材料層と低
屈折率材料層との境界におけるそれ等の材料層の層厚
を、互いに他の材料層側に近ずくに従って徐々に減少す
るように形成し、その後に、前記両材料層の境界を熱処
理することによって光の等価屈折率がその伝搬方向の先
方で漸次小さくなって光の拡散比率が漸次増加する拡散
層を形成したことを特徴とする屈折率分布光カプラの作
製法。
2. A high-refractive-index material layer and a low-refractive-index material layer, which are constituent materials of an optical waveguide, are disposed on one surface of a dielectric substrate so that the low-refractive-index material layer is located on the front side in the light propagation direction. And at the boundary between the high-refractive-index material layer and the low-refractive-index material layer, the thickness of those material layers is gradually reduced as they approach each other. Then, by heat-treating the boundary between the two material layers, a diffusion layer is formed in which the equivalent refractive index of light gradually decreases in the forward direction of the propagation direction and the diffusion ratio of light gradually increases. Of producing a gradient index optical coupler.
JP63112237A 1987-10-22 1988-05-09 Refractive index distributed optical coupler and method for producing the same Expired - Fee Related JP2586572B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63112237A JP2586572B2 (en) 1988-05-09 1988-05-09 Refractive index distributed optical coupler and method for producing the same
US07/262,693 US4865407A (en) 1987-10-22 1988-10-26 Optical waveguide element, method of making the same and optical coupler employing optical waveguide element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63112237A JP2586572B2 (en) 1988-05-09 1988-05-09 Refractive index distributed optical coupler and method for producing the same

Publications (2)

Publication Number Publication Date
JPH01282511A JPH01282511A (en) 1989-11-14
JP2586572B2 true JP2586572B2 (en) 1997-03-05

Family

ID=14581678

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63112237A Expired - Fee Related JP2586572B2 (en) 1987-10-22 1988-05-09 Refractive index distributed optical coupler and method for producing the same

Country Status (1)

Country Link
JP (1) JP2586572B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3009986B2 (en) * 1993-11-10 2000-02-14 シャープ株式会社 Fabrication method of tapered waveguide

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58118610A (en) * 1982-01-08 1983-07-14 Nec Corp Production of tapered optical waveguide
JPS59229512A (en) * 1983-06-13 1984-12-24 Matsushita Electric Ind Co Ltd Optical coupling method
JPS61254938A (en) * 1985-05-07 1986-11-12 Matsushita Electric Ind Co Ltd Production of optical wavelength converting element

Also Published As

Publication number Publication date
JPH01282511A (en) 1989-11-14

Similar Documents

Publication Publication Date Title
US4262995A (en) Planar star coupler device for fiber optics
JPS6353729A (en) Integrated optical head
JPH04234005A (en) Manufacture of lightguide tube by ion exchange method
JPH01196005A (en) Manufacture of light microguide
US4711514A (en) Product of and process for forming tapered waveguides
US5483609A (en) Optical device with mode absorbing films deposited on both sides of a waveguide
JP2586572B2 (en) Refractive index distributed optical coupler and method for producing the same
JPS6286307A (en) Grating coupler
JPH06186451A (en) Optical waveguide device
JPH0675130A (en) Optical guide device
US5410623A (en) Optical device having two optical waveguides connected and a method of producing the same
JPH0727931A (en) Optical waveguide
JPH04333004A (en) Light guide device
JP2679760B2 (en) Optical waveguide
JPH0660966B2 (en) Optical device manufacturing method
JP2635986B2 (en) Optical waveguide switch
JPS6237362B2 (en)
JP2783817B2 (en) Manufacturing method of optical waveguide device
JPH02235030A (en) Optical directional coupler
JP2756379B2 (en) Waveguide optical switch and method of manufacturing the same
JPS6325642B2 (en)
JPH0643328A (en) Multilayered optical waveguide and its production
JPS6051682B2 (en) Optical mode discriminator
JPH04301625A (en) Optical function element
JPH0697287B2 (en) Light control circuit manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees