JP2586562B2 - Sputtering target and method of manufacturing sputtering target - Google Patents

Sputtering target and method of manufacturing sputtering target

Info

Publication number
JP2586562B2
JP2586562B2 JP63084312A JP8431288A JP2586562B2 JP 2586562 B2 JP2586562 B2 JP 2586562B2 JP 63084312 A JP63084312 A JP 63084312A JP 8431288 A JP8431288 A JP 8431288A JP 2586562 B2 JP2586562 B2 JP 2586562B2
Authority
JP
Japan
Prior art keywords
powder
porosity
transition metal
target
rare earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63084312A
Other languages
Japanese (ja)
Other versions
JPH01259165A (en
Inventor
明 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP63084312A priority Critical patent/JP2586562B2/en
Priority to DE3885690T priority patent/DE3885690T2/en
Priority to EP88308503A priority patent/EP0308201B1/en
Priority to KR1019880011970A priority patent/KR930007159B1/en
Priority to CN88106744A priority patent/CN1033654A/en
Publication of JPH01259165A publication Critical patent/JPH01259165A/en
Application granted granted Critical
Publication of JP2586562B2 publication Critical patent/JP2586562B2/en
Priority to HK130197A priority patent/HK130197A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B11/00Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor
    • G11B11/10Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field
    • G11B11/105Recording on or reproducing from the same record carrier wherein for these two operations the methods are covered by different main groups of groups G11B3/00 - G11B7/00 or by different subgroups of group G11B9/00; Record carriers therefor using recording by magnetic means or other means for magnetisation or demagnetisation of a record carrier, e.g. light induced spin magnetisation; Demagnetisation by thermal or stress means in the presence or not of an orienting magnetic field using a beam of light or a magnetic field for recording by change of magnetisation and a beam of light for reproducing, i.e. magneto-optical, e.g. light-induced thermomagnetic recording, spin magnetisation recording, Kerr or Faraday effect reproducing
    • G11B11/10582Record carriers characterised by the selection of the material or by the structure or form
    • G11B11/10586Record carriers characterised by the selection of the material or by the structure or form characterised by the selection of the material
    • G11B11/10589Details
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • G11B5/851Coating a support with a magnetic layer by sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering
    • H01F41/183Sputtering targets therefor

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Vapour Deposition (AREA)
  • Thin Magnetic Films (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類遷移金属合金スパッタリング用ターゲ
ットおよびその製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a rare earth transition metal alloy sputtering target and a method for producing the same.

〔従来の技術〕[Conventional technology]

希土類遷移金属系光磁気記録膜を作成するスパッタリ
ング用ターゲットは大きく別けて、希土類遷移金属合金
相のみが存在する単相タイプと、希土類金属相と遷移金
属相と希土類遷移金属合金相の3相タイプとがよく知ら
ている。3相タイプは、さらに2つの製造方法があり、
特開昭61−99640に示す焼結タイプと、特願昭62−23277
2、62−253001に示す溶融タイプがある。
A sputtering target for forming a rare earth transition metal based magneto-optical recording film is largely divided into a single phase type in which only a rare earth transition metal alloy phase is present, and a three phase type in which a rare earth metal phase, a transition metal phase and a rare earth transition metal alloy phase are present. Is well known. The three-phase type has two more manufacturing methods,
JP-A-61-99640 discloses a sintered type and Japanese Patent Application No. 62-23277.
2, there is a melting type shown in 62-253001.

このうち、3相溶融タイプの製造方法のうち、特願昭
62−315613、同62−315614に示す遷移金属粉末上に希土
類遷移金属鋳塊を置き、鋳塊を溶融させ粉末内に浸み込
ませて作成する方法では、粉末のコントロールが重要と
なってくる。
Among these, among the three-phase melting type manufacturing methods,
62-315613, the method of placing a rare earth transition metal ingot on the transition metal powder shown in 62-315614, melting the ingot and making it immersed in the powder, the control of the powder becomes important .

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

つまり、粉末の空孔の内に、溶融した鋳塊が浸み込み
ターゲットが作られるのであるから、ターゲット組成
は、粉末の空孔率で決定されることになる。そこで本発
明の目的は、粉末の空孔率を制御することにより、所望
の組成の各種ターゲットを提供するところにある。
In other words, since the molten ingot penetrates into the pores of the powder to form the target, the target composition is determined by the porosity of the powder. Therefore, an object of the present invention is to provide various targets having a desired composition by controlling the porosity of the powder.

〔課題を解決するための手段〕[Means for solving the problem]

このような目的は、下記の本発明により達成される。
すなわち、本発明は、型内に遷移金属の粉末と希土類−
遷移金属合金の鋳塊を入れ、これを前記希土類−遷移金
属合金の融点以上の温度で加熱し、溶融した鋳塊を前記
粉末の空孔内に含浸せしめることにより作製するスパッ
タリング用ターゲットの製造方法であって、前記粉末の
前記型内における空孔率を30〜80%の範囲に設定したこ
とを特徴とするスパッタリング用ターゲットの製造方法
である。
Such an object is achieved by the present invention described below.
That is, the present invention provides a method for preparing a transition metal powder and a rare earth element in a mold.
A method for producing a sputtering target manufactured by placing an ingot of a transition metal alloy, heating it at a temperature equal to or higher than the melting point of the rare earth-transition metal alloy, and impregnating the molten ingot into the pores of the powder. And a porosity of the powder in the mold is set in a range of 30 to 80%.

この場合、前記希土類−遷移金属合金は、Sm、Nd、P
r、Ceのうちの少なくとも1種の軽希土類金属(LR)
と、Gd、Tb、Dyのうちの少なくとも1種の重希土類金属
と、Fe、Coのうちの少なくとも1種の遷移金属(TM)と
を含み、前記粉末は、Fe、Coのうちの少なくとも1種の
遷移金属(TM)を含むものであるのが好ましい。
In this case, the rare earth-transition metal alloy is Sm, Nd, P
At least one light rare earth metal (LR) of r and Ce
And at least one heavy rare earth metal of Gd, Tb, and Dy, and at least one transition metal (TM) of Fe and Co, wherein the powder comprises at least one of Fe and Co. Preferably, it contains a species of transition metal (TM).

また、前記希土類−遷移金属合金は、Gd、Tb、Dyのう
ちの少なくとも1種の重希土類金属(HR)と、Fe、Coの
うちの少なくとも1種の遷移金属(TM)とを含み、前記
粉末は、Fe、Coのうちの少なくとも1種の遷移金属(T
M)を含むものであるのが好ましい。
Further, the rare earth-transition metal alloy includes at least one heavy rare earth metal (HR) of Gd, Tb, and Dy, and at least one transition metal (TM) of Fe and Co. The powder contains at least one transition metal (T
M).

また、本発明は、空孔率が30〜80%である遷移金属の
粉末の空孔内に希土類−遷移金属合金を含浸してなるス
パッタリング用ターゲットであって、ターゲットを構成
する組織が、希土類金属相と、遷移金属相と、希土類−
遷移金属合金相とを有していることを特徴とするスパッ
タリング用ターゲットである。
Further, the present invention is a sputtering target in which porosity of a transition metal powder having a porosity of 30 to 80% is impregnated with a rare earth-transition metal alloy, wherein the structure constituting the target is a rare earth element. Metal phase, transition metal phase, rare earth-
A sputtering target comprising a transition metal alloy phase.

〔作 用〕 本発明は、型内に遷移金属の粉末と希土類−遷移金属
合金の鋳塊を入れ、これを希土類−遷移金属合金の融点
以上の温度で加熱して希土類−遷移金属合金を溶融し、
粉末の空孔中に含浸させることにより作製するスパッタ
リング用ターゲットを作製するものであるが、得られる
ターゲットの組成は、粉末の空孔率(型内に入れられた
粉末の集合体の各粉末間に形成された空孔の閉める体積
比)により決定される。
[Operation] In the present invention, a transition metal powder and an ingot of a rare earth-transition metal alloy are placed in a mold, and this is heated at a temperature equal to or higher than the melting point of the rare earth-transition metal alloy to melt the rare earth-transition metal alloy. And
The sputtering target is prepared by impregnating the powder into the pores of the powder. The composition of the obtained target is determined by the porosity of the powder (between each powder of the aggregate of the powder put in the mold). Is determined by the volume ratio of pores formed in the liquid crystal.

つまり、粉末の空孔中にしか、溶融した鋳塊が浸み込
めないため、ターゲット中の希土類金属量が粉末の空孔
率で規定されてしまうからである。
That is, since the molten ingot can only penetrate into the pores of the powder, the amount of rare earth metal in the target is determined by the porosity of the powder.

媒体の組成は希土類金属量が15at%〜35at%ぐらいま
でが要求されるため、それに伴いターゲットの組成を合
わせなければならない。それを満たすため粉末の空孔率
を種々変えることによりターゲット組成を合わせようと
するものである。
Since the composition of the medium is required to have a rare earth metal content of about 15 at% to 35 at%, the composition of the target must be adjusted accordingly. In order to satisfy this, the target composition is adjusted by changing the porosity of the powder in various ways.

以下、詳細に説明する。 The details will be described below.

[A]粉末の空孔率が30%程度の場合 第1図(a)に示すように、型内に入れた際に空孔率
が30%程度(下限付近)となるような遷移金属の粉末を
用意し、これを型内の底部に入れ、その上に希土類−遷
移金属合金の鋳塊を置く。次に、型内を鋳塊の融点以上
の温度に加熱し、鋳塊を溶融する。第1図(b)に示す
ように、溶融した鋳塊は、粉末中に含浸する。この場
合、溶融した鋳塊は、粉末中の空孔内に入り込み、空孔
と置換されるので、その空孔率が30%程度では、希土類
金属の含有量が比較的少ないスパッタリング用ターゲッ
トが製造できる。
[A] When the porosity of the powder is about 30% As shown in FIG. 1 (a), a transition metal having a porosity of about 30% (near the lower limit) when placed in a mold. A powder is prepared and placed in the bottom of the mold, on which an ingot of a rare earth-transition metal alloy is placed. Next, the inside of the mold is heated to a temperature equal to or higher than the melting point of the ingot to melt the ingot. As shown in FIG. 1 (b), the molten ingot is impregnated in the powder. In this case, the molten ingot enters the vacancies in the powder and is replaced by the vacancies. Therefore, when the porosity is about 30%, a sputtering target having a relatively low content of rare earth metal is produced. it can.

[B]粉末の空孔率が80%程度の場合 第2図(a)に示すように、型内に入れた際に空孔率
が80%程度(上限付近)となるような遷移金属の粉末を
用意し、これを型内の底部に入れ、その上に希土類−遷
移金属合金の鋳塊を置く。次に、型内を鋳塊の融点以上
の温度に加熱し、鋳塊を溶融する。第2図(b)に示す
ように、溶融した鋳塊は、粉末中に含浸する。この場合
も前記と同様に、溶融した鋳塊は、粉末中の空孔内に入
り込み、空孔と置換されるので、その空孔率が80%程度
では、希土類金属の含有量が比較的多いスパッタリング
用ターゲットが製造できる。
[B] When the porosity of the powder is about 80% As shown in FIG. 2 (a), a transition metal having a porosity of about 80% (near the upper limit) when placed in a mold. A powder is prepared and placed in the bottom of the mold, on which an ingot of a rare earth-transition metal alloy is placed. Next, the inside of the mold is heated to a temperature equal to or higher than the melting point of the ingot to melt the ingot. As shown in FIG. 2 (b), the molten ingot is impregnated in the powder. Also in this case, similarly to the above, the molten ingot enters the pores in the powder and is replaced with the pores. Therefore, when the porosity is about 80%, the content of the rare earth metal is relatively large. A sputtering target can be manufactured.

このように、粉末の空孔率を30〜80%の間で適宜調整
することにより、ターゲットの組成を決定することがで
きる。
Thus, the composition of the target can be determined by appropriately adjusting the porosity of the powder between 30% and 80%.

次に、粉末の製造方法の一例について説明する。粉末
は、溶融金属を不活性ガス雰囲気中に噴霧し、該ガス中
に浮遊した状態で凝固させるガスアトマイズ法、溶融金
属を噴霧して水中で急冷する急冷法、金属の酸化物を製
造しこれを還元するる還元法、金属塊または金属粒を粉
砕する粉砕法等の周知の方法、あるいはこれらを適宜組
み合わせた方法により製造することができ、その製造方
法、製造条件、粉末の粒径、型への充填条件(圧粉の度
合い)等を適宜選定することにより、所望の空孔率を得
ることができる。例えば、前記ガスアトマイズ法で製造
される粉末は、ほぼ球状となるため、前記[A]のよう
に、空孔率が比較的低い場合に適しており、一方、前記
還元法で製造される粉末は、脱酸素により表面積が増大
し、多数の微小突起を持つ形状となるので、前記[B]
のように、空孔率が比較的高い場合に適している。前記
急冷法や前記粉砕法は、それらの中間に位置する。
Next, an example of a method for producing a powder will be described. The powder is produced by spraying a molten metal into an inert gas atmosphere and solidifying the gas in a floating state in the gas, a gas atomizing method, a quenching method of spraying the molten metal and rapidly cooling in water, and producing a metal oxide. It can be manufactured by a well-known method such as a reduction method of reducing, a pulverization method of pulverizing a metal lump or a metal particle, or a method of appropriately combining these methods. The desired porosity can be obtained by appropriately selecting the filling conditions (degree of powder compaction) and the like. For example, since the powder produced by the gas atomization method is substantially spherical, it is suitable when the porosity is relatively low as in the above [A]. On the other hand, the powder produced by the reduction method is Since the surface area is increased by deoxidation and the shape having a large number of minute projections is obtained, the above [B]
Is suitable when the porosity is relatively high. The quenching method and the pulverizing method are intermediate between them.

次に、粉末の空孔率の測定方法について説明する。粉
末の空孔率は、例えば、粉末のかさ密度を測定すること
により、周知の方法で容易に求めることができる。すな
わち、粉末の空孔率を、かさ密度をa、粉末を構成する
金属の密度をdとしたとき、粉末の空孔率Pは、次式で
表される。
Next, a method for measuring the porosity of the powder will be described. The porosity of the powder can be easily determined by a known method, for example, by measuring the bulk density of the powder. That is, when the porosity of the powder is a, the bulk density is a, and the density of the metal constituting the powder is d, the porosity P of the powder is represented by the following equation.

P=(1−a/d)×100(%) この式中、dは、粉末の構成金属に固有のもので、既
知である。また、aは、一定の容積を有する容器に粉末
を充填し、充填された粉末の見かけ上の体積と重量とを
測定することにより求まる。
P = (1−a / d) × 100 (%) In this formula, d is specific to the constituent metal of the powder and is known. Further, a is determined by filling a container having a certain volume with powder and measuring the apparent volume and weight of the filled powder.

(実施例1) まず原料として(Nd0.2Dy0.872.2(Fe0.8Co0.2
27.8at%の鋳塊を作る(以下この鋳塊をR+R1T2鋳塊と
呼ぶ)。この鋳塊の融点は830℃程度と低い。そして次
にFe80Co20at%の200μm粉径の粉末を用意した。この
粉末の融点は1500℃程度と高く、又この粉末の空孔率は
62.4%である。
(Example 1) First, (Nd 0.2 Dy 0.8 ) 72.2 (Fe 0.8 Co 0.2 ) as a raw material
A 27.8 at% ingot is made (hereinafter, this ingot is referred to as R + R 1 T 2 ingot). The melting point of this ingot is as low as about 830 ° C. Then, a powder having a powder diameter of 200 μm of Fe 80 Co 20 at% was prepared. The melting point of this powder is as high as about 1500 ° C, and the porosity of this powder is
62.4%.

この粉末を4″φ内径のルツボ中に入れ、その上にR
+R1T2鋳塊を入れる。この状態を示した模式図が第3図
である。1がルツボ、2が高周波誘導加熱コイル、3が
R+R1T2鋳塊、4がFe80Co20at%粉末である。この状態
を真空に引き、その後1050℃まで温度を上げる。このと
きR+R1T2鋳塊は溶解されており、Fe−Co粉末は溶解し
ないまま粉末の状態で存在している。つまりR+R1T2
塊が溶解した溶湯はFe−Co粉末の空孔中に浸み込み空孔
を埋めることになる。その後冷却し、ルツボ中の塊を取
り出し外周、表面加工し4″φ×3tのスパッタリング用
ターゲットを作成した。このターゲット組成はNd5.5Dy
22.0Fe58.0Co14.5at%となっている。このターゲットの
表面組織の模式図を第4図に示す。21の相はFe−Co粒
子、22の相はNd−Dy希土類単独相、23は(NdDy)(Fe
Co)の希土類遷移金属合金相である。つまり希土類単
独相と希土類遷移金属合金相と遷移金属単独相の3相に
なっているのである。
This powder is put into a 4 ″ φ inner diameter crucible, and R
Add + R 1 T 2 ingot. FIG. 3 is a schematic diagram showing this state. 1 is a crucible, 2 high-frequency induction heating coil, 3 is R + R 1 T 2 ingot 4 is Fe 80 Co 20 at% powder. The state is evacuated and then the temperature is raised to 1050 ° C. At this time, the R + R 1 T 2 ingot is dissolved, and the Fe—Co powder exists in a powder state without being dissolved. That is, the molten metal in which the R + R 1 T 2 ingot melts penetrates the pores of the Fe—Co powder and fills the pores. After cooling, the mass in the crucible was taken out, and the outer periphery and the surface were processed to prepare a 4 ″ φ × 3t sputtering target. The target composition was Nd 5.5 Dy.
22.0 Fe 58.0 Co 14.5 at%. FIG. 4 shows a schematic diagram of the surface texture of this target. The phase 21 is Fe-Co particles, the phase 22 is a single phase of Nd-Dy rare earth, and the phase 23 is (NdDy) 1 (Fe
Co) 2 is a rare earth transition metal alloy phase. In other words, there are three phases: a rare earth single phase, a rare earth transition metal alloy phase, and a transition metal single phase.

このNdDyFeCoターゲットを第5図に示す様なスパッタ
リング装置に装着し、成膜しその磁気特性及び組成分布
を調べてみた。第5図の31がスパッタリングターゲット
であり、32が基板ホルダー(300φ)である。成膜条件
はAr圧2.5mTorr、初期真空度3×10-7Torr、投入電力は
DC電源を用い1.0A 340Vでおこなった。第6図に本発明
ターゲットを用いた基板ホルダー内組成分布及び磁気特
性分布図を示す。この図に示す様に組成は膜中の希土類
金属(RE)の含有量が28.0〜28.5at%で均一であり、磁
気特性も保磁力Hcが9.7〜10.5KOeで均一である。基板ホ
ルダー内にほとんどいって良いほど均一な膜が成膜でき
ている。当然このターゲットは溶融タイプであるので酸
素量は少なく500ppmであった。
This NdDyFeCo target was mounted on a sputtering apparatus as shown in FIG. 5, and a film was formed, and its magnetic properties and composition distribution were examined. In FIG. 5, 31 is a sputtering target, and 32 is a substrate holder (300φ). The film formation conditions were as follows: Ar pressure 2.5 mTorr, initial vacuum degree 3 × 10 -7 Torr, input power was
The test was performed at 340 V at 1.0 A using a DC power supply. FIG. 6 shows a composition distribution and a magnetic characteristic distribution diagram in the substrate holder using the target of the present invention. As shown in this figure, the composition is uniform with a rare earth metal (RE) content of 28.0 to 28.5 at% in the film, and the magnetic properties are uniform with a coercive force Hc of 9.7 to 10.5 KOe. The more uniform the film is, the better the film can be placed in the substrate holder. Of course, since this target was a molten type, the oxygen content was small and was 500 ppm.

次にFe80Co20at%粉の空孔率を変えた粉末を用意し、
先の製造方法と同様にターゲット作成した。つまり各種
空孔率の異なるFeCo粉末を下に敷き、その上に(Nd0.2D
y0.872.2(Fe0.8Co0.227.8at%の鋳塊を置き、1050
℃まで加熱し、ターゲットを作成した。用いた粉末の空
孔率と出来たターゲット組成は下表の通りである。
Next, a powder having a different porosity of Fe 80 Co 20 at% powder is prepared,
A target was created in the same manner as in the previous manufacturing method. In other words, FeCo powders with different porosity are laid underneath and (Nd 0.2 D
y 0.8 ) 72.2 (Fe 0.8 Co 0.2 ) 27.8 at%
C. to produce a target. The porosity of the powder used and the resulting target composition are as shown in the table below.

表 1 FeCo粉空孔率(%) ターゲット組成(at%) 30 Nd2.7Dy11.6Fe68.3Co17.4 40 Nd3.6Dy14.2Fe65.8Co16.4 50 Nd4.4Dy17.6Fe62.4Co15.6 70 Nd6.2Dy24.7Fe55.3Co13.8 80 Nd7.1Dy28.3Fe51.8Co12.8 これらFeCo粉末空孔率を変えたターゲットを用いて、
第5図と同様のスパッタ装置で成膜し、基板ホルダー内
の組成分布をみた。第7図がそれであり、71が空孔率30
%のターゲットで成膜した組成分布、72が空孔率40%の
ターゲットで成膜した組成分布、73が空孔率50%のター
ゲットで成膜した組成分布、74が空孔率70%のターゲッ
トで成膜した組成分布、75が空孔率80%のターゲットで
成膜した組成分布である。いずれのターゲットにおいて
も、本発明製造法によるターゲットで成膜した組成分布
は極めて小さく良好な均一性を示している。空孔率が30
%〜80%までのターゲットのデータしかないのは、30%
より小さな空孔率の粉末を用いた場合は、空孔率に充分
溶湯が浸み込まず、ターゲットの組成ができないためで
あり、又80%より大きな空孔率の粉末は、粉末自身の作
成が困難となるためターゲットの作成が出来ないからで
ある。
Table 1 Porosity of FeCo powder (%) Target composition (at%) 30 Nd 2.7 Dy 11.6 Fe 68.3 Co 17.4 40 Nd 3.6 Dy 14.2 Fe 65.8 Co 16.4 50 Nd 4.4 Dy 17.6 Fe 62.4 Co 15.6 70 Nd 6.2 Dy 24.7 Fe 55.3 Co 13.8 80 Nd 7.1 Dy 28.3 Fe 51.8 Co 12.8 Using these FeCo powder porosity changed targets,
A film was formed by the same sputtering apparatus as in FIG. 5, and the composition distribution in the substrate holder was observed. FIG. 7 shows this, and 71 shows a porosity of 30.
%, A composition distribution formed with a target having a porosity of 72%, a composition distribution formed with a target having a porosity of 70%, and a composition distribution formed with a target having a porosity of 70%. 75 is a composition distribution formed by a target, and 75 is a composition distribution formed by a target having a porosity of 80%. In any of the targets, the composition distribution formed by the target according to the production method of the present invention is extremely small and shows good uniformity. Porosity of 30
Only 30% of the target data is from 80% to 80%
If a powder with a smaller porosity is used, the molten metal does not penetrate sufficiently into the porosity and the composition of the target cannot be made. This makes it difficult to create a target.

以上のように、本発明では、粉末の空孔率を30〜80%
の範囲で適宜設定することにより、所望のターゲット組
成および膜組成を得ることができ、その均一性にも優れ
ている。
As described above, in the present invention, the porosity of the powder is 30 to 80%
By properly setting the range, the desired target composition and film composition can be obtained, and the uniformity is excellent.

尚、本発明はNdDyFeCoに限るものではなく、PrTbFeC
o、SmGdFeCo、SmDyTbFeCo、NdTbFeCo、NdGdFeCo、NdPrD
yFeCo、NdPrDyTbFeCo、PrDyFeCo、NdSmGdFeCo、CeNdDyF
eCo、CeNdPrDyFeCo、等のSm、Nd、Pr、Ceのうちの少な
くとも1種の軽希土類金属と、Gd、Tb、Dyのうちの少な
くとも1種の重希土類金属と、Fe、Coのうちの少なくと
も1種の遷移金属とを含む全ての組成系について本発明
法は有効であることは、特願昭62−315613からも明らか
である。
Incidentally, the present invention is not limited to NdDyFeCo, but PrTbFeC
o, SmGdFeCo, SmDyTbFeCo, NdTbFeCo, NdGdFeCo, NdPrD
yFeCo, NdPrDyTbFeCo, PrDyFeCo, NdSmGdFeCo, CeNdDyF
eCo, CeNdPrDyFeCo, etc., at least one light rare earth metal of Sm, Nd, Pr, Ce, at least one heavy rare earth metal of Gd, Tb, Dy, and at least one of Fe, Co It is clear from Japanese Patent Application No. 62-315613 that the method of the present invention is effective for all composition systems containing various transition metals.

(実施例2) 次にTbFeCoについて本発明法による効果を確認した。
製造方法は実施例1と同じであり、まず原料としてTb72
(Fe0.9Co0.128at%の母合金鋳塊を作る。この母合金
の融点は847℃程度と低い。そして次にFe90Co10at%の2
00μm粒径、空孔率43.2%の粉末を用意した。この粉末
の融点は1500℃と高い。
Example 2 Next, the effect of the method of the present invention on TbFeCo was confirmed.
The production method is the same as in Example 1, and first, Tb 72
(Fe 0.9 Co 0.1 ) Make a 28 at% mother alloy ingot. The melting point of this mother alloy is as low as about 847 ° C. And then Fe 90 Co 10 at% 2
A powder having a particle size of 00 μm and a porosity of 43.2% was prepared. The melting point of this powder is as high as 1500 ° C.

この粉末を4″φ内径のルツボ中に入れ、その上に母
合金鋳塊を入れ1050℃まで加熱し、母合金を溶融し粉末
の空孔中に浸み込ませた後、冷却しターゲット形状に加
工した。このターゲット組織もRE、RE−TM、TMの3相と
なっており、全体の組成はTb22Fe70.2Co7.8at%となっ
ていた。このTbFeCoターゲットを用いて、第5図と同様
のスパッタリング装置で成膜し、基板ホルダー内の組成
分布及び磁気特性分布をみたのが第8図である。このTb
FeCoターゲットにおいてもホルダー内の組成分布、磁気
特性分布は小さく良好であることがわかる。
This powder is placed in a 4 ″ φ inner diameter crucible, a master alloy ingot is placed thereon, heated to 1050 ° C., the mother alloy is melted and infiltrated into the pores of the powder, and then cooled to form a target shape. was processed to. the target tissue also RE, RE-TM, has a three-phase TM, the overall composition had a Tb 22 Fe 70.2 Co 7.8 at% . using this TbFeCo target, Figure 5 Fig. 8 shows the composition distribution and the magnetic characteristic distribution in the substrate holder formed by the same sputtering apparatus as that shown in Fig. 8.
It can be seen that the composition distribution and the magnetic characteristic distribution in the holder are small and excellent even in the FeCo target.

次にFe90Co10at%の粉の空孔率を変えた粉末を用意
し、母合金鋳塊はTb72(Fe0.9Co0.128at%を同様に用
い、ターゲットを作成した。用いた粉末の空孔率と出来
たターゲット組成は下表の通りである。
Next, a powder was prepared by changing the porosity of the powder of Fe 90 Co at 10 at%, and a target was prepared using 28 at% of Tb 72 (Fe 0.9 Co 0.1 ) as the mother alloy ingot in the same manner. The porosity of the powder used and the resulting target composition are as shown in the table below.

表 2 FeCo粉空孔率(%) ターゲット組成(at%) 30 Tb15 Fe76.5Co8.5 50 Tb25.5Fe67.0Co7.5 60 Tb30.5Fe62.6Co6.9 70 Tb35.5Fe58.0Co6.5 80 Tb40.7Fe53.4Co5.9 これらFeCo粉空孔率を変えたターゲットを用いて、第
5図と同様のスパッタ装置で、基板ホルダー内の膜組成
分布をみたのが第9図である。81が空孔率30%のターゲ
ットで成膜した組成分布、82が空孔率50%のターゲット
で成膜した組成分布、83が空孔率60%のターゲットで成
膜した組成分布、84が空孔率70%のターゲットで成膜し
た組成分布、85が空孔率80%のターゲットで成膜した組
成分布である。
Table 2 FeCo powder porosity (%) Target composition (at%) 30 Tb 15 Fe 76.5 Co 8.5 50 Tb 25.5 Fe 67.0 Co 7.5 60 Tb 30.5 Fe 62.6 Co 6.9 70 Tb 35.5 Fe 58.0 Co 6.5 80 Tb 40.7 Fe 53.4 Co 5.9 FIG. 9 shows the distribution of the film composition in the substrate holder using these targets with different porosity of FeCo powder and the same sputtering apparatus as that of FIG. 81 is a composition distribution formed with a target having a porosity of 30%, 82 is a composition distribution formed with a target having a porosity of 50%, 83 is a composition distribution formed with a target having a porosity of 60%, and 84 is a composition distribution formed with a target having a porosity of 60%. A composition distribution formed with a target having a porosity of 70% and a composition distribution 85 formed with a target having a porosity of 80% are shown.

本実施においても十分な組成の均一性があることがわ
かる。又、空孔率が30未満、80%より大きい、ターゲッ
トが示してないのは実施例1と同様の理由からである。
It can be seen that also in this embodiment, there is sufficient compositional uniformity. The reason why the porosity is less than 30 or more than 80% and the target is not shown is the same as in Example 1.

尚、本発明もTbFeCoに限るものではなく、DyFeCo、Tb
GdFeCo、TbFe、GdFeCo、GdDyFeCo、GdDyTbFeCo、DyTbFe
Co、TbCo、GdTbFe、TbDyCo等のGd、Tb、Dyのうちの少な
くとも1種の重希土類金属と、Fe、Coのうちの少なくと
も1種の遷移金属とを含む全ての組成系について有効な
のは、特願昭62−315614からも明らかである。
Incidentally, the present invention is not limited to TbFeCo, and DyFeCo, Tb
GdFeCo, TbFe, GdFeCo, GdDyFeCo, GdDyTbFeCo, DyTbFe
Particularly effective for all composition systems containing at least one heavy rare earth metal of Gd, Tb, and Dy such as Co, TbCo, GdTbFe, and TbDyCo and at least one transition metal of Fe and Co. This is also evident from Gan-62-315614.

〔発明の効果〕〔The invention's effect〕

以上述べたように、本発明によれば、粉末の空孔率を
30〜80%の範囲で適宜設定することにより、所望の組成
のスパッタリング用ターゲットあるいはそれより製造さ
れた膜を得ることができ、しかも、その組成を均一とす
ることができる。
As described above, according to the present invention, the porosity of the powder is reduced.
By appropriately setting the content in the range of 30 to 80%, a sputtering target having a desired composition or a film produced therefrom can be obtained, and the composition can be made uniform.

【図面の簡単な説明】[Brief description of the drawings]

第1図(a)は空孔率30%の粉末上に鋳塊を置いた模式
図。 第1図(b)は空孔率30%の粉末中に溶湯が浸み込んだ
状態の模式図。 第2図(a)は空孔率80%の粉末上に鋳塊を置いた模式
図。 第2図(b)は空孔率80%の粉末中に溶湯が浸み込んだ
状態の模式図。 第3図が本発明法の模式図。 第4図が本発明法によるターゲットの金属組成の模式
図。 第5図がスパッタリング装置の概略図。 第6図が本発明のNdDyFeCoターゲットを用いた基板ホル
ダー内組成分布及び磁気特性分布図。 第7図は各種空孔率粉末を用い作成したNdDyFeCoターゲ
ットの膜組成分布図。 第8図が本発明TbFeCoターゲットを用いた基板ホルダー
内組成分布及び磁気特性分布図。 第9図は各種空孔率粉末を用い作成したTbFeCoターゲッ
トの膜組成分布図。 1……ルツボ 2……高周波誘導加熱コイル 3……R+R1T2鋳塊 4……Fe80Co20at%粉末 21……Fe−Co粒子 22……Nd−Dy希土類単独相 23……(NdDy)(FeCo)の希土類遷移金属合金相 31……スパッタリングターゲット 32……基板ホルダー(300φ) 71……空孔率30%のターゲットで成膜した組成分布 72……空孔率40%のターゲットで成膜した組成分布 73……空孔率50%のターゲットで成膜した組成分布 74……空孔率70%のターゲットで成膜した組成分布 75……空孔率80%のターゲットで成膜した組成分布 81……空孔率30%のターゲットで成膜した組成分布 82……空孔率50%のターゲットで成膜した組成分布 83……空孔率60%のターゲットで成膜した組成分布 84……空孔率70%のターゲットで成膜した組成分布 85……空孔率80%のターゲットで成膜した組成分布
FIG. 1 (a) is a schematic diagram in which an ingot is placed on a powder having a porosity of 30%. FIG. 1 (b) is a schematic view of a state in which a molten metal has penetrated into powder having a porosity of 30%. FIG. 2 (a) is a schematic diagram in which an ingot is placed on a powder having a porosity of 80%. FIG. 2 (b) is a schematic view showing a state in which the molten metal has penetrated into powder having a porosity of 80%. FIG. 3 is a schematic view of the method of the present invention. FIG. 4 is a schematic diagram of the metal composition of the target according to the method of the present invention. FIG. 5 is a schematic diagram of a sputtering apparatus. FIG. 6 shows a composition distribution and a magnetic characteristic distribution in a substrate holder using the NdDyFeCo target of the present invention. FIG. 7 is a film composition distribution diagram of a NdDyFeCo target prepared using various porosity powders. FIG. 8 is a diagram showing a composition distribution and a magnetic characteristic distribution in a substrate holder using the TbFeCo target of the present invention. FIG. 9 is a film composition distribution diagram of a TbFeCo target prepared using various porosity powders. 1 ...... crucible 2 ... high frequency induction heating coil 3 .... R + R 1 T 2 ingot 4 ...... Fe 80 Co 20 at% powder 21 ... Fe-Co particles 22 ... Nd-Dy rare earth alone phase 23 ... ( NdDy) 1 (FeCo) 2 rare earth transition metal alloy phase 31 Sputtering target 32 Substrate holder (300φ) 71 Composition distribution formed on target with porosity of 30% 72 porosity of 40% Composition distribution formed with a target of 73% Composition distribution formed with a target of 50% porosity 74 Composition distribution formed with a target of 70% porosity 75 Target with a porosity of 80% Composition distribution 81 formed with a target having a porosity of 30% 82 Composition distribution formed with a target having a porosity of 50% 83 Composition formed with a target having a porosity of 60% Composition distribution of film 84: Composition distribution formed with a target having a porosity of 70% 85: Formation of film formed with a target having a porosity of 80% Formed distribution

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】型内に遷移金属の粉末と希土類−遷移金属
合金の鋳塊を入れ、これを前記希土類−遷移金属合金の
融点以上の温度で加熱し、溶融した鋳塊を前記粉末の空
孔内に含浸せしめることにより作製するスパッタリング
用ターゲットの製造方法であって、 前記粉末の前記型内における空孔率を30〜80%の範囲に
設定したことを特徴とするスパッタリング用ターゲット
の製造方法。
An ingot of a transition metal powder and a rare earth-transition metal alloy is placed in a mold and heated at a temperature equal to or higher than the melting point of the rare earth-transition metal alloy, and the molten ingot is emptied of the powder. A method for producing a sputtering target produced by impregnating pores, wherein a porosity of the powder in the mold is set in a range of 30 to 80%. .
【請求項2】前記希土類−遷移金属合金は、Sm、Nd、P
r、Ceのうち少なくとも1種の軽希土類金属(LR)と、G
d、Tb、Dyのうちの少なくとも1種の重希土類金属と、F
e、Coのうちの少なくとも1種の遷移金属(TM)とを含
み、 前記粉末は、Fe、Coのうちの少なくとも1種の遷移金属
(TM)を含む請求項1に記載のスパッタリング用ターゲ
ットの製造方法。
2. The rare earth-transition metal alloy comprises Sm, Nd, P
at least one kind of light rare earth metal (LR) of r and Ce, and G
at least one heavy rare earth metal of d, Tb, and Dy;
e, at least one transition metal (TM) of Co, and the powder contains at least one transition metal (TM) of Fe and Co. Production method.
【請求項3】前記希土類−遷移金属合金は、Gd、Tb、Dy
のうちの少なくとも1種の重希土類金属(HR)と、Fe、
Coのうちの少なくとも1種の遷移金属(TM)とを含み、 前記粉末は、Fe、Coのうちの少なくとも1種の遷移金属
(TM)を含む請求項1に記載のスパッタリング用ターゲ
ットの製造方法。
3. The rare earth-transition metal alloy comprises Gd, Tb, Dy.
At least one heavy rare earth metal (HR), Fe,
2. The method for producing a sputtering target according to claim 1, comprising at least one transition metal (TM) of Co, and wherein the powder contains at least one transition metal (TM) of Fe and Co. 3. .
【請求項4】空孔率が30〜80%である遷移金属の粉末の
空孔内に希土類−遷移金属合金を含浸してなるスパッタ
リング用ターゲットであって、 ターゲットを構成する組織が、希土類金属相と、遷移金
属相と、希土類−遷移金属合金相とを有していることを
特徴とするスパッタリング用ターゲット。
4. A sputtering target in which vacancies of a transition metal powder having a porosity of 30 to 80% are impregnated with a rare earth-transition metal alloy, wherein the structure constituting the target is a rare earth metal. A sputtering target comprising a phase, a transition metal phase, and a rare earth-transition metal alloy phase.
JP63084312A 1987-09-17 1988-04-06 Sputtering target and method of manufacturing sputtering target Expired - Lifetime JP2586562B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP63084312A JP2586562B2 (en) 1988-04-06 1988-04-06 Sputtering target and method of manufacturing sputtering target
DE3885690T DE3885690T2 (en) 1987-09-17 1988-09-14 A method of manufacturing a sputtering target for use in the manufacture of a magneto-optical recording medium.
EP88308503A EP0308201B1 (en) 1987-09-17 1988-09-14 Method of forming a sputtering target for use in producing a magneto-optic recording medium
KR1019880011970A KR930007159B1 (en) 1987-09-17 1988-09-16 Optical recording material and manufacturing method
CN88106744A CN1033654A (en) 1987-09-17 1988-09-17 The manufacture method of Magnetooptic recording medium, sputtering target and sputtering target
HK130197A HK130197A (en) 1987-09-17 1997-06-26 Method of forming a sputtering target for use in producing a magneto-optic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63084312A JP2586562B2 (en) 1988-04-06 1988-04-06 Sputtering target and method of manufacturing sputtering target

Publications (2)

Publication Number Publication Date
JPH01259165A JPH01259165A (en) 1989-10-16
JP2586562B2 true JP2586562B2 (en) 1997-03-05

Family

ID=13826985

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63084312A Expired - Lifetime JP2586562B2 (en) 1987-09-17 1988-04-06 Sputtering target and method of manufacturing sputtering target

Country Status (1)

Country Link
JP (1) JP2586562B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2692139B2 (en) * 1988-05-27 1997-12-17 セイコーエプソン株式会社 Manufacturing method of sputtering target

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59145764A (en) * 1983-02-07 1984-08-21 Mitsubishi Metal Corp Ferromagnetic composite sintered material having superior vibration damping capacity and lubricity
JPS61179534A (en) * 1985-01-16 1986-08-12 Mitsubishi Metal Corp Compound target for sputtering equipment
JPS6310354A (en) * 1986-07-01 1988-01-16 Seiko Epson Corp Magneto-optical recording medium

Also Published As

Publication number Publication date
JPH01259165A (en) 1989-10-16

Similar Documents

Publication Publication Date Title
US5098649A (en) Rare earth metal-iron group metal target, alloy powder therefor and method of producing same
US4824481A (en) Sputtering targets for magneto-optic films and a method for making
CN106384637A (en) Method for improving boundary structure to prepare high-performance neodymium iron boron magnet
EP0308201B1 (en) Method of forming a sputtering target for use in producing a magneto-optic recording medium
JPH05222488A (en) Alloy ingot for permanent magnet and its manufacture
JP2586562B2 (en) Sputtering target and method of manufacturing sputtering target
JPH0621324B2 (en) Rare earth permanent magnet alloy composition
EP0640964B1 (en) Target for magneto-optical recording medium and process for production therefof
JPS60230903A (en) Production of alloy target
JPH062929B2 (en) Permanent magnet material
JP2597380B2 (en) Method for producing rare earth metal-transition metal target alloy powder and method for producing rare earth metal-transition metal target
JP2692139B2 (en) Manufacturing method of sputtering target
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
JPS5848608A (en) Production of permanent magnet of rare earths
JPH01156470A (en) Manufacture of sputtering target
JP2002226970A (en) Co TARGET AND PRODUCTION METHOD THEREFOR
JPH04311843A (en) Production of target for sputtering
JPH0310070A (en) Production of sputtering target
JPH01156467A (en) Manufacture of sputtering target
JP2001226764A (en) Sintered compact for sputtering target material, its manufacturing method, and sputtering target
JPH01156468A (en) Manufacture of sputtering target
JPH01263268A (en) Production of target for sputtering
JPH0768611B2 (en) Method for manufacturing alloy target for sputtering
JPH01198470A (en) Production of target for sputtering
JPH01156469A (en) Manufacture of sputtering target

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081205

Year of fee payment: 12