JP2584047B2 - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2584047B2
JP2584047B2 JP1034669A JP3466989A JP2584047B2 JP 2584047 B2 JP2584047 B2 JP 2584047B2 JP 1034669 A JP1034669 A JP 1034669A JP 3466989 A JP3466989 A JP 3466989A JP 2584047 B2 JP2584047 B2 JP 2584047B2
Authority
JP
Japan
Prior art keywords
heat transfer
refrigerant
combustion chamber
heat
passage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1034669A
Other languages
Japanese (ja)
Other versions
JPH02213665A (en
Inventor
勝蔵 粉川
克彦 山本
純一 雀堂
達規 桜武
紘一郎 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP1034669A priority Critical patent/JP2584047B2/en
Publication of JPH02213665A publication Critical patent/JPH02213665A/en
Application granted granted Critical
Publication of JP2584047B2 publication Critical patent/JP2584047B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Details Of Fluid Heaters (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は燃焼ガス等の高温ガスにより冷媒を加熱し冷
暖房装置に利用する熱交換器に関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger that heats a refrigerant with a high-temperature gas such as a combustion gas and uses the refrigerant in a cooling and heating device.

従来の技術 被加熱側流体に冷媒を用いて、燃焼ガスにより加熱し
て液状冷媒を蒸発気化させて潜熱により熱を運び暖房を
行うものには第4図に示すような冷媒加熱暖房機があ
る。
2. Description of the Related Art There is a refrigerant heating / heating machine as shown in FIG. 4 which uses a refrigerant as a fluid to be heated, heats it with a combustion gas, evaporates and evaporates a liquid refrigerant, carries heat by latent heat, and performs heating. .

これは燃焼ガスと冷媒との熱交換器1と放熱器2を密
閉管路3で連結すると共に密閉管路3中に設けた冷媒搬
送機4により冷媒を強制循環するものである。
In this method, a heat exchanger 1 for combustion gas and a refrigerant and a radiator 2 are connected by a closed conduit 3 and the refrigerant is forcibly circulated by a refrigerant carrier 4 provided in the closed conduit 3.

第5図は熱交換器1の従来例を示したもので、(特開
昭59−107167号公報)水平方向に延びる円筒状内周面に
複数のフィン5を設け、外周面軸方向にはパイプ保持部
6及び冷媒が内部を流れるパイプ7を設けたもので、バ
ーナ8からの燃焼ガスを円筒状内面9に水平横方向に流
して、冷媒搬送機4により送られてきた水平横方向のパ
イプ7を流れる冷媒を加熱するものである。
FIG. 5 shows a conventional example of the heat exchanger 1 (JP-A-59-107167), in which a plurality of fins 5 are provided on a cylindrical inner peripheral surface extending in the horizontal direction, and a plurality of fins 5 are provided on the outer peripheral surface in the axial direction. A pipe holding section 6 and a pipe 7 through which a refrigerant flows are provided. The combustion gas from the burner 8 flows horizontally and horizontally to the cylindrical inner surface 9, and the combustion gas from the burner 8 flows in the horizontal and horizontal directions. This is for heating the refrigerant flowing through the pipe 7.

しかし、この暖房システムでは冷媒搬送に外部動力が
必要であり、暖房運転時のランニングコストを低減する
ことが望まれている。
However, in this heating system, external power is required for transporting the refrigerant, and it is desired to reduce running costs during the heating operation.

発明が解決しようとする課題 暖房運転時のランニングコスト低減に冷媒搬送用の外
部動力を無くして無動力で熱搬送することが有効である
無動力熱搬送により、冷媒加熱暖房を行う場合、液状冷
媒が加熱されて発生する気体冷媒の浮力による自然循環
力が重要となる。
SUMMARY OF THE INVENTION Problems to be Solved by the Invention It is effective to eliminate the external power for refrigerant transport and to carry out heat transfer without power to reduce the running cost during heating operation. The natural circulating force due to the buoyancy of the gaseous refrigerant generated by heating is important.

この種の暖房装置は、従来は第5図に示すように冷媒
加熱熱交換器1のような構成であり、冷媒は水平方向に
延びるパイプ7内を流れるため、加熱されて気液二相混
合状態の冷媒の気体成分がスムーズに出口に向かって流
れないため冷媒の淀みを生じ、局部的な異常過熱を発生
し、また燃焼室と熱交換部が一体であるため熱交換量が
燃焼状態により不均一であるため局部過熱を生じ冷媒の
熱分解あるいは機器の異常温度上昇など、機器の信頼性
能上の課題があった。
Conventionally, this type of heating device has a configuration similar to a refrigerant heating heat exchanger 1 as shown in FIG. 5, in which the refrigerant flows through a pipe 7 extending in a horizontal direction, so that the refrigerant is heated and gas-liquid two-phase mixed. Since the gas component of the refrigerant in the state does not flow smoothly toward the outlet, stagnation of the refrigerant occurs, causing local abnormal overheating, and since the combustion chamber and the heat exchange unit are integrated, the heat exchange amount depends on the combustion state Due to the non-uniformity, there has been a problem in the reliability performance of equipment such as local overheating and thermal decomposition of refrigerant or abnormal rise in temperature of equipment.

本発明はかかる従来の課題を解消するもので、バーナ
等で加熱する冷媒加熱器の自然循環サイクルを気泡上昇
による自然循環力を増進させることによりスムーズに循
環させ、「熱伝導率の大きいアルミニウム製部材をろう
付けすることにより、さらに効率よく伝熱して熱効率を
向上させるもので、無動力熱搬送を確実におこなわせ冷
媒の熱分解を生じなく、高温燃焼ガスを燃焼室から均一
に熱交換部に導き冷媒の均一循環の維持とにより冷媒の
熱分解を生じなく信頼性の高いシステムとすることを目
的とする。
The present invention solves the conventional problem described above, and the natural circulation cycle of the refrigerant heater heated by a burner or the like is smoothly circulated by increasing the natural circulation force due to the rise of bubbles, and `` aluminum made of aluminum having a large heat conductivity is used. By brazing the members, heat is transferred more efficiently and the thermal efficiency is improved.This ensures reliable non-powered heat transfer and does not cause thermal decomposition of the refrigerant. It is an object of the present invention to provide a highly reliable system without causing thermal decomposition of the refrigerant by maintaining the uniform circulation of the refrigerant.

課題を解決するための手段 本発明は、板状のアルミニウム製伝熱隔壁部材を設
け、一方の面にアルミニウム製冷媒通路部材をろう付け
し、他面に枠型の取付環状縁部において燃焼室端板を固
定し、前記伝熱隔壁部材と燃焼室端板間に高温ガス通路
を構成し、前記燃焼室端板の中央部に燃料供給装置に燃
焼したバーナーを装着した燃焼室筐体を固定し、前記燃
焼室筐体の全内面壁には断熱材を設け、前記燃焼室端板
に燃焼ガス出口孔を設け、前記燃焼ガス出口孔に対応す
る位置の前記伝熱隔壁部材の少なくとも上部にアルミニ
ウム製の多数のフイン片を形成した伝熱フインをろう付
けし、前記冷媒通路部材には上下にアルミニウム製のヘ
ッダー管をろう付けしたものである。
Means for Solving the Problems The present invention provides a plate-shaped aluminum heat transfer partition member, brazes an aluminum refrigerant passage member on one surface, and forms a combustion chamber at a frame-shaped mounting annular edge on the other surface. An end plate is fixed, a high-temperature gas passage is formed between the heat transfer partition member and a combustion chamber end plate, and a combustion chamber housing having a burner burned in a fuel supply device is fixed to a central portion of the combustion chamber end plate. A heat insulating material is provided on the entire inner surface wall of the combustion chamber housing, a combustion gas outlet hole is provided in the combustion chamber end plate, and at least an upper portion of the heat transfer partition member at a position corresponding to the combustion gas outlet hole. A heat transfer fin formed with a large number of aluminum fin pieces is brazed, and an aluminum header tube is brazed vertically to the refrigerant passage member.

作用 本発明は、前記した構成によって、バーナ等で加熱す
る冷媒加熱器の自然循環サイクルを、断熱構成の燃焼室
と連通して設けた燃焼ガス出口孔から噴出する燃焼ガス
を燃焼ガスが通過する前記高温ガス通路に密着した多数
のフイン片を形成した伝熱フインを具備する伝熱隔壁部
材と縦方向の通路を有する多穴管構成の冷媒通路部材で
構成したので、燃焼ガスの温度と流れを均一にでき冷媒
通路部材の各部を均一加熱できスムーズに冷媒を循環さ
せ、かつ冷媒を局部過熱させることがなく無動力熱搬送
を確実におこなわせ冷媒の熱分解は生じない。
According to the present invention, the combustion gas passes through the natural gas circulation cycle of the refrigerant heater heated by the burner or the like through the combustion gas outlet hole provided in communication with the combustion chamber having the adiabatic configuration. Since it is composed of a heat transfer partition member having a heat transfer fin formed with a large number of fin pieces in close contact with the high-temperature gas passage and a refrigerant passage member having a multi-hole tube structure having a vertical passage, the temperature and flow of combustion gas Therefore, each part of the refrigerant passage member can be uniformly heated, the refrigerant can be circulated smoothly, and the refrigerant can be transported without power locally without overheating locally, so that thermal decomposition of the refrigerant does not occur.

「そして、伝熱隔壁部材と冷媒通路部材と伝熱フイン
とヘッダー管を、熱伝導率の大きいアルミニウム製とし
た事により、伝熱フインから伝熱隔壁部材を介して冷媒
通路部材に至る熱抵抗が小さくなり、燃焼室で燃焼によ
り発生した熱は伝熱フイン、伝熱隔壁部材を通じて冷媒
通路部材に高効率な熱交換効率で伝熱し、効率アップと
機器のコンパクト化が可能となる。また、伝熱隔壁部材
と冷媒通路部材と伝熱フィンを、ろう付けした事により
空気層等の発生で熱抵抗を生じる事が無く熱抵抗は安定
して小さく維持でき、効率アップと高効率の安定維持が
可能となり、組み立てた後一体ブレージングにより各部
材を簡単な構成にでき低コスト化と確実に気密性に維持
でき冷媒ガスが洩れる事がなく安全性と耐久性の高いも
のである。」 そして、高温ガス通路の内壁を前記燃焼室で構成し外
壁を構成する伝熱隔壁部材とこの伝熱隔壁部材と密着し
た冷媒通路部材で構成した二重壁構成により、前記内壁
から伝熱フィンを通じて冷媒通路に伝熱するため伝熱効
率が上昇しまた多穴管構成の冷媒通路部材で構成した二
重壁構成による冷媒の燃焼ガス部への洩れ防止と高温の
燃焼室と冷媒通路を高温ガス通路で完全に分離したため
局部過熱による冷媒の熱分解、劣化が生ずることなく、
信頼性の高いシステムである。
"The heat transfer partition member, the refrigerant passage member, the heat transfer fin, and the header tube are made of aluminum having a high thermal conductivity, so that the heat resistance from the heat transfer fin to the refrigerant passage member through the heat transfer partition member is reduced. And the heat generated by combustion in the combustion chamber is transferred to the refrigerant passage member with high heat exchange efficiency through the heat transfer fins and the heat transfer partition members, so that the efficiency can be increased and the equipment can be made more compact. By brazing the heat transfer partition member, refrigerant passage member and heat transfer fin, heat resistance does not occur due to the formation of an air layer, etc., and the heat resistance can be maintained stably small, increasing efficiency and maintaining high efficiency and stability. After assembly, the components can be simply configured by integral brazing, and the cost can be reduced, the airtightness can be reliably maintained, the refrigerant gas does not leak, and the safety and durability are high. " The inner wall of the high-temperature gas passage is constituted by the combustion chamber, and the heat transfer partition member constituting the outer wall and the double wall structure constituted by the refrigerant passage member which is in close contact with the heat transfer partition member. Heat transfer efficiency increases due to heat transfer to the passage, and refrigerant is prevented from leaking to the combustion gas portion by a double wall structure composed of a multi-hole tube-structured refrigerant passage member, and the high-temperature combustion chamber and refrigerant passage are connected by a high-temperature gas passage. Because it is completely separated, there is no thermal decomposition or deterioration of the refrigerant due to local overheating,
It is a highly reliable system.

実施例 以下、本発明の実施例を添付図面にもとづいて説明す
る。
Embodiments Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.

第1図は本発明の熱交換器の一実施例の断面図、第2
図は本発明の冷媒通路部材の断面図、第3図は第1図の
熱交換器の展開斜視図を示す。
FIG. 1 is a sectional view of an embodiment of the heat exchanger of the present invention, and FIG.
FIG. 3 is a sectional view of the refrigerant passage member of the present invention, and FIG. 3 is an exploded perspective view of the heat exchanger of FIG.

第1図〜第3図において、10は燃料供給装置に接続し
たバーナ8に連通して設けた燃焼室であり、10Aは燃焼
室筐体、11は板状のアルミニウム製伝熱隔壁部材であ
り、12Aは枠形の取付環状縁部12Bを有する箱形の燃焼室
端板で、取付環状縁部12Bを伝熱隔壁部材11に密着して
固定し、燃焼室端板12Aと伝熱隔壁部材11間に高温ガス
通路12を構成する。燃焼室端板12Aの中央部には燃焼ガ
ス出口孔13を穿設し、高温ガス通路12には排気通路14を
設ける。15は伝熱隔壁部材11の外面にろう付けしたアル
ミニウム製冷媒通路部材であり、縦方向の通路16が多数
設けられている。17は冷媒通路部材15の下端にろう付け
して設けたアルミニウム製入口ヘッダー管、18は冷媒通
路部材15の上端にろう付けして設けたアルミニウム製出
口ヘッダー管であり、それぞれ入口管19、出口管20を接
続し、この各々により冷媒回路と接続しており、入口ヘ
ッダー管17の他端には下方に曲折しオイル抜き管21を設
けてある。入口ヘッダー管17と出口ヘッダー管18はそれ
ぞれ縦方向の通路16により連通している。
1 to 3, reference numeral 10 denotes a combustion chamber provided in communication with a burner 8 connected to a fuel supply device, 10A denotes a combustion chamber housing, and 11 denotes a plate-shaped aluminum heat transfer partition member. , 12A is a box-shaped combustion chamber end plate having a frame-shaped mounting annular edge portion 12B. The mounting annular edge portion 12B is fixed to the heat transfer partition member 11 in close contact with the combustion chamber end plate 12A and the heat transfer partition member. A high-temperature gas passage 12 is formed between 11. A combustion gas outlet hole 13 is formed in the center of the combustion chamber end plate 12A, and an exhaust passage 14 is provided in the high temperature gas passage 12. Reference numeral 15 denotes an aluminum refrigerant passage member brazed to the outer surface of the heat transfer partition member 11, and a number of vertical passages 16 are provided. Reference numeral 17 denotes an aluminum inlet header pipe brazed to the lower end of the refrigerant passage member 15, and 18 denotes an aluminum outlet header pipe brazed to the upper end of the refrigerant passage member 15, and the inlet pipe 19 and the outlet pipe, respectively. Pipes 20 are connected to each other and connected to the refrigerant circuit. The other end of the inlet header pipe 17 is provided with an oil drain pipe 21 which is bent downward. The inlet header pipe 17 and the outlet header pipe 18 communicate with each other by a vertical passage 16.

22A、22Bは伝熱隔壁部材11の内側に熱的に接するよう
にろう付けして設けたアルミニウム製伝熱フインであり
波形状に屈曲させて多数のフイン片を形成してある。燃
焼室10の高温ガス通路12と接しない残りの内壁は全面を
覆う断熱材23が設けてある。
Reference numerals 22A and 22B denote aluminum heat transfer fins provided by brazing so as to be in thermal contact with the inside of the heat transfer partition member 11, which are bent in a wave shape to form a large number of fin pieces. The remaining inner wall of the combustion chamber 10 which is not in contact with the hot gas passage 12 is provided with a heat insulating material 23 covering the entire surface.

本発明の熱交換器の動作を説明する。 The operation of the heat exchanger of the present invention will be described.

前記構成において、燃料の供給装置により供給した燃
料をバーナ8で燃焼し、燃焼室10に発生した高温ガスは
燃焼ガス出口孔13を通り高温ガス通路12の伝熱フィン22
A、22Bの間を通り、排気通路14から排気する。
In the above configuration, the fuel supplied by the fuel supply device is burned by the burner 8, and the high-temperature gas generated in the combustion chamber 10 passes through the combustion gas outlet 13, and the heat transfer fins 22 of the high-temperature gas passage 12 are formed.
The air passes between A and 22B and is exhausted from the exhaust passage 14.

冷媒入口管19を通って入口ヘッダー管17に入った液冷
媒は冷媒通路部材15の下部より多数の縦方向の通路16を
分流し、伝熱フィン22A、22Bが高温ガス通路12内の燃焼
ガスから熱を中央部において熱的に連結された冷媒通路
部材15に伝熱し、この冷媒通路部材15の縦方向の通路16
内の冷媒を入口ヘッダー17に近い下部より十分に加熱す
る。そこで加熱された液状冷媒は気化蒸発を開始し液の
中に気泡を生じる気液二相状態となる。発生した気泡は
浮力効果で縦方向に設けた通路16内を下方から上方に上
昇し、特に燃焼ガスを断熱材23で全内面を覆った燃焼室
10から燃焼ガス出口孔13を出たのち高温ガス通路12で冷
媒に伝熱するため、燃焼ガス温度と流れを均一にでき冷
媒通路部材の各部を均一に加熱できスムーズかつ均一に
冷媒を蒸発させ、かつ冷媒を局部過熱させることがなく
無動力熱搬送を確実におこなわせ冷媒の熱分解が生じな
い。
The liquid refrigerant that has entered the inlet header pipe 17 through the refrigerant inlet pipe 19 diverges through a number of vertical passages 16 from the lower portion of the refrigerant passage member 15, and the heat transfer fins 22A and 22B cause the combustion gas in the hot gas passage 12 to flow therethrough. The heat is transferred to the refrigerant passage member 15 which is thermally connected at the central portion, and the longitudinal passage 16 of the refrigerant passage member 15 is
The inside refrigerant is sufficiently heated from the lower portion near the inlet header 17. Then, the heated liquid refrigerant starts vaporizing and evaporating, and enters a gas-liquid two-phase state in which bubbles are generated in the liquid. The generated bubbles rise upward from below in the passage 16 provided in the vertical direction by the buoyancy effect, and particularly, the combustion gas is covered with the heat insulating material 23 so that the entire inner surface is covered with the combustion chamber.
After exiting the combustion gas outlet hole 13 from 10, the heat is transferred to the refrigerant in the high-temperature gas passage 12, so that the combustion gas temperature and flow can be made uniform, and each part of the refrigerant passage member can be uniformly heated, and the refrigerant can be smoothly and uniformly evaporated. In addition, the non-powered heat transfer is reliably performed without locally heating the refrigerant, so that the refrigerant is not thermally decomposed.

均一加熱はまた通路16内の流れの抵抗を低減させるこ
とにより気泡発生が増大し、気泡上昇力は強められ自然
循環力が強くなると共にまだ気化していない液冷媒を伴
って通路16の上部へ冷媒を送る気泡ポンプ作用が発生す
る。
Uniform heating also increases the generation of bubbles by reducing the flow resistance in the passage 16, increasing the bubble rising force, increasing the natural circulation force, and moving to the top of the passage 16 with the liquid refrigerant that has not been vaporized yet. A bubble pump action for sending the refrigerant occurs.

さらに通路16の上部、下部においても設けた伝熱フィ
ン22A、22B以外の伝熱隔壁部材11全面も伝熱面積となり
高温ガス通路12を流れる加熱流体より効率よく吸熱し通
路16内の気液二相状態の冷媒をさらに加熱して自然循環
力をさらに増大させる。通路16の上端に達した冷媒は出
口ヘッダー管18に流入し冷媒出口管20より放熱器(図示
せず)に向かって流出する。
Further, the entire surface of the heat transfer partition member 11 other than the heat transfer fins 22A and 22B provided in the upper and lower portions of the passage 16 also serves as a heat transfer area and efficiently absorbs heat from the heating fluid flowing through the high-temperature gas passage 12 to allow the gas-liquid The refrigerant in the phase is further heated to further increase the natural circulation force. The refrigerant that has reached the upper end of the passage 16 flows into the outlet header tube 18 and flows out of the refrigerant outlet tube 20 toward a radiator (not shown).

このように縦方向の16の下部から上部に至るまで加熱
することにより自然循環を高めるだけでなく、下部にお
いて伝熱フィン22Bにより強く加熱することで自然循環
力をさらに増加させる。
In this way, not only the natural circulation is enhanced by heating from the lower portion to the upper portion of the vertical direction 16, but also the natural circulation force is further increased by heating the lower portion 16 with the heat transfer fins 22B.

また、高温ガス通路12の内壁を前記燃焼室10の燃焼室
端板12Aで構成し、外壁を構成する伝熱隔壁部材11とこ
の伝熱隔壁部材11と密着した冷媒通路部材15で構成した
二重壁構成により、前記内壁である燃焼室端板12Aから
伝熱フイン22A、22Bを通じて冷媒通路16に伝熱するため
伝熱効率が上昇し、また多穴管構成の冷媒通路部材15で
構成した二重壁構成による冷媒の燃焼ガス部への洩れ防
止と高温の燃焼室10と冷媒通路16を高温ガス通路12で安
全に分離したため局部過熱による冷媒の熱分解、劣化が
生じなくなり、あるいは機器の異常温度上昇防止による
信頼性の高いシステムである。
Further, the inner wall of the high-temperature gas passage 12 is constituted by the combustion chamber end plate 12A of the combustion chamber 10, and the heat transfer partition member 11 constituting the outer wall and the refrigerant passage member 15 which is in close contact with the heat transfer partition member 11 are formed. Due to the double wall configuration, heat is transferred from the combustion chamber end plate 12A, which is the inner wall, to the refrigerant passage 16 through the heat transfer fins 22A and 22B, thereby increasing heat transfer efficiency. The double wall structure prevents the refrigerant from leaking into the combustion gas section and safely separates the high-temperature combustion chamber 10 and refrigerant passage 16 by the high-temperature gas passage 12, so that thermal decomposition and deterioration of the refrigerant due to local overheating do not occur, or equipment abnormality This is a highly reliable system that prevents temperature rise.

燃焼室10の高温ガス通路12と接しない残りの筐体10A
の内壁面な断熱材23で覆い放熱を防止する。
Remaining housing 10A not in contact with hot gas passage 12 of combustion chamber 10
It is covered with a heat insulating material 23 on the inner wall surface to prevent heat radiation.

「そして、伝熱隔壁部材11と冷媒通路部材15と伝熱フ
イン22A、22Bとヘッダー管17、18を、熱伝導率大きいア
ルミニウム製とした事により、伝熱フイン22A、22Bから
伝熱隔壁部材11を介して冷媒通路部材15に至る熱抵抗が
小さくなり、燃焼室10で燃焼により発生した熱は伝熱フ
イン22A、22B、伝熱隔壁部材11を通じて冷媒通路部材15
に高効率な熱交換効率で伝熱し、高率アップと機、器の
コンパクト化が可能となる。また、伝熱隔壁部材11と冷
媒通路部材15と伝熱フイン22A、22Bを、ろう付けした事
により、伝熱隔壁部材11と冷媒通路部材15と伝熱フイン
22A、22Bの部品間に空気層等により熱抵抗を生じる事が
無く、伝熱フイン22A、22Bから伝熱隔壁部材11を介して
冷媒通路部材15に至る熱抵抗は安定して小さく維持で
き、熱交換効率アップと効率の安定維持が可能となり、
さらに、伝熱隔壁部材11と冷媒通路部材15と伝熱フイン
22A、22Bとヘッダー管17、18を、ろう付けした事によ
り、組み立てた後一体ブレージングにより各部材を簡単
な構成にでき低コスト化が可能となり、全ての接続部を
ろう付けすることは確実に気密性を維持でき冷媒が洩れ
る事がなく安全性と耐久性の高いものである。そして、
構成の具体例として、」 冷媒通路部材15を内部に多数の穴を持つアルミニウム
製の多穴偏平押し出し管とし、伝熱フイン22A、22Bとし
て帯状のアルミニウム製の板を波状に屈曲させて構成
し、かつ伝熱隔壁部材11はアルミニウム製心材の表裏に
ろう材を事前にクラッドしたブレージングシートとして
この素材を用いた伝熱隔壁部材11の内外面にアルミニウ
ム製の伝熱フイン22A、22Bおよびアルミニウム製の多穴
偏平押し出し管の冷媒通路部材15をもちいて組立て、同
時に一体ブレージングすることにより熱的に連結でき、
接触熱抵抗が無い伝熱性能に優れる熱交換器を軽量でわ
つ低コストで実用に供することができる。
"The heat transfer partition member 11, the refrigerant passage member 15, the heat transfer fins 22A and 22B, and the header tubes 17 and 18 are made of aluminum having a large heat conductivity, so that the heat transfer partition members are separated from the heat transfer fins 22A and 22B. The heat generated by the combustion in the combustion chamber 10 is reduced through the heat transfer fins 22A and 22B and the heat transfer partition member 11 so that the heat resistance of the refrigerant passage member 15 is reduced.
The heat transfer efficiency is high and the heat transfer efficiency is high, and the efficiency and the size of the machine and vessel can be reduced. Further, the heat transfer partition member 11, the refrigerant passage member 15, and the heat transfer fins 22A and 22B are brazed to form the heat transfer partition member 11, the refrigerant passage member 15, and the heat transfer fins.
There is no thermal resistance caused by an air layer or the like between the parts of 22A, 22B, and the thermal resistance from the heat transfer fins 22A, 22B to the refrigerant passage member 15 via the heat transfer partition member 11 can be stably maintained low, Heat exchange efficiency can be increased and efficiency can be maintained stably.
Further, the heat transfer partition member 11, the refrigerant passage member 15, and the heat transfer fins are provided.
By brazing 22A, 22B and header tubes 17, 18, each member can be made simple structure by integrated brazing after assembly, cost reduction is possible, and it is sure to braze all connecting parts Airtightness can be maintained, refrigerant does not leak, and safety and durability are high. And
As a specific example of the configuration, the refrigerant passage member 15 is an aluminum multi-hole flat extruded tube having a large number of holes therein, and the heat transfer fins 22A and 22B are formed by bending a strip-shaped aluminum plate into a wave shape. And, the heat transfer partition member 11 is made of aluminum as a brazing sheet in which a brazing material is pre-clad on the front and back of an aluminum core material. Assembled using the refrigerant passage member 15 of the multi-hole flat extruded tube, and can be thermally connected by simultaneously brazing integrally,
A heat exchanger having no contact heat resistance and excellent in heat transfer performance can be put to practical use at a light weight and at a low cost.

また高温ガス通路12の内壁を燃焼室端板12Aで構成
し、燃焼室10の外壁となる伝熱隔壁部材11をアルミニウ
ム製心材の片面にろう材を事前にクラッドしたブレージ
ングシートとしてこの素材を用い一体ブレージングによ
り伝熱フィン22A、22Bと一体に構成することにより燃焼
室10からの熱が伝熱フィン22A、22Bを通じて冷媒通路16
に高効率な熱交換効率で伝熱し、効率アップと機器のコ
ンパクト化が可能となる。そして高圧ガス通路12の外壁
をアルミニウムとし伝熱隔壁部材11と一体ブレージング
することは簡単な構成でかつ気密性を維持でき排ガスが
洩れることがなく安全性が高いものである。
Further, the inner wall of the high-temperature gas passage 12 is constituted by a combustion chamber end plate 12A, and the heat transfer partition member 11 serving as the outer wall of the combustion chamber 10 is used as a brazing sheet in which a brazing material is clad in advance on one side of an aluminum core material. The heat from the combustion chamber 10 is transferred to the refrigerant passage 16 through the heat transfer fins 22A and 22B by forming the heat transfer fins 22A and 22B integrally with the heat transfer fins 22A and 22B by integral brazing.
In addition, heat is transferred with high heat exchange efficiency, which makes it possible to increase efficiency and downsize equipment. When the outer wall of the high-pressure gas passage 12 is made of aluminum and brazed integrally with the heat transfer partition member 11, the airtightness can be maintained with a simple structure, and the exhaust gas does not leak and the safety is high.

また、燃焼室10の高温ガス通路12と接しない残りの外
面を覆う断熱材23の外周に冷媒通路部材15の通路16と連
通する通路(たとえば密閉管路3の放熱器3への往き
管)を密接して構成すると断熱材23から外部に放熱する
熱を冷媒回路を伝熱しさらに高効率なシステムとなる。
冷媒中にはコンプレッサーのオイルが常に溶存しており
加熱器で冷媒を気化させると次第にオイルが溜ってく
る。オイルが多く溜るとその粘性と熱熱伝導のための冷
媒の気化、循環を阻害する。冷媒通路部材15の冷媒通路
16の底部の入口ヘッダー17に接続した下方に曲折しオイ
ル抜き管21を設けてあるため加熱器にオイルが溜ると冷
媒と一緒にオイルをオイル抜き管から排出し確実にオイ
ルを加熱器から除去し冷媒の均一循環の維持により局部
過熱による冷媒の熱分解を生じなく信頼性の高いシステ
ムである。
In addition, a passage communicating with the passage 16 of the refrigerant passage member 15 on the outer periphery of the heat insulating material 23 covering the remaining outer surface not in contact with the high-temperature gas passage 12 of the combustion chamber 10 (for example, a pipe connecting the closed conduit 3 to the radiator 3). Are closely connected to each other, the heat radiated from the heat insulating material 23 to the outside is transferred to the refrigerant circuit, and a more efficient system is obtained.
The oil of the compressor is always dissolved in the refrigerant, and when the refrigerant is vaporized by the heater, the oil gradually accumulates. If a large amount of oil accumulates, it hinders the vaporization and circulation of the refrigerant due to its viscosity and heat conduction. Refrigerant passage of refrigerant passage member 15
The bottom of 16 is connected to the inlet header 17 at the bottom and bent downward to provide an oil drain pipe 21.When oil accumulates in the heater, the oil is discharged together with the refrigerant from the oil drain pipe, and the oil is reliably removed from the heater. By maintaining the uniform circulation of the refrigerant, the system is highly reliable without causing thermal decomposition of the refrigerant due to local overheating.

発明の効果 以上のように本発明の「板状のアルミニウム製伝熱隔
壁部材を設け、一方の面にアルミニウム製冷媒通路部材
をろう付けし、他面に枠型の取付環状縁部において燃焼
室端板を固定し、前記伝熱隔壁部材と燃焼室端板間に高
温ガス通路を構成し、前記燃焼室端板の中央部に燃料供
給装置に接続したバーナーを装着した燃焼室筐体を固定
し、前記燃焼室筐体の全内面壁には断熱材を設け、前記
燃焼室端板に燃焼ガス出口孔を設け、前記燃焼ガス出口
孔に対応する位置の前記伝熱隔壁部材の少なくとも上部
にアルミニウム製の多数のフイン片を形成した伝熱フイ
ンをろう付けし、前記冷媒通路部材には上下にアルミニ
ウム製のヘッダー管をろう付けした熱交換器」によれ
ば、 (1) 伝熱隔壁部材と冷媒通路部材と伝熱フインとヘ
ッダー管を、熱伝導率の大きいアルミニウム製とした事
により、伝熱フインから伝熱隔壁部材を介して冷媒通路
部材に至る熱抵抗が小さくなり、燃焼室で燃焼により発
生した熱は伝熱フイン、伝熱隔壁部材を通じて冷媒通路
部材に高効率な熱交換効率で伝熱し、効率アップと機器
のコンパクト化が可能となる。
Effect of the Invention As described above, according to the present invention, "a plate-shaped aluminum heat transfer partition member is provided, an aluminum refrigerant passage member is brazed on one surface, and a combustion chamber is formed on the other surface at a frame-shaped mounting annular edge. An end plate is fixed, a high-temperature gas passage is formed between the heat transfer partition member and the combustion chamber end plate, and a combustion chamber housing having a burner connected to a fuel supply device is fixed to a central portion of the combustion chamber end plate. A heat insulating material is provided on the entire inner surface wall of the combustion chamber housing, a combustion gas outlet hole is provided in the combustion chamber end plate, and at least an upper portion of the heat transfer partition member at a position corresponding to the combustion gas outlet hole. According to a heat exchanger in which a heat transfer fin formed with a large number of aluminum fin pieces is brazed and an aluminum header tube is brazed vertically to the refrigerant passage member. ”(1) Heat transfer partition member , Refrigerant passage member, heat transfer fin and header Is made of aluminum having high thermal conductivity, the thermal resistance from the heat transfer fin to the refrigerant passage member via the heat transfer partition member is reduced, and the heat generated by combustion in the combustion chamber is transferred to the heat transfer fin, Heat is transferred to the refrigerant passage member with high heat exchange efficiency through the heat partition member, so that the efficiency can be increased and the equipment can be downsized.

(2) 伝熱隔壁部材と冷媒通路部材と伝熱フインを、
ろう付けした事により、伝熱隔壁部材と冷媒通路部材と
伝熱フインの部品間に空気層等熱抵抗を生じる事が無
く、伝熱フインから伝熱隔壁部材を介して冷媒通路部材
に至る熱抵抗は安定して小さく維持でき、効率アップと
高効率の安定維持が可能となり、 (3) また、伝熱隔壁部材と冷媒通路部材と伝熱フイ
ンとヘッダー管を、ろう付けした事により、組み立てた
後一体ブレージングにより各部材を簡単な構成にでき低
コスト化が可能となり、全ての接続部をろう付けするこ
とにより確実に気密性を維持でき冷媒が洩れる事がなく
安全性と耐久性の高いものである。
(2) The heat transfer partition member, the refrigerant passage member, and the heat transfer fin
By brazing, heat resistance such as an air layer does not occur between the heat transfer partition member, the refrigerant passage member, and the components of the heat transfer fin, and heat from the heat transfer fin to the refrigerant passage member via the heat transfer partition member does not occur. Resistance can be maintained stably and small, and efficiency can be increased and high efficiency can be maintained stably. (3) In addition, the heat transfer partition member, the refrigerant passage member, the heat transfer fin, and the header tube are assembled by brazing. After the brazing, the components can be simplified and the cost can be reduced by brazing, and the airtightness can be reliably maintained by brazing all the connecting parts, so that the refrigerant does not leak and the safety and durability are high. Things.

(4) 断熱構成の燃焼室と連通して設けた燃焼ガス出
口から噴出する燃焼ガスを、燃焼ガスが通過する前記高
温ガス通路の一部を構成する外周伝熱隔壁部材と前記外
周伝熱隔壁部材に密着した多数のフィン片を形成した伝
熱フィンを通過させ、縦方向の通路を有する多穴管構成
の冷媒通路部材を前記外周熱隔壁部に密着して構成した
ことにより、燃焼ガスの温度と流れを均一にでき、冷媒
通路部材の各部を均一に加熱できスムーズに冷媒を循環
させ、かつ冷媒を局部過熱させることがなく無動力熱搬
送を確実におこなわせ冷媒の熱分解を生じなく均一加熱
はまた通路16内の流れの抵抗を低減させることにより気
泡発生が増大し、気泡上昇力は強められ自然循環力が強
くなり熱交換効率が増大し機器のコンパクト化が可能と
なり、機器の異常温度上昇防止による信頼性向上を図る
ことができる。
(4) An outer peripheral heat transfer partition member and an outer peripheral heat transfer partition that constitute a part of the high-temperature gas passage through which the combustion gas passes through a combustion gas outlet provided in communication with a combustion chamber having an adiabatic configuration. By passing a heat transfer fin formed with a large number of fin pieces in close contact with the member, a refrigerant passage member having a multi-hole tube structure having a vertical passage is formed in close contact with the outer peripheral heat partition portion, so that the combustion gas The temperature and flow can be made uniform, each part of the refrigerant passage member can be uniformly heated, the refrigerant can be circulated smoothly, and the refrigerant can be reliably heated without power overheating locally without causing thermal decomposition of the refrigerant. Uniform heating also increases the generation of bubbles by reducing the flow resistance in the passage 16, increases the bubble rising power, strengthens the natural circulation force, increases the heat exchange efficiency, and makes it possible to make the equipment compact. Abnormal temperature It is possible to improve the reliability by increasing prevented.

(5) 上昇気泡流による気泡ポンプ作用により無動力
熱搬送が可能となり、低ランニングコストの暖房ができ
る。
(5) The non-powered heat transfer becomes possible by the bubble pump action by the rising bubble flow, and the heating with low running cost can be performed.

(6) 外周伝熱隔壁と一体に冷媒通路部材15を構成し
た二重壁構成による冷媒の燃焼ガス部への洩れ防止と高
温の燃焼室と冷媒通路を高温ガス通路で完全に分離した
ため局部過熱による冷媒の熱分解、劣化が生じなくな
り、あるいは機器の異常温度上昇防止による信頼性の高
いシステムであり簡単な構成でかつ気密性を維持でき排
ガスが洩れることなく、冷媒が洩れた場合も火炎に直接
冷媒ガスが触れることが無く安全性が高いものである。
(6) The refrigerant wall member 15 is integrally formed with the outer peripheral heat transfer partition to prevent the refrigerant from leaking into the combustion gas portion by the double wall configuration, and to completely separate the high temperature combustion chamber and the refrigerant passage by the high temperature gas passage to locally overheat. The system does not cause thermal decomposition and deterioration of the refrigerant due to, or is a highly reliable system by preventing abnormal temperature rise of equipment.Simple structure and airtightness can be maintained, exhaust gas does not leak, and even if refrigerant leaks, flames will also occur. High safety without direct contact of the refrigerant gas.

(7) 高温ガス通路の内壁を構成する燃焼室の外壁を
アルミニウム製心材の片面にろう材を事前にクラッドし
たブレージングシートとしてこの素材を用い一体ブレー
ジングにより伝熱フィンと一体に構成することにより燃
焼室からの熱が伝熱フィンを通じて冷媒通路に高効率な
熱交換効率で伝熱し、効率アップと機器のコンパクト化
が可能となり、一体ブレージングすることは簡単な構成
で、かつ気密性を維持でき排ガスが洩れることがなく安
全性が高いものである。
(7) Combustion by forming the outer wall of the combustion chamber constituting the inner wall of the high-temperature gas passage as a brazing sheet in which a brazing material is clad in advance on one side of an aluminum core material and integrally forming the heat transfer fins by integral brazing. Heat from the chamber is transferred to the refrigerant passage with high efficiency heat exchange efficiency through the heat transfer fins, which makes it possible to increase the efficiency and make the equipment more compact. Is high and the safety is high.

(8) 燃焼室の高温ガス路と接しない残りの外面を覆
う断熱材の外周に冷媒通路部材の通路と連通する通路
(たとえば密閉管路の放熱器への往い管)を密接して構
成すると断熱材から外部に放熱する熱を冷媒回路に伝熱
し、さらに高効率なシステムを構成できる。
(8) A passage (for example, a pipe to a radiator of a closed conduit) communicating with the passage of the refrigerant passage member is closely formed around the outer periphery of the heat insulating material covering the remaining outer surface not in contact with the high-temperature gas passage of the combustion chamber. Then, the heat radiated from the heat insulating material to the outside is transferred to the refrigerant circuit, and a more efficient system can be configured.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の熱交換器の一実施例の断面図、第2図
は本発明の冷媒通路部材の断面図、第3図は第1図熱交
換器の展開斜視図、第4図は従来の冷媒加熱器の回路構
成図、第5図は従来の冷媒加熱機の外観斜視図、を示
す。 8:バーナ、10:燃焼室、11:伝熱隔壁部材、12:高温ガス
通路、 12A:燃焼室端板、13:燃焼ガス出口孔、 14:排気部、15:冷媒通路部材、 16:通路、17:入口ヘッダー管、 18:出口ヘッダー管、19、20:入口管、出口管、21:オイ
ル抜き管、 22A、22B:伝熱フィン。
FIG. 1 is a cross-sectional view of one embodiment of the heat exchanger of the present invention, FIG. 2 is a cross-sectional view of a refrigerant passage member of the present invention, FIG. 3 is an exploded perspective view of FIG. 1, and FIG. Is a circuit configuration diagram of a conventional refrigerant heater, and FIG. 5 is an external perspective view of a conventional refrigerant heater. 8: Burner, 10: Combustion chamber, 11: Heat transfer partition member, 12: High temperature gas passage, 12A: Combustion chamber end plate, 13: Combustion gas outlet hole, 14: Exhaust part, 15: Refrigerant passage member, 16: Passage , 17: inlet header pipe, 18: outlet header pipe, 19, 20: inlet pipe, outlet pipe, 21: oil drain pipe, 22A, 22B: heat transfer fin.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 桜武 達規 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 (72)発明者 山口 紘一郎 大阪府門真市大字門真1006番地 松下電 器産業株式会社内 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Tatsunori Sakuratake 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Koichiro Yamaguchi 1006 Kadoma Kadoma, Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. In company

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】板状のアルミニウム製伝熱隔壁部材を設
け、一方の面にアルミニウム製冷媒通路部材をろう付け
し、他面に枠型の取付環状縁部において燃焼室端板を固
定し、前記伝熱隔壁部材と燃焼室端板間に高温ガス通路
を構成し、前記燃焼室端板の中央部に燃料供給装置に燃
焼したバーナーを装着した燃焼室筐体を固定し、前記燃
焼室筐体の全内面壁には断熱材を設け、前記燃焼室端板
に燃焼ガス出口孔を設け、前記燃焼ガス出口孔に対応す
る位置の前記伝熱隔壁部材の少なくとも上部にアルミニ
ウム製の多数のフイン片を形成した伝熱フインをろう付
けし、前記冷媒通路部材には上下にアルミニウム製のヘ
ッダー管をろう付けした熱交換器。
1. A plate-shaped aluminum heat transfer partition member is provided, an aluminum refrigerant passage member is brazed to one surface, and a combustion chamber end plate is fixed to the other surface at a frame-shaped mounting annular edge. Forming a high-temperature gas passage between the heat transfer partition member and the end plate of the combustion chamber, and fixing a combustion chamber housing having a burner burned to a fuel supply device to a central portion of the combustion chamber end plate; A heat insulating material is provided on the entire inner wall of the body, a combustion gas outlet hole is provided in the combustion chamber end plate, and a plurality of aluminum fins are provided at least above the heat transfer partition member at a position corresponding to the combustion gas outlet hole. A heat exchanger in which a heat transfer fin in which a piece is formed is brazed, and an aluminum header tube is brazed vertically to the refrigerant passage member.
JP1034669A 1989-02-14 1989-02-14 Heat exchanger Expired - Fee Related JP2584047B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1034669A JP2584047B2 (en) 1989-02-14 1989-02-14 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1034669A JP2584047B2 (en) 1989-02-14 1989-02-14 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH02213665A JPH02213665A (en) 1990-08-24
JP2584047B2 true JP2584047B2 (en) 1997-02-19

Family

ID=12420837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1034669A Expired - Fee Related JP2584047B2 (en) 1989-02-14 1989-02-14 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2584047B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169969A (en) * 1988-12-21 1990-06-29 Matsushita Electric Ind Co Ltd Heat exchanger

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169969A (en) * 1988-12-21 1990-06-29 Matsushita Electric Ind Co Ltd Heat exchanger

Also Published As

Publication number Publication date
JPH02213665A (en) 1990-08-24

Similar Documents

Publication Publication Date Title
JP2584047B2 (en) Heat exchanger
JP2548380B2 (en) Heat exchanger
JPH0351666A (en) Heat exchanger
JP2845566B2 (en) Heat exchanger
JP2845563B2 (en) Heat exchanger
JP2619956B2 (en) Heat exchanger
JPS63105395A (en) Heat exchanger
JP2532630B2 (en) Refrigerant heater
JPH0351665A (en) Heat exchanger
JP2850587B2 (en) Heat exchanger
JP2845564B2 (en) Heat exchanger
JP2841975B2 (en) Heat exchanger
JPH07113497B2 (en) Heat exchanger
JP2861544B2 (en) Heat exchanger
JPH0718595B2 (en) Heat exchanger
JP3019548B2 (en) Heat exchanger
JPH05118778A (en) Heat exchanger
JPH01169270A (en) Heat exchanger
JPH0776637B2 (en) Heat exchanger
JP2834302B2 (en) Heat exchanger
JP2845565B2 (en) Heat exchanger
JP2600930B2 (en) Heat exchange equipment
JP2605869B2 (en) Heat exchange equipment
JPH01217150A (en) Heat exchanging device and manufacture thereof
JP2568648B2 (en) Heat exchange device and method of manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees