JPH01156470A - Manufacture of sputtering target - Google Patents

Manufacture of sputtering target

Info

Publication number
JPH01156470A
JPH01156470A JP31561687A JP31561687A JPH01156470A JP H01156470 A JPH01156470 A JP H01156470A JP 31561687 A JP31561687 A JP 31561687A JP 31561687 A JP31561687 A JP 31561687A JP H01156470 A JPH01156470 A JP H01156470A
Authority
JP
Japan
Prior art keywords
ingot
target
rare earth
transition metal
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31561687A
Other languages
Japanese (ja)
Inventor
Akira Aoyama
明 青山
Toshihiko Yamagishi
山岸 敏彦
Tadatoshi Shimokawa
下川 渡聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP31561687A priority Critical patent/JPH01156470A/en
Publication of JPH01156470A publication Critical patent/JPH01156470A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a target reduced in oxygen content and causing no distribution of composition in the film-forming plane by placing a powder of rare earth- transition metal alloy and an ingot of this alloy in a mold, heating this mold at a temp. between the melting points of both, and then working the resulting formed body after cooling. CONSTITUTION:A powder 4 of rare earth-transition metal alloy and an ingot 3 of rare earth-transition metal alloy are placed in a crucible 1, etc., which is reduced to vacuum. The crucible 1 is heated by means of a high-frequency induction heating coil 2, etc., at a temp. between the melting point of the powder 4 and that of the ingot 3, by which the molten metal of the ingot 3 is infiltrated into the pores of the powder 3 to fill the pores. The ingot after cooling is formed into two phases consisting of the grain 21 of the rare earth-transition metal alloy, a rare-earth single phase 21, and a rear earth-transition metal alloy phase 23. By working an grinding this ingot, a sputtering target is formed. As to the principal composition of the target, it is desirable to incorporate one or more heavy rare earth metals among Gd, Tb, and Dy and one or more transition metals between Fe and Co.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類遷移金属合金スパッタリング用ターゲッ
トの製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for manufacturing a rare earth transition metal alloy sputtering target.

〔従来の技術〕[Conventional technology]

希土類遷移金楕系光磁気記鎌膜を作成するスパッタリン
グ用ターゲットは従来よジ鋳造法、焼結法、半溶融法な
どがある。ここでいう鋳造法とは鋳込んだ鋳塊をそのま
ま外径加工にてターゲットにするものであり、焼結法と
は一度鋳込んだ鋳塊を粉砕し、焼結にてターゲット形状
とするものである。又、半溶融法とは特開昭61−99
640に示すものである。
Conventional sputtering targets for producing a rare earth transition gold elliptic magneto-optical sickle film include a twist casting method, a sintering method, and a semi-melting method. The casting method referred to here is a method in which the cast ingot is used as a target by external diameter processing, and the sintering method is a method in which the cast ingot is crushed and sintered to form a target shape. It is. Also, the semi-melting method is described in Japanese Patent Application Laid-Open No. 1983-1999.
640.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら前述の焼結法は、本質的に酸素量を多く含
み(2000ppmが限界)、酸化され易い希土類遷移
金属系には適していない。一方、鋳造法は酸素量も少な
((50(1ppm程度)好ましいが、成膜面内で組成
分布が生じるという問題点を石する。
However, the above-mentioned sintering method is not suitable for rare earth transition metal systems which inherently contain a large amount of oxygen (2000 ppm is the limit) and are easily oxidized. On the other hand, the casting method is preferable because it has a small amount of oxygen (about 50 (about 1 ppm)), but there is a problem that compositional distribution occurs within the film formation surface.

又、半溶融法で作成したターゲットは基板面内で組成分
布が生じにくいという特長があるが、半溶融法も基本的
には焼結による製造であるため、ターゲットは完全な密
状態となっておらず、大気中に放置された場合にターゲ
ットの表面層が酸化されてしまい、予備スパッタリング
では表面層をクリーニングできないほどの酸化層となっ
てしまう。又、半溶融法は遷移金属単体相を含む之め、
ターゲットの透磁率が大きく、マグネトロンスパッタ時
には、ターゲットを薄くしないと十分な漏洩磁場が出な
いという欠点がある。
In addition, targets made by the semi-melting method have the advantage that compositional distribution is less likely to occur within the substrate surface, but since the semi-melting method is also basically manufactured by sintering, the target is completely dense. If the target is left in the atmosphere, the surface layer of the target will be oxidized, and the surface layer will become so oxidized that it cannot be cleaned by preliminary sputtering. In addition, since the semi-melting method includes a transition metal simple phase,
The target has a large magnetic permeability, and there is a drawback that during magnetron sputtering, a sufficient leakage magnetic field cannot be generated unless the target is made thin.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは従来の鋳造合金ターゲットがもつ
成膜面内で組成分布が生じるという欠点を克服し、さら
に半溶融法によるターゲットのもつ酸化されやすい、透
磁率が大きいという欠点を克服するターゲットを提供す
るところにある。
The present invention is intended to solve these problems, and its purpose is to overcome the drawback of the conventional cast alloy target that compositional distribution occurs within the film formation surface, and furthermore, to solve the problem of forming a target using a semi-melting method. The objective is to provide a target that overcomes the disadvantages of being easily oxidized and having high magnetic permeability.

〔問題点を解決するための手段〕[Means for solving problems]

希土類遷移金属合金からなる光磁気記録/illをスパ
ッタリングにて製造するための鋳造合金ターゲットの製
造方法において、型内に希土類遷移金属合金粒末と希土
類遷移金属合金鋳塊を入れ、粒末の融点と鋳塊の融点の
間の温度で、型内を加熱し、その後冷却してできた成形
体を加工することを特徴とする。
In a method for producing a cast alloy target for producing magneto-optical recording/ill made of a rare earth transition metal alloy by sputtering, rare earth transition metal alloy particles and rare earth transition metal alloy ingots are placed in a mold, and the melting point of the particles is It is characterized by heating the inside of the mold at a temperature between the melting point of the ingot and the melting point of the ingot, and then cooling the molded body.

〔作用〕[Effect]

従来より実験室で用いられているTMメタ−ゲット上R
Eチッグを配して成膜する複合ターゲットのそれとは逆
の傾向を示す。
TM meta-get top R used conventionally in the laboratory
The tendency is opposite to that of a composite target formed by arranging an E-chig to form a film.

つまp複合ターゲットの場合はターゲットの直上になる
ほどRRが多く、側面はどTMが多い。
In the case of a p-composite target, there are more RRs directly above the target, and more TMs on the sides.

直上になるほどREが多く側面はどTMが多い。There are more REs as you go directly above, and more TMs on the sides.

一方、鋳造合金ターゲットのそれはターゲットの直上に
なるほどTMが多く、側面はどRBが多い。
On the other hand, in the case of a cast alloy target, there are more TMs directly above the target, and more RBs on the sides.

これらをより詳細に見てみると、TMの飛び方は複合タ
ーゲット、鋳造合金ともほぼ同じで大きな差はなかった
。一方、REの飛び方が複合ターゲットと鋳造合金とで
大きな差があることがわかった。つまり、複合ターゲッ
トのときのRKはターゲットの上方向に飛び易く、鋳造
合金ターゲットのときのR11iはターゲットの横方向
に飛び易いのである。つまりRE率体相と、RE−TM
合金相を過当に混存させ之鋳造合金ターゲットができれ
ば、基板面内で組成分布が少ない均一な成膜が可能とな
り、又、TM単体相がないため透磁率も小さくなりター
ゲットを厚くしても十分マグネトロンスパッタが可能と
なる。さらに鋳造合金であるための本来の酸素含有量も
少なく、予備スパッタリングも非常に短くなる。
Looking at these in more detail, the flight of TM was almost the same for both composite targets and cast alloys, with no major difference. On the other hand, it was found that there is a large difference in the way RE flies between the composite target and the cast alloy. In other words, RK in the case of a composite target tends to fly upwards of the target, and R11i in the case of a cast alloy target tends to fly in the lateral direction of the target. In other words, the RE rate appearance and the RE-TM
If a cast alloy target is created by mixing an excessive amount of alloy phase, it will be possible to form a uniform film with a small composition distribution within the substrate surface, and since there is no single TM phase, the magnetic permeability will be low, making it possible to form a cast alloy target even if the target is thick. Magnetron sputtering becomes possible. Furthermore, since it is a cast alloy, the original oxygen content is low, and the preliminary sputtering period is extremely short.

〔実施例1〕 まず原料としてT btt (P’ eo、ll C0
0,1)ta at %の鋳塊を作る(以下この鋳塊を
R+R,T、鋳塊と呼ぶ〕。この鋳塊の融点は847℃
程度と低い。
[Example 1] First, T btt (P' eo, ll C0
0,1) ta at % (hereinafter, this ingot is referred to as R+R,T, ingot).The melting point of this ingot is 847°C.
The degree is low.

そして次にTbIo、s (F eo、o COo、t
 )go、g at%の鋳塊を作り、平均粒径が200
μm程度となる様に、この鋳塊を粉砕し粉末とする(以
下この粉末をR1Tl?粉末と呼ぶ)。このR,’r、
 ?粉末の融点は1312℃程度であり、空孔率は14
%である。
And then TbIo,s (F eo,o COo,t
) go, g at% ingot was made, and the average particle size was 200.
This ingot is crushed into powder to a size of approximately μm (hereinafter, this powder will be referred to as R1Tl? powder). This R,'r,
? The melting point of the powder is about 1312℃, and the porosity is 14
%.

この粉末を4″φ内径のルツボ中に入れ、その上にR+
 R,T、鋳塊を入れる。この状態を示した模式図が第
1図である。1がルツボ、2が高周波誘導加熱コイル、
3がR+R,T、鋳塊、4がR,’r、?粒末である。
Place this powder in a crucible with an inner diameter of 4″φ, and place R+
R, T, put the ingot. FIG. 1 is a schematic diagram showing this state. 1 is a crucible, 2 is a high frequency induction heating coil,
3 is R+R, T, ingot, 4 is R, 'r,? It is a powder.

この状態を真空に引き、その後1050℃まで温度を上
げる。このときR+R1T、鋳塊は溶解されており、R
1Tl? 粒末は溶解しないまま粒末の状態で存在して
いる。つt り R+R,T、鋳塊が溶解した溶湯は”
tz’rt’r粉末の空孔中に浸み込み空孔を埋めるこ
とになる。その後冷却し、ルツボ中の鋳塊を取り出し外
周加工、研磨し4″φ×6tのスパッタリング用ターゲ
ットを作成した。このターゲット組成はT b、、 F
 ”to、! Co、、、 at %となっている。こ
のターゲットの表面組織の模式図を第2図に示す。21
の相はRz’r+y粒子、22の相はTbの布土類単独
相、25はT ’J (F e6,11 COO,を入
の希土類遷移金属合金相である。つ′!シ希土類単独相
と希土類遷移金属合金相との2相になっているのである
This state is evacuated and then the temperature is raised to 1050°C. At this time, R+R1T, the ingot is melted, and R
1Tl? The granules remain undissolved and remain in the form of granules. R + R, T, the molten metal in which the ingot was melted is "
It penetrates into the pores of the tz'rt'r powder and fills the pores. After that, it was cooled, and the ingot in the crucible was taken out, the outer periphery was machined, and polished to create a sputtering target of 4″φ×6t.The target composition was T b,,F
"to,! Co...at %.A schematic diagram of the surface structure of this target is shown in Figure 2.21
The phase is Rz'r+y particles, the phase 22 is a single Tb textile phase, and the phase 25 is a rare earth transition metal alloy phase containing T'J (Fe6,11 COO). It has two phases: a phase and a rare earth transition metal alloy phase.

このTbFeC0ターゲットを第5図に示す様なスパッ
タリング装置に装着、底膜し、その磁気特性及び組成分
布を調べてみた。第3図の31がスパッタリングターゲ
ットであり、52が基板ホルダー(600φ〕である。
This TbFeC0 target was installed in a sputtering apparatus as shown in FIG. 5, a bottom film was formed, and its magnetic properties and composition distribution were investigated. 31 in FIG. 3 is a sputtering target, and 52 is a substrate holder (600φ).

成膜条件はAr圧2.5mTU)rr 、初期真空度3
 X 10−’Torr 、投入電力はDC電源を用い
1. OA 540 Vでおこなつ友。
Film forming conditions are Ar pressure 2.5mTU)rr, initial vacuum level 3
1. A friend who works with OA 540V.

第4図に本発明ターゲットを用いた基板ホルダー内組成
分布及び磁気舟性分布図である。この図に示す様にm成
はREが、22.0〜22.5 at% で均一であり
、磁気特性もHaが14.7〜15.5KOeで均一で
ある。基板ホルダー内にほとんどといって良いほど均一
な膜が成膜できている。当然のこのターゲットは鋳造合
金であるので酸累は少々(350ppmであった。
FIG. 4 is a diagram showing the composition distribution and magnetic flux distribution in the substrate holder using the target of the present invention. As shown in this figure, the m composition is uniform with RE ranging from 22.0 to 22.5 at%, and the magnetic properties are uniform with Ha ranging from 14.7 to 15.5 KOe. A nearly uniform film was formed inside the substrate holder. Naturally, since this target is a cast alloy, the acid buildup was small (350 ppm).

一方、比較のために従来の製造方法でTbFeC0ター
ゲットを作成し友。丁なわちTbFeC。
On the other hand, for comparison, a TbFeC0 target was prepared using a conventional manufacturing method. Ding, namely TbFeC.

全組成をTbttF C16,z c ol、@ at
 %となるようにルツボ中で1650℃で溶解し、そし
て鋳型に注湯し鋳塊を作った。そしてとの鋳塊を切断、
研磨し4″φX6t12JTbFeCoターゲツトを作
成した。
The entire composition is TbttF C16,z c ol, @at
% in a crucible at 1650°C, and poured into a mold to form an ingot. and cut the ingot with,
A 4"φX6t12JTbFeCo target was prepared by polishing.

第5囚にこの従来の製造方法による鋳造合金TbFeC
0ターゲットを用いた基板ホルダー内組成分布及び磁気
特性分布因を示す。この図に示す様に組成はREが22
.8〜19.8at%で、基板ホルダ中心へいくほどR
Eが多く、逆にホルダー外周へいくほどREが少なくな
っている。又、磁気特性もHaが17〜11 KOeと
ホルダー中心へいくほどHaが大きくなっている。これ
は組成分布とも一致する。つまり従来の製造方法による
鋳造合金TbFaCo ターゲットはターゲットの上方
向はどTM(遷移金属)がとびや丁く、横方向はどRE
がとひやすい特性を示し、基板ホルダー内で組成分布を
生じさせてしまう。
The fifth case is cast alloy TbFeC by this conventional manufacturing method.
2 shows the composition distribution and magnetic property distribution factors within the substrate holder using a zero target. As shown in this figure, the composition has an RE of 22
.. 8 to 19.8 at%, and R increases toward the center of the substrate holder.
There is a lot of E, and on the contrary, the RE decreases toward the outer periphery of the holder. In addition, the magnetic properties are 17 to 11 KOe, and Ha increases toward the center of the holder. This also agrees with the composition distribution. In other words, when casting an alloy TbFaCo target using the conventional manufacturing method, there is no TM (transition metal) in the upper direction of the target, and RE in the lateral direction.
The substrate holder exhibits a characteristic that it is susceptible to oxidation, resulting in compositional distribution within the substrate holder.

さらに半溶融法により製造したターゲットと比較するk
め、先述の本発明ターゲット組成と同様のT bHF 
C16,I Co?+l a t%の組成で半溶融法を
用い4″φX3tのターゲットを作成した。そして、こ
れら本発明品と半溶融品のターゲットのプレスパツタリ
ング時間を評価し次。結果は保磁力が11 KOeに飽
和するのに、本発明品は20分のプレスパツタ時間で済
むのに対し、半溶融品は120分かかった。当然同一条
件でおこなっておジ、1.0A340VAr圧2.5 
mTorrである。半溶融品はターゲット表面の酸化層
がそれだけ多いという証左であり、これは量産時におけ
るコスト面で不利となる。
Furthermore, compared with a target manufactured by the semi-molten method,
Therefore, the same T bHF as the target composition of the present invention described above
C16, I Co? A target of 4"φ x 3t was prepared using the semi-melting method with a composition of +l a t%.Then, the press sputtering time of the targets of the present invention and the semi-melting product was evaluated.The results showed that the coercive force was 11 KOe. The product of the present invention required only 20 minutes of press sputtering time to reach saturation, while the semi-molten product took 120 minutes.Of course, the process was carried out under the same conditions, with a pressure of 1.0A, 340VAr, and a pressure of 2.5V.
mTorr. This is evidence that the semi-molten product has a larger oxide layer on the target surface, which is disadvantageous in terms of cost during mass production.

さらに半溶融法により製造したターゲットと比較するた
め、先述の本発明ターゲット組成と同様のT bHF 
C760,CO?、a at%の組成で半溶融法を用い
4″φx6tのターゲットを作成した。そして、これら
本発明品と半溶融品のターゲットの透磁率を測定した所
、本発明品が3であつ次のに対し、半溶融品は55と大
きな値であった。そして、半溶融品を先述のスパッタ装
置に装着し、放電を試みたが、放電しなかった。そこで
ターゲット厚みを薄くしていったところ、511111
 tでやつと放電する様になった。つまジ半溶融品は透
磁率が大きく、マグネトロン放電さぜる友めにはターゲ
ットを薄くする必要がある。このことは、1枚のターゲ
ットから製造できる薄膜が少ないということでおり、製
品のコスト面で非常に悪いということを意味する。当然
本発明品は6@tでも十分な漏洩磁場が出ており、製品
コストの点でも非常にメリットがおる。ここで示し次男
法以外にR,T□粉末を作成せず、R6T2g粉末ある
いはR,T、あるいはR,T、粉末を用いても本発明は
有効であることは確認できている。
Furthermore, in order to compare with the target manufactured by the semi-melting method, T bHF having the same composition as the target composition of the present invention described above was used.
C760, CO? A target of 4"φ x 6t was prepared using the semi-melting method with a composition of , a at%. Then, when the magnetic permeability of the target of the present invention and the semi-melting target was measured, the present product was 3, and the following On the other hand, the semi-molten product had a large value of 55.Then, the semi-molten product was attached to the sputtering device mentioned above and an attempt was made to generate an electric discharge, but no discharge occurred.Therefore, when the target thickness was reduced, , 511111
It started discharging easily at t. The semi-molten material has a high magnetic permeability, so the target needs to be made thinner for magnetron discharge. This means that only a small number of thin films can be produced from one target, which means that the cost of the product is very poor. Naturally, the product of the present invention produces a sufficient leakage magnetic field even at 6@t, and is very advantageous in terms of product cost. It has been confirmed that the present invention is effective even if R6T2g powder, R,T, or R,T, powder is used instead of preparing R,T□ powder other than the second son method shown here.

〔実施例2〕 次にDyFeCoについて本発明法による効果を確認し
文。製造方法μ実施例1と同じであり、まず原料として
D7tt、w (F 8o、s C0061)ts、s
 at%の鋳塊を作る。この鋳塊の融点は890℃程度
である。そして次にD 7+o、s’CF @Io、e
 COo、t )s*、s a t%の200μm粒径
の粉末を用意した。この融点は1500℃程度と尚く、
又この粉末の空孔iに14.5%である。
[Example 2] Next, the effect of the method of the present invention on DyFeCo was confirmed. Manufacturing method μ Same as Example 1, firstly, as raw materials D7tt,w (F 8o,s C0061)ts,s
Make an ingot of at%. The melting point of this ingot is about 890°C. And then D 7+o, s'CF @Io, e
A powder of 200 μm particle size of COo, t)s*, sat% was prepared. The melting point is about 1500℃,
Moreover, the vacancy i of this powder is 14.5%.

この粉末を4″φ内径のルツボ中に入れ、その上に鋳塊
を入れる。その後真空中で1050℃まで温度を上け、
鋳塊が溶解し次後冷却し、ルツボ中の鋳塊を取シ出し外
周加工、研磨し4″φX3tのスパッタリング用ターゲ
ットを作成し友。セして実施例1と同様の成膜を試みた
所、基板ホルダー内に均一な組成の均一な磁気特性の膜
が得られた。
This powder is placed in a crucible with an inner diameter of 4″φ, and an ingot is placed on top of it.Then, the temperature is raised to 1050°C in a vacuum.
After the ingot was melted and then cooled, the ingot in the crucible was taken out, the outer periphery was processed and polished to create a sputtering target of 4"φ x 3t. Film formation was then attempted in the same manner as in Example 1. A film with uniform composition and uniform magnetic properties was obtained within the substrate holder.

このターゲットの酸素iは350 ppmであり、ター
ゲット組織もRE、RE−TM、TM(G5相となって
おり、全体の組成はD 7zt F @to、* CO
y、a a f;チであった。
The oxygen i of this target is 350 ppm, and the target structure is also RE, RE-TM, TM (G5 phase), and the overall composition is D 7zt F @to, *CO
It was y, a a f;

〔実施例3〕 次にTbGclFeCoについて本発明法による効果を
?li!認した。製造方法は実施例1と岡じてあり、ま
ず原料として(T bo、s G(io、m )yt、
s (F eo、* COo、t)ts、sat%  
の鋳塊を作る。この鋳塊の融点は858℃程度である。
[Example 3] Next, what are the effects of the method of the present invention on TbGclFeCo? li! Approved. The manufacturing method is the same as in Example 1, and first, as raw materials (T bo, s G (io, m) yt,
s (F eo, * COo, t) ts, sat%
Make an ingot. The melting point of this ingot is about 858°C.

そして次に(T bo、s G(Lo、i )to、s
 (F 66、ICo、、1 )a*、s at% の
200 μm粒径の粉末を用意した。この融点は150
0℃程度と隔く、又この粒末の空孔率に14.6%であ
る。
And then (T bo,s G(Lo,i)to,s
(F 66, ICo, 1) a*, sat% powder with a particle size of 200 μm was prepared. This melting point is 150
The temperature is about 0°C, and the porosity of this particle is 14.6%.

この粉末を4″φ内径のルツボ中に入れ、その上に鋳塊
を入れる。その後真空中で1050℃まで温度を上げ、
鋳塊が溶解した後冷却し、ルツボ中の鋳塊を取り出し外
周加工、研磨し4″φX3tのスパッタリング用ターゲ
ットを作成した。そして実施例1と同様の成膜を試みた
所、基板ホルダー内に均一な組成の均一な磁気特性の膜
が得られた。このターゲットのr11素mに300 p
pmであり、ターゲット組織もR11e、RE−TM、
TMの6相となっており、全体の組成u T bl I
Gd、 、 F e、。、。
This powder is placed in a crucible with an inner diameter of 4″φ, and an ingot is placed on top of it.Then, the temperature is raised to 1050°C in a vacuum.
After the ingot was melted, it was cooled, the ingot in the crucible was taken out, the outer periphery was processed and polished, and a sputtering target of 4"φ x 3t was created. Then, when the same film formation as in Example 1 was attempted, the ingot was placed inside the substrate holder. A film with a uniform composition and uniform magnetic properties was obtained.
pm, and the target tissues are R11e, RE-TM,
It has six phases of TM, and the overall composition is u T bl I
Gd, , Fe,. ,.

co、4at% であつ友。co, 4at% and friends.

これら実施例1.2.3.4に示す組成系以外にTbF
e、 GdFeCo、 TbCo、 G4DyFsCo
、 GdDyTbFeCo、 DyTbFeCo、 G
dTbFe、 DyCo。
In addition to the composition system shown in Example 1.2.3.4, TbF
e, GdFeCo, TbCo, G4DyFsCo
, GdDyTbFeCo, DyTbFeCo, G
dTbFe, DyCo.

TbGdCo、 TbDyCo等の、G(L、 Tb、
 D7のうちの少なくとも1樵以上の重希土類金属と、
Fe。
G(L, Tb,
At least one heavy rare earth metal of D7,
Fe.

Coのうちの少なくとも1m以上の遷移金属とを含む全
ての組成系について本発明効果が存在することを確認し
比。
It was confirmed that the effect of the present invention exists for all composition systems containing at least 1 m of Co and a transition metal.

〔発明の効果〕〔Effect of the invention〕

このように本発明を用いれば、ターゲット中の面素:1
が少ないという鋳造合金の特質を保ったまま、成膜面内
で組成分布が生じないという効果余有する。しかもプレ
スパツタ時間が少なくて済み作成した膜の製品コストも
減ら丁ことができる。
If the present invention is used in this way, the surface element in the target: 1
While maintaining the characteristic of a cast alloy that there is little oxidation, it still has the effect of not causing compositional distribution within the film formation surface. Moreover, since the press sputtering time is reduced, the product cost of the produced membrane can also be reduced.

しかも本発明によるターゲットは透磁率が小さく、マグ
ネトロンスパッタに適しており、ターゲット厚みも厚く
することができるため、作成した膜の製品コストを減ら
アことができる。
Moreover, the target according to the present invention has a low magnetic permeability and is suitable for magnetron sputtering, and the target thickness can be increased, so that the product cost of the produced film can be reduced.

尚、本製造方法に実施例に示した方法のみでなく、ルツ
ボのかわりに耐熱レンガ等を用いてもよく、さらに高周
波加熱以外に抵抗加熱等でも良い。
In addition, the present manufacturing method is not limited to the method shown in the examples, and a heat-resistant brick or the like may be used instead of the crucible, and resistance heating or the like may be used instead of high-frequency heating.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明製造法の模式図。 第2図に本発明法によるターゲットの表面組織の模式図
。 第3図にスパッタリング装置の概略図。 第4図は本発明法ターゲットを用い之基板ホルダー内組
成分布及び磁気特性分布図。 第5図に従来の製造方法による鋳造合金ターゲットを用
いた基板ホルダー内組成分布及び磁気特性分布図。 1・・・ルツボ 2・・・嵩周波騨導加熱コイル 5・・・R+R,T、鋳塊 4・・・R3T!?粒末 21・・・RtT’tr粒子 22・・・TI)の希土類単独用 23− T bI(F e(1,、C06,1)!の希
土類遷移金塊合金相 61・・・スパッタリングターゲット 32・・・基板ホルダー(300φ) 以  上 地2図 (γ=15匈)
FIG. 1 is a schematic diagram of the manufacturing method of the present invention. FIG. 2 is a schematic diagram of the surface structure of a target produced by the method of the present invention. FIG. 3 is a schematic diagram of the sputtering apparatus. FIG. 4 is a diagram of the composition distribution and magnetic property distribution in the substrate holder using the target of the present invention. FIG. 5 shows the composition distribution and magnetic property distribution in the substrate holder using a cast alloy target produced by the conventional manufacturing method. 1... Crucible 2... Bulk frequency conduction heating coil 5... R+R, T, ingot 4... R3T! ? Particle powder 21...RtT'tr particle 22...TI) for rare earth alone 23-TbI (Fe(1,,C06,1)! rare earth transition gold ingot alloy phase 61...Sputtering target 32...・・Substrate holder (300φ) Above ground 2 map (γ=15匈)

Claims (2)

【特許請求の範囲】[Claims] (1)希土類遷移金属合金からなる光磁気記録層をスパ
ッタリングにて製造するための鋳造合金ターゲットの製
造方法において、型内に希土類遷移金属合金粒末と希土
類遷移金属合金鋳塊を入れ、前記粒末の融点と前記鋳塊
の融点の間の温度で、前記型内を加熱し、その後冷却し
てできた成形体を加工することを特徴とするスパッタリ
ング用ターゲットの製造方法。
(1) In a method for manufacturing a cast alloy target for manufacturing a magneto-optical recording layer made of a rare earth transition metal alloy by sputtering, rare earth transition metal alloy particles and a rare earth transition metal alloy ingot are placed in a mold, and the 1. A method for producing a sputtering target, comprising heating the inside of the mold at a temperature between the melting point of the ingot and the melting point of the ingot, and then processing the formed body by cooling.
(2)前記スパッタリング用ターゲットの主たる組成が
、Gd、Tb、Dyのうちの少なくとも1種以上の重希
土類金属(HR)と、Fe、Coのうち少なくとも1種
以上の遷移金属(TM)を含むことを特徴とする特許請
求の範囲第1項記載のスパッタリング用ターゲットの製
造方法。
(2) The main composition of the sputtering target includes at least one heavy rare earth metal (HR) among Gd, Tb, and Dy, and at least one transition metal (TM) among Fe and Co. A method for manufacturing a sputtering target according to claim 1, characterized in that:
JP31561687A 1987-12-14 1987-12-14 Manufacture of sputtering target Pending JPH01156470A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31561687A JPH01156470A (en) 1987-12-14 1987-12-14 Manufacture of sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31561687A JPH01156470A (en) 1987-12-14 1987-12-14 Manufacture of sputtering target

Publications (1)

Publication Number Publication Date
JPH01156470A true JPH01156470A (en) 1989-06-20

Family

ID=18067507

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31561687A Pending JPH01156470A (en) 1987-12-14 1987-12-14 Manufacture of sputtering target

Country Status (1)

Country Link
JP (1) JPH01156470A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799535B2 (en) 2010-06-04 2017-10-24 Shin-Etsu Chemical Co., Ltd. Heat-treatment furnace
CN110536975A (en) * 2016-12-01 2019-12-03 法瓦公司 Heating component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799535B2 (en) 2010-06-04 2017-10-24 Shin-Etsu Chemical Co., Ltd. Heat-treatment furnace
CN110536975A (en) * 2016-12-01 2019-12-03 法瓦公司 Heating component

Similar Documents

Publication Publication Date Title
US5834663A (en) Sintered magnet and method for making
JPH0768612B2 (en) Alloy powder for rare earth metal-iron group metal target, rare earth metal-iron group metal target, and methods for producing the same
US4824481A (en) Sputtering targets for magneto-optic films and a method for making
JP2017139259A (en) Alloy for r-t-b-based sintered magnet and r-t-b-based sintered magnet
KR0129795B1 (en) Target for magneto optical recording media & method for production the same
KR930007159B1 (en) Optical recording material and manufacturing method
JPS61139637A (en) Target for sputter and its manufacture
JPH05222488A (en) Alloy ingot for permanent magnet and its manufacture
JP2533922B2 (en) Sintered target member and manufacturing method thereof
JPH01156470A (en) Manufacture of sputtering target
JPH02107762A (en) Alloy target for magneto-optical recording
JP2597380B2 (en) Method for producing rare earth metal-transition metal target alloy powder and method for producing rare earth metal-transition metal target
JP2894695B2 (en) Rare earth metal-iron group metal target and method for producing the same
JPS5848608A (en) Production of permanent magnet of rare earths
JPH01156468A (en) Manufacture of sputtering target
JPH01156469A (en) Manufacture of sputtering target
JP2002226970A (en) Co TARGET AND PRODUCTION METHOD THEREFOR
JP2586562B2 (en) Sputtering target and method of manufacturing sputtering target
JPH0791637B2 (en) Sputtering alloy target and manufacturing method thereof
JPH01156467A (en) Manufacture of sputtering target
JPH0196381A (en) Sputtering target
JP2001226764A (en) Sintered compact for sputtering target material, its manufacturing method, and sputtering target
JPS63130769A (en) Target material for base alloy for vapor deposition
JP2692139B2 (en) Manufacturing method of sputtering target
JPS62130236A (en) Production of target material