JP2834302B2 - Heat exchanger - Google Patents

Heat exchanger

Info

Publication number
JP2834302B2
JP2834302B2 JP2278580A JP27858090A JP2834302B2 JP 2834302 B2 JP2834302 B2 JP 2834302B2 JP 2278580 A JP2278580 A JP 2278580A JP 27858090 A JP27858090 A JP 27858090A JP 2834302 B2 JP2834302 B2 JP 2834302B2
Authority
JP
Japan
Prior art keywords
refrigerant
passage member
temperature
heat exchanger
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2278580A
Other languages
Japanese (ja)
Other versions
JPH04155182A (en
Inventor
勝蔵 粉川
克彦 山本
国明 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2278580A priority Critical patent/JP2834302B2/en
Publication of JPH04155182A publication Critical patent/JPH04155182A/en
Application granted granted Critical
Publication of JP2834302B2 publication Critical patent/JP2834302B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/0008Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium
    • F28D7/0025Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one medium being in heat conductive contact with the conduits for the other medium the conduits for one medium or the conduits for both media being flat tubes or arrays of tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、燃焼ガスなどの高温ガスにより冷媒を加熱
したたとえば暖冷房装置に利用する熱交換器に関するも
のである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchanger in which a refrigerant is heated by a high-temperature gas such as a combustion gas and used for, for example, a heating and cooling device.

従来の技術 被加熱側流体に冷房を用い、これを燃焼ガスにより加
熱して液状冷媒を蒸気気化させ、潜熱により熱を運び暖
房を行うものに、第4図に示すような回路構成をもった
冷媒加熱暖房機がある。これは燃焼ガスと冷媒の熱交換
を行う熱交換器1と放熱器2を密閉管路3で連結し、こ
の密閉管路3中に設けた冷媒搬送機4により冷媒を強制
循環するものである。
2. Description of the Related Art A circuit configuration as shown in FIG. 4 is used for cooling using a cooling medium as a fluid to be heated, heating it with a combustion gas to vaporize a liquid refrigerant, carrying heat by latent heat, and heating. There is a refrigerant heating heater. In this method, a heat exchanger 1 for exchanging heat between a combustion gas and a refrigerant and a radiator 2 are connected by a closed conduit 3, and the refrigerant is forcibly circulated by a refrigerant carrier 4 provided in the closed conduit 3. .

しかし、第4図のような暖房システムでは冷媒搬送に
外部動力が必要であり、暖房運転時のランニングコスト
を低減することが望まれている。
However, in the heating system as shown in FIG. 4, external power is required for transporting the refrigerant, and it is desired to reduce the running cost during the heating operation.

発明が解決しようとする課題 暖房運転時のランニングコスト低減には冷媒搬送用の
外部動力をなくて無動力で熱搬送することが有効であ
る。無動力熱搬送により冷媒加熱暖房を行う場合、液状
冷媒が加熱されて発生する気体冷媒の浮力による自然循
環力が重要となる。
Problems to be Solved by the Invention To reduce the running cost during the heating operation, it is effective to eliminate the external power for transporting the refrigerant and carry out the heat transport without power. In the case of performing heating and heating of a refrigerant by non-powered heat transfer, natural circulation force due to buoyancy of a gas refrigerant generated by heating a liquid refrigerant is important.

この種の暖房装置には、従来は第5図に示すような構
成の熱交換器が用いられている。
Conventionally, a heat exchanger having a configuration as shown in FIG. 5 is used for this type of heating device.

第5図は熱交換器1の従来例を示したもので(特開昭
59−107167号公報)、水平方向に延びる円筒体の内周面
に複数のフィン5を設け、外周面に軸方向のパイプ保持
部6および冷媒が内部を流れるパイプ7を設けたもので
あり、バーナ8からの燃焼ガスを円筒体の内面に水平方
向に流し、冷媒搬送機4により送られてパイプ7内を流
れる冷媒を加熱する。9は温度検知器であり、パイプ保
持部6の間の表面に取り付けられており、冷媒が異常に
温度上昇した場合に加熱を停止するように制御してい
る。
FIG. 5 shows a conventional example of the heat exchanger 1 (Japanese Unexamined Patent Publication No.
59-107167), a plurality of fins 5 provided on an inner peripheral surface of a cylindrical body extending in a horizontal direction, and an axial pipe holding portion 6 and a pipe 7 through which a refrigerant flows inside are provided on an outer peripheral surface. The combustion gas from the burner 8 flows in the horizontal direction to the inner surface of the cylindrical body, and heats the refrigerant that is sent by the refrigerant carrier 4 and flows through the pipe 7. Reference numeral 9 denotes a temperature detector, which is attached to the surface between the pipe holding portions 6, and controls to stop heating when the temperature of the refrigerant abnormally rises.

このとき、冷媒は水平方向に延びるパイプ7内を流れ
るため、加熱されて気液二相混合状態の冷媒の気体成分
はスムーズに出口に向かって流れず、このため冷媒の淀
みを生じて局部的な異常過熱を発生したり、また、燃焼
室と熱交換部が一体であるため熱交換量が燃焼状態によ
り不均一となって局部過熱を生じたりして、冷媒の熱分
解あるいは機器の異常温度上昇などが起こり、機器の信
頼性能上に問題があった。
At this time, since the refrigerant flows through the pipe 7 extending in the horizontal direction, the gas component of the refrigerant in a heated and gas-liquid two-phase mixed state does not flow smoothly toward the outlet, and therefore, the refrigerant stagnates and the refrigerant locally Abnormal overheating occurs, or because the combustion chamber and the heat exchange unit are integrated, the heat exchange amount becomes uneven depending on the combustion state, causing local overheating, causing thermal decomposition of the refrigerant or abnormal temperature of the equipment. As a result, there was a problem in the reliability performance of the equipment.

本発明はかかる従来の問題を解決するもので、バーナ
などで過熱する冷媒加熱器の自然循環サイクルを、気泡
上昇による自然循環力の増進によりスムーズに循環させ
るとともに、冷媒加熱器に冷媒が不足した場合などで冷
媒が過熱したときは、直ちにこれを検知してシステムの
動作を正常化し、同時に、この温度検知あるいはこの出
力により制御する動作に異常を生じた場合はその安全を
維持し、機器を保護できる熱交換器を提供することを目
的とするものである。
The present invention solves such a conventional problem, in which a natural circulation cycle of a refrigerant heater overheated by a burner or the like is smoothly circulated by an increase in natural circulation force due to bubble rise, and refrigerant is insufficient in the refrigerant heater. If the refrigerant overheats in some cases, it is immediately detected to normalize the operation of the system.At the same time, if an abnormality occurs in the temperature detection or the operation controlled by this output, the safety is maintained. It is an object to provide a heat exchanger that can be protected.

課題を解決するための手段 上記課題を解決するために本発明の熱交換器は、バー
ナの燃焼室に連通する延焼ガス入口を有する高温ガス通
路部材と、燃焼室に面する内面に前記高温ガス通路部材
が密着された伝熱隔壁と、前記伝熱隔壁の外面の前記高
温ガス通路部材に対応する位置に一体的に形成されて、
複数の上下方向の冷媒通路を有する冷媒通路部材と、前
記冷媒通路部材の上下両端に設けられたヘッダー管と、
前記ヘッダー管のそれぞれに取り付けられた冷媒入口管
および冷媒出口管と、前記冷媒出口管とは反対側の位置
で前記冷媒通路部材に設けられた温度検知手段と、前記
冷媒出口管に近い側の位置で前記冷媒通路部材に設けら
れた温度感応型のスイッチとを備えたものである。
Means for Solving the Problems In order to solve the above problems, a heat exchanger of the present invention comprises a hot gas passage member having a fire spread gas inlet communicating with a combustion chamber of a burner, and a hot gas passage member on an inner surface facing the combustion chamber. A heat transfer partition having a passage member closely attached thereto, integrally formed at a position corresponding to the high-temperature gas passage member on an outer surface of the heat transfer partition,
A refrigerant passage member having a plurality of vertical refrigerant passages, and header tubes provided at both upper and lower ends of the refrigerant passage member,
A refrigerant inlet pipe and a refrigerant outlet pipe attached to each of the header pipes, a temperature detection means provided in the refrigerant passage member at a position opposite to the refrigerant outlet pipe, and a side near the refrigerant outlet pipe. A temperature-sensitive switch provided at the position in the refrigerant passage member.

作用 本発明は、上記した構成によって、バーナなどで加熱
する冷媒加熱器の自然循環サイクルを、複数の冷媒通路
内での気泡上昇による自然循環力の増進によりスムーズ
に循環させることができ、かつ冷媒を局部過熱させるこ
とがなく、無動力熱搬送を確実におこなわせて冷媒の熱
分解を生じることはない。そして、冷媒の流れは、冷媒
入口管より流入し、入口ヘッダー管で冷媒通路部材のそ
れぞれの冷媒通路に分流し、この冷媒通路途中で高温ガ
ス通路部材内を流れる高温ガスの熱を受けてガス化し、
その後出口ヘッダー管で集合して冷媒出口管より冷媒回
路に流れる。このとき、入口ヘッダー管を流れる冷媒は
液相が多く、出口ヘッダー管を流れる冷媒は熱を受ける
ため氣相が多くなり、冷房のヘッダー管内の流れ抵抗は
入口ヘッダー管内より大きくなる。このため、冷媒通路
部材のそれぞれの冷媒通路を流れる冷媒の量は冷媒出口
管に近い側ほど多く流れ、冷媒出口管とは反対側の位置
の冷媒通路に流れる冷媒流量は最も少なくなる。したが
って、冷媒が所定量より少なくなると全て気化(ガス
化)して顕熱による温度上昇が生じる。そこで、この冷
媒出口管とは反対側の位置で冷媒通路部材に温度検知手
段を設けたことにより、冷媒加熱器に冷媒の流量が不足
した場合などで冷媒が過熱したときは、温度検知手段は
直ちにこれを検知して、システムの動作を正常化でき、
冷媒の熱分解、劣化を阻止できる。また、冷媒通路部材
のそれぞれの冷媒通路を流れる冷媒の量は冷媒出口管に
近い側ほど多く流れ、そのため、冷媒出口管に近い側の
位置の冷媒通路部材を流れる冷媒は最も多くなり、冷媒
加熱器に無くなったときは、顕熱による温度上昇がこの
箇所に生じる。したがって、温度検知あるいはこの出力
により制御する動作に異常を生じた場合、冷媒出口管に
近い側の位置で冷媒通路部材に設けられた温度感応型の
スイッチがこれを検知し、安全を維持し、機器を保護で
き、信頼性の高いシステムが得られる。
Function The present invention can smoothly circulate a natural circulation cycle of a refrigerant heater heated by a burner or the like by an increase in a natural circulation force due to rising of bubbles in a plurality of refrigerant passages, and Is not locally heated, and the non-powered heat transfer is reliably performed, so that the refrigerant is not thermally decomposed. The flow of the refrigerant flows from the refrigerant inlet pipe, is divided into the respective refrigerant passages of the refrigerant passage member at the inlet header pipe, and receives the heat of the high-temperature gas flowing in the high-temperature gas passage member in the middle of the refrigerant passage to generate a gas. And
After that, they gather at the outlet header pipe and flow from the refrigerant outlet pipe to the refrigerant circuit. At this time, the refrigerant flowing through the inlet header pipe has a large liquid phase, and the refrigerant flowing through the outlet header pipe receives heat, so that the gas phase increases, and the flow resistance in the cooling header pipe becomes larger than that in the inlet header pipe. For this reason, the amount of the refrigerant flowing through each of the refrigerant passages of the refrigerant passage member flows more toward the refrigerant outlet tube, and the flow rate of the refrigerant flowing through the refrigerant passage at a position opposite to the refrigerant outlet tube is minimized. Therefore, when the amount of the refrigerant is less than the predetermined amount, all of the refrigerant is vaporized (gasified) and the temperature rises due to sensible heat. Therefore, by providing the temperature detection means in the refrigerant passage member at a position opposite to the refrigerant outlet pipe, when the refrigerant is overheated, such as when the flow rate of the refrigerant is insufficient in the refrigerant heater, the temperature detection means Immediately detect this and normalize the operation of the system,
Thermal decomposition and deterioration of the refrigerant can be prevented. Further, the amount of the refrigerant flowing through each of the refrigerant passages of the refrigerant passage member flows more toward the refrigerant outlet pipe, and therefore, the refrigerant flowing through the refrigerant passage member at a position closer to the refrigerant outlet pipe becomes the largest, and the refrigerant is heated. When the vessel is exhausted, a temperature rise due to sensible heat occurs at this location. Therefore, when an abnormality occurs in the operation of controlling the temperature detection or the output by this output, the temperature-sensitive switch provided in the refrigerant passage member at a position near the refrigerant outlet pipe detects this, maintaining safety, Equipment can be protected and a highly reliable system can be obtained.

実施例 以下本発明の一実施例を図面に基づいて説明する。An embodiment of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例を示す熱交換器の一部化欠
斜視図、第2図は同熱交換器の高温ガス通路部材および
冷媒通路部材の断面図、第3図は同熱交換器の裏面図で
ある。
FIG. 1 is a partially cutaway perspective view of a heat exchanger showing one embodiment of the present invention, FIG. 2 is a sectional view of a high-temperature gas passage member and a refrigerant passage member of the heat exchanger, and FIG. It is a rear view of an exchanger.

第1図〜第3図において、10は燃料供給装置に接続し
たバーナ8に連通する燃焼室であり、伝熱隔壁11が燃焼
室10に対面して取り付けられている。12は高温ガス通路
部材であり、燃焼室10に面して伝熱隔壁11の内面に密着
して取り付けられ、燃焼室10に連通して高温燃焼ガスを
取り入れる燃焼ガス入口13と燃焼室10外に連通する排気
出口14を有している。15は伝熱隔壁11の外面に熱的に連
結させ高温ガス通路部材12に対応して取り付けられた冷
媒通路部材であり、上下方向の冷媒通路16が多数設けら
れている。17は冷媒通路部材16の下端に設けられた入口
ヘッダー管、18は冷媒通路部材16の上端に設けられた出
口ヘッダー管であり、それぞれ同一方向に延設された冷
媒入口管19、冷媒出口20を介して冷媒回路に接続されて
おり、入口ヘッダー管17の他端には下方に曲折されてオ
イル抜き管21が設けられている。また、入口ヘッダー管
17と出口ヘッダー管18は冷媒通路部材16の上下方向の冷
媒通路16により互いに連通している。22は伝熱隔壁11の
内側に熱的に接するように設けられた多数の伝熱フィン
であり、燃焼室10が伝熱隔壁11に取り付けられたとき
に、燃焼室10の外枠は高温ガス通路部材12の燃焼ガス入
口13および排気出口14を除く両側を押圧し、高温ガス通
路部材12を伝熱フィン22とともに伝熱隔壁11に熱的に結
合する。また、燃焼室10の高温ガス通路部材12と接しな
い残りの内面には全面を覆う断熱材23が設けられてい
る。冷媒出口管20とは反対側の位置で冷媒通路部材15の
上部に温度検知手段としての温度サーミスタ24がまた、
冷媒出口管20に近い側の位置で冷媒通路部材15の上部に
温度感応型の温度スイッチ25がそれぞれ冷媒通路部材15
に密接して固定した金具26を用いて取り付けられてい
る。本実施例では、温度感応型の温度スイッチ25は金具
26にビス止めされ、冷媒通路部材15に密接されている。
27は温度サーミスタ24と温度スイッチ25の検出出力によ
りシステムを制御する制御器である。
1 to 3, reference numeral 10 denotes a combustion chamber which communicates with a burner 8 connected to a fuel supply device, and a heat transfer partition 11 is attached to face the combustion chamber 10. Reference numeral 12 denotes a high-temperature gas passage member, which is attached to the combustion chamber 10 in close contact with the inner surface of the heat transfer partition 11 and communicates with the combustion chamber 10 to take in the high-temperature combustion gas. And an exhaust outlet 14 communicating with the exhaust port. Reference numeral 15 denotes a refrigerant passage member which is thermally connected to the outer surface of the heat transfer partition 11 and is mounted corresponding to the high-temperature gas passage member 12, and is provided with a large number of vertical refrigerant passages 16. Reference numeral 17 denotes an inlet header pipe provided at the lower end of the refrigerant passage member 16, and 18 denotes an outlet header pipe provided at the upper end of the refrigerant passage member 16, a refrigerant inlet pipe 19 and a refrigerant outlet 20 extending in the same direction, respectively. The inlet header pipe 17 is provided at the other end thereof with an oil drain pipe 21 bent downward. Also, inlet header pipe
The 17 and the outlet header tube 18 communicate with each other through the refrigerant passage 16 in the up and down direction of the refrigerant passage member 16. Reference numeral 22 denotes a number of heat transfer fins provided so as to be in thermal contact with the inside of the heat transfer partition 11.When the combustion chamber 10 is attached to the heat transfer partition 11, the outer frame of the combustion chamber 10 is The both sides of the passage member 12 except for the combustion gas inlet 13 and the exhaust outlet 14 are pressed to thermally couple the high temperature gas passage member 12 together with the heat transfer fins 22 to the heat transfer partition 11. Further, a heat insulating material 23 covering the entire surface is provided on the remaining inner surface of the combustion chamber 10 which is not in contact with the high temperature gas passage member 12. A temperature thermistor 24 as a temperature detecting means is provided above the refrigerant passage member 15 at a position opposite to the refrigerant outlet pipe 20,
A temperature-sensitive temperature switch 25 is provided above the refrigerant passage member 15 at a position close to the refrigerant outlet pipe 20, respectively.
It is attached by using a metal fitting 26 closely fixed to the main body. In this embodiment, the temperature-sensitive temperature switch 25 is
It is screwed to 26 and is in close contact with the refrigerant passage member 15.
27 is a controller for controlling the system based on the detection outputs of the temperature thermistor 24 and the temperature switch 25.

上記構成において、燃料供給装置から供給された燃料
はバーナ8で燃焼され、燃焼室10に発生した高温燃焼ガ
スは燃焼ガス入口13から入って高温ガス通路部材12の伝
熱フィン22間を含めた通路を通り、排気出口14から排気
通路28に流れ、排気管29から排出される。冷媒入口管19
を通って入口ヘッダー管17に入った液冷媒は冷媒通路部
材15の下部より多数の上下方向の冷媒通路16に分流して
流れ、高温ガス通路部材12内を流れる高温燃焼ガスから
伝熱フィン22、伝熱隔壁11を通して冷媒通路材通路15に
伝熱された熱により加熱される。このとき、冷媒通路部
材15の上下方向の冷媒通路16内の冷媒は入口ヘッダー管
17に近い下部より十分に加熱される。そこで加熱された
液状冷媒は気化蒸発を開始し、液の中に気泡を生じる気
液二相状態となり、発生した気泡は浮力効果で上下方向
の冷媒通路16内を下方から上方に上昇する。特に燃焼ガ
スは燃焼室10から直接燃焼ガス入口13に入り、高温ガス
通路部材12に伝熱するために燃焼ガスの温度と流れが均
一となり、冷媒通路部材15の各部を均一加熱でき、スム
ーズかつ均一に冷媒を蒸発させ、冷媒は局部過熱させる
ことがない。したがって、無動力熱搬送を確実に行わせ
冷媒の熱分解を生じない。そして、均一加熱により冷媒
通路16のそれぞれの流量が均等となって全体として抵抗
を低減させ、気泡上昇力は強められて自然循環力が強く
なり、上方へ冷媒を送る気泡ポンプ作用が発生する。さ
らに冷媒通路16の上部、下部においても伝熱フィン22以
外の伝熱隔壁11全面が伝熱面積となり、冷媒通路16内の
気液二相状態の冷媒をさらに加熱し、自然循環力をさら
に増大させる。冷媒通路16の上端に達した冷媒は出口ヘ
ッダー管18に流入し、冷媒出口管20より放熱器(図示せ
ず)に向かって流出する。
In the above configuration, the fuel supplied from the fuel supply device is burned by the burner 8, and the high-temperature combustion gas generated in the combustion chamber 10 enters through the combustion gas inlet 13 and includes the space between the heat transfer fins 22 of the high-temperature gas passage member 12. After passing through the passage, it flows from the exhaust outlet 14 to the exhaust passage 28 and is discharged from the exhaust pipe 29. Refrigerant inlet pipe 19
The liquid refrigerant that has entered the inlet header pipe 17 flows through the lower portion of the refrigerant passage member 15 into a number of vertical refrigerant passages 16 and flows therefrom. The heat is transferred by the heat transferred to the refrigerant passage material passage 15 through the heat transfer partition 11. At this time, the refrigerant in the refrigerant passage 16 in the vertical direction of the refrigerant passage member 15
Heated well from the bottom near 17. Then, the heated liquid refrigerant starts vaporizing and evaporating, and enters a gas-liquid two-phase state in which bubbles are generated in the liquid, and the generated bubbles rise upward from below in the vertical refrigerant passage 16 by a buoyancy effect. In particular, the combustion gas directly enters the combustion gas inlet 13 from the combustion chamber 10 and transfers heat to the high-temperature gas passage member 12, so that the temperature and flow of the combustion gas become uniform, and each part of the refrigerant passage member 15 can be uniformly heated, and can be smoothly and smoothly. The refrigerant is uniformly evaporated, and the refrigerant does not locally overheat. Therefore, the non-powered heat transfer is reliably performed, and the thermal decomposition of the refrigerant does not occur. Then, the flow rate of each of the refrigerant passages 16 is made uniform by uniform heating to reduce the resistance as a whole, the bubble rising force is strengthened, the natural circulation force is strengthened, and a bubble pump action for sending the refrigerant upward is generated. In addition, the entire surface of the heat transfer partition 11 other than the heat transfer fins 22 at the upper and lower portions of the refrigerant passage 16 serves as a heat transfer area, further heating the gas-liquid two-phase refrigerant in the refrigerant passage 16 and further increasing the natural circulation force. Let it. The refrigerant that has reached the upper end of the refrigerant passage 16 flows into the outlet header tube 18 and flows out of the refrigerant outlet tube 20 toward a radiator (not shown).

また、冷媒通路部材16を内部に多数の孔を持つアルミ
ニウム製の多穴偏平押し出し管で成形し、伝熱フィン22
を帯状のアルミニウム製の板を波状に屈曲させるかアル
ミニウム製の押し出し材で構成し、かつ伝熱隔壁11はア
ルミニウム製心材の表裏にろう材を事前にクラッドした
ブレージングシートとし、この伝熱隔壁11の内外面にア
ルミニウム製の伝熱フィン22およびアルミニウム製の多
孔偏平押し出し管の冷媒通路部材16を当接して組立て、
同時に一体ブレージングすることにより熱的に連結でき
る。
Further, the refrigerant passage member 16 is formed by a multi-hole flat extruded tube made of aluminum having a large number of holes therein, and the heat transfer fins 22 are formed.
The heat transfer partition 11 is a brazing sheet in which a brazing material is clad in advance on the front and back of an aluminum core material, and the heat transfer partition 11 An aluminum heat transfer fin 22 and a refrigerant passage member 16 of an aluminum perforated flat extruded tube are brought into contact with the inner and outer surfaces thereof and assembled.
Simultaneous brazing simultaneously allows thermal connection.

一方、入口ヘッダー管17を流れる冷媒は液相が多く、
出口ヘッダー管188を流れる冷媒は熱を受けるため氣相
が多くなり、冷媒の出口ヘッダー管18内の流れ抵抗は入
口ヘッダー管17内より大きくなる。このため、冷媒通路
部材15のそれぞれの冷媒通路16を流れる冷媒の量は冷媒
出口管20に近い側ほど多く流れる。そのため、冷媒出口
管20とは反対側の位置の冷媒通路16に流れる冷媒流量は
最も少なく、冷媒が所定量より少なくなると全て気化
(ガス化)して顕熱による温度上昇が生じる。そこで、
この冷媒出口管20とは反対側の位置で冷媒通路部材15の
上部に温度検知手段としての温度サーミスタ24を取り付
けたことにより、冷媒が冷媒回路から漏れた場合など
で、暖冷房装置の冷媒加熱器に冷媒が不足し、冷媒が過
熱したとき、温度サーミスタ24の温度は直ちに上昇し、
これを検知することにより、システムの動作を正常化で
き、冷媒の熱分解、劣化を阻止でき、信頼性の高いシス
テムが得られる。
On the other hand, the refrigerant flowing through the inlet header pipe 17 has a large liquid phase,
Since the refrigerant flowing through the outlet header tube 188 receives heat, the gas phase increases, and the flow resistance of the refrigerant in the outlet header tube 18 becomes larger than in the inlet header tube 17. Therefore, the amount of the refrigerant flowing through each of the refrigerant passages 16 of the refrigerant passage member 15 flows more toward the refrigerant outlet pipe 20. Therefore, the flow rate of the refrigerant flowing through the refrigerant passage 16 at a position opposite to the refrigerant outlet pipe 20 is the smallest. When the amount of the refrigerant becomes smaller than a predetermined amount, the refrigerant is entirely vaporized (gasified) and a temperature rise due to sensible heat occurs. Therefore,
By mounting a temperature thermistor 24 as a temperature detecting means on the upper side of the refrigerant passage member 15 at a position opposite to the refrigerant outlet pipe 20, when the refrigerant leaks from the refrigerant circuit, etc. When the temperature of the thermistor 24 rises immediately when the refrigerant becomes insufficient and the refrigerant overheats,
By detecting this, the operation of the system can be normalized, the thermal decomposition and deterioration of the refrigerant can be prevented, and a highly reliable system can be obtained.

また、冷媒通路部材15のそれぞれの冷媒通路16を流れ
る冷媒の量は冷媒出口管に近い側ほど多く流れる。その
ため、冷媒出口管20に近い側の位置の冷媒通路16を流れ
る冷媒は最も多くなり、暖冷房装置の冷媒加熱器に冷媒
が無くなったとき、最後に顕熱による温度上昇が生じ
る。したがって、温度検知あるいはこの出力により制御
する動作に異常を生じて冷媒加熱器に冷媒が完全に無く
なった場合、冷媒出口管20に近い側の位置で冷媒通路部
材15に設けた温度感応型の温度スイッチ25の温度は直ち
に上昇し、これを検知して機器の保護を行う。
Further, the amount of the refrigerant flowing through each of the refrigerant passages 16 of the refrigerant passage member 15 flows more toward the refrigerant outlet pipe. Therefore, the refrigerant flowing through the refrigerant passage 16 at a position closer to the refrigerant outlet pipe 20 becomes the largest, and when the refrigerant in the refrigerant heater of the heating and cooling device runs out, the temperature rise finally occurs due to sensible heat. Therefore, when an abnormality occurs in the operation of controlling the temperature by the temperature detection or the output, and the refrigerant completely runs out of the refrigerant heater, the temperature-responsive temperature provided in the refrigerant passage member 15 at a position close to the refrigerant outlet pipe 20. The temperature of the switch 25 immediately rises and detects this to protect the device.

また、冷媒入口管19と冷媒出口管20を引き出し方向を
同一方向にしてそれぞれヘッダー管17,18に取り付ける
ことにより、冷媒の流路は冷媒入口管19および冷媒出口
管20とは反対側の位置の冷媒通路126を最も長く構成で
きるため、流れ抵抗の増加にともない冷媒流量の減少に
より冷媒が過熱するとき、温度サーミスタ24の温度はさ
らに早く上昇し、これを検知する一方、スイッチ25の温
度上昇は通常、温度サーミスタ24より遅くなって最後と
なり信頼性の高いシステムが得られる。
Further, the refrigerant inlet pipe 19 and the refrigerant outlet pipe 20 are attached to the header pipes 17 and 18 with the drawing direction being the same direction, so that the flow path of the refrigerant is at a position opposite to the refrigerant inlet pipe 19 and the refrigerant outlet pipe 20. When the refrigerant is overheated due to a decrease in the flow rate of the refrigerant due to an increase in the flow resistance, the temperature of the temperature thermistor 24 rises more quickly, and the temperature rise of the switch 25 is detected while detecting this. Is usually slower than the temperature thermistor 24 and last, resulting in a highly reliable system.

また、冷媒通路部材15にブレージングにより密接して
金具26を固定することにより、冷媒通路部材15の熱をこ
の金具26を通して温度スイッチ25に伝熱でき、応答性が
向上する。さらに、冷媒が少し減少した場合も冷媒通路
部材15の上部の冷媒通路16では冷媒がガスとなり、熱を
顕熱で吸収し温度上昇を生じるから、温度スイッチ26を
冷媒出口管20に近い側の位置の冷媒通路部材15の上部に
取り付けることによりこれを検出でき、より信頼性の高
いシステムが得られる。
Further, by fixing the metal fitting 26 in close contact with the coolant passage member 15 by brazing, the heat of the coolant passage member 15 can be transferred to the temperature switch 25 through the metal fitting 26, and the responsiveness is improved. Furthermore, even when the refrigerant is slightly reduced, the refrigerant becomes gas in the refrigerant passage 16 above the refrigerant passage member 15 and absorbs heat with sensible heat to raise the temperature.Therefore, the temperature switch 26 is connected to the refrigerant outlet pipe 20 close to the refrigerant outlet pipe 20. This can be detected by being mounted above the refrigerant passage member 15 at the position, and a more reliable system can be obtained.

また、冷媒通路16にオイルが多く溜ると、その粘性と
低熱伝導のため冷媒の気化、循環を阻害する。このとき
冷媒が減少したときと同様に循環が阻害されることによ
り、冷媒出口管20とは反対側の位置の冷媒通路16に流れ
る冷媒流量は最も少なくなり、冷媒流量が所定より少な
くなると全て気化(ガス化)して顕熱による温度上昇が
生じ、温度サーミスタ24の温度が上昇する。この検出出
力により入口ヘッダー管17に接続したオイル抜き管21か
らオイルを排出することにより、冷媒の均一循環を維持
でき、局部過熱による冷媒の熱分解は生じなくなり、信
頼性の高いシステムが得られる。
Further, when a large amount of oil accumulates in the refrigerant passage 16, the vaporization and circulation of the refrigerant are hindered due to its viscosity and low heat conduction. At this time, the circulation is obstructed in the same manner as when the refrigerant is reduced, so that the flow rate of the refrigerant flowing through the refrigerant passage 16 at the position opposite to the refrigerant outlet pipe 20 is minimized. (Gasification), the temperature rises due to sensible heat, and the temperature of the temperature thermistor 24 rises. By discharging oil from the oil drain pipe 21 connected to the inlet header pipe 17 by this detection output, uniform circulation of the refrigerant can be maintained, and thermal decomposition of the refrigerant due to local overheating does not occur, and a highly reliable system can be obtained. .

発明の効果 以上のように本発明の熱交換器によれば、バーナなど
で加熱する冷媒加熱器の自然循環サイクルを、複数の冷
媒通路内での気泡上昇による自然循環力を増進させるこ
とによりスムーズに循環させることができ、冷媒を局部
過熱させることがなく、無動力熱搬送を確実に行わせて
熱分解を生じさせない。
Effects of the Invention As described above, according to the heat exchanger of the present invention, the natural circulation cycle of the refrigerant heater heated by the burner or the like is smoothly performed by increasing the natural circulation force due to the rise of bubbles in the plurality of refrigerant passages. The refrigerant does not locally overheat, and ensures the unpowered heat transfer to be performed without causing thermal decomposition.

そして、冷媒出口管とは反対側の位置で冷媒通路部材
に温度検知手段を設けた構成としたことにより、暖冷房
装置の冷媒加熱器に冷媒が不足した場合などで冷媒が過
熱するときは、温度検知手段の温度は直ちにこれを検知
し、システムの動作を正常化でき、冷媒の熱分解、劣化
を阻止できる。
And by having the structure which provided the temperature detection means in the refrigerant | coolant passage member in the position on the opposite side to a refrigerant outlet pipe, when refrigerant | coolant overheats when refrigerant | coolant lacks in the refrigerant heater of a heating / cooling device, The temperature of the temperature detecting means can immediately detect this, normalize the operation of the system, and prevent the thermal decomposition and deterioration of the refrigerant.

同時に、冷媒出口管に近い側の位置の冷媒通路部材に
温度感応型のスイッチを設けたことにより、温度スイッ
チは通常温度サーミスタより低い温度状態にあり、冷媒
加熱器に冷媒が無くなったときは、顕熱による温度上昇
がこの箇所に生じることから、温度検知あるいはこの出
力により制御する動作に異常を生じた場合、冷媒出口管
に近い側の位置の冷媒通路部材に設けられた温度感応型
のスイッチがこれを検知し、安全を維持して機器を保護
できる信頼性の高いシステムが得られる。
At the same time, by providing a temperature-sensitive switch to the refrigerant passage member at a position closer to the refrigerant outlet pipe, the temperature switch is at a lower temperature than the normal temperature thermistor, and when the refrigerant heater runs out of refrigerant, Since a temperature rise due to sensible heat occurs in this location, if an abnormality occurs in the operation of controlling the temperature by detecting or outputting the temperature, a temperature-sensitive switch provided in the refrigerant passage member at a position close to the refrigerant outlet pipe. Can detect this and provide a highly reliable system that can maintain safety and protect equipment.

また、冷媒入口管と冷媒出口管を同一方向でそれぞれ
ヘッダー管に取り付けることにより、温度スイッチの温
度上昇は通常、温度サーミスタより遅くなり、より信頼
性の高いシステムが得られる。
Also, by attaching the refrigerant inlet pipe and the refrigerant outlet pipe to the header pipe in the same direction, the temperature rise of the temperature switch is usually slower than that of the temperature thermistor, and a more reliable system can be obtained.

また、温度スイッチを冷媒出口管に近い側の位置で冷
媒通路部材の上部に取り付けることにより、冷媒が少し
減少した場合も冷媒通路の上部は冷媒がガスとなり、熱
を顕熱で吸収し温度上昇を生じるから、これを早く検出
でき、より信頼性の高いシステムが得られる。
Also, by mounting the temperature switch on the upper part of the refrigerant passage member at a position near the refrigerant outlet pipe, even if the refrigerant is slightly reduced, the upper part of the refrigerant passage becomes gas, the refrigerant absorbs heat with sensible heat and the temperature rises , Which can be detected quickly and a more reliable system can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明の一実施例を示す熱交換器の一部切欠斜
視図、第2図は同熱交換器の通路部材の断面図、第3図
は同熱交換器の裏面図、第4図は従来の冷媒加熱暖房機
の回路構成図、第5図は従来の冷媒加熱暖房機に使用さ
れる熱交換器の斜視図である。 8……バーナ、10……燃焼室、11……伝熱隔壁、12……
高温ガス通路部材、13……燃焼ガス入口、14……排気出
口、15……冷媒通路部材、16……冷媒通路、17……入口
ヘッダー管、18……出口ヘッダー管、19……冷媒入口
管、20……冷媒出口管、24……温度サーミスタ(温度検
知手段)、25……温度スイッチ。
1 is a partially cutaway perspective view of a heat exchanger showing one embodiment of the present invention, FIG. 2 is a sectional view of a passage member of the heat exchanger, FIG. 3 is a rear view of the heat exchanger, FIG. FIG. 4 is a circuit configuration diagram of a conventional refrigerant heating / heating machine, and FIG. 5 is a perspective view of a heat exchanger used in the conventional refrigerant heating / heating machine. 8 Burner, 10 Combustion chamber, 11 Heat transfer bulkhead, 12
High temperature gas passage member, 13 combustion gas inlet, 14 exhaust outlet, 15 refrigerant passage member, 16 refrigerant passage, 17 inlet header tube, 18 outlet header tube, 19 refrigerant inlet Pipe, 20: refrigerant outlet pipe, 24: temperature thermistor (temperature detecting means), 25: temperature switch.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) F28D 1/00 - 13/00 F25B 41/00 F25B 49/02 510──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int. Cl. 6 , DB name) F28D 1/00-13/00 F25B 41/00 F25B 49/02 510

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】バーナの燃焼室にする燃焼ガス入口を有す
る高温ガス通路部材と、燃焼室に面する内面に前記高温
ガス通路部材が密着された伝熱隔壁と、前記伝熱隔壁の
外面の前記高温ガス通路部材に対応する位置に一体的に
形成されて複数の上下方向の冷媒通路を有する冷媒通路
部材と、前記冷媒通路部材の上下両端に設けられたヘッ
ダー管と、前記ヘッダー管のそれぞれに取り付けた冷媒
入口管および冷媒出口管と、前記冷媒出口管とは反対側
の位置で前記冷媒通路部材に設けられた温度検知手段
と、前記冷媒出口管に近い側の位置で前記冷媒通路部材
に設けられた温度感応型のスイッチとを備えた熱交換
器。
A hot gas passage member having a combustion gas inlet serving as a combustion chamber of a burner; a heat transfer partition having the hot gas passage member closely attached to an inner surface facing the combustion chamber; and an outer surface of the heat transfer partition. A refrigerant passage member integrally formed at a position corresponding to the high-temperature gas passage member and having a plurality of vertical refrigerant passages; header pipes provided at upper and lower ends of the refrigerant passage member; and each of the header pipes A refrigerant inlet tube and a refrigerant outlet tube attached to the refrigerant outlet member; a temperature detecting means provided in the refrigerant passage member at a position opposite to the refrigerant outlet tube; and a refrigerant passage member at a position close to the refrigerant outlet tube. And a temperature-sensitive switch provided in the heat exchanger.
【請求項2】冷媒入口管と冷媒出口管は、ヘッダー管の
それぞれに同一方向に延設されて取り付けられている請
求項1記載の熱交換器。
2. The heat exchanger according to claim 1, wherein the refrigerant inlet tube and the refrigerant outlet tube are attached to the header tubes so as to extend in the same direction.
【請求項3】温度感応型のスイッチは冷媒出口管に近い
側の位置で冷媒通路部材の上部に取り付けられている請
求項1記載の熱交換器。
3. The heat exchanger according to claim 1, wherein the temperature-sensitive switch is mounted on an upper portion of the refrigerant passage member at a position near the refrigerant outlet pipe.
【請求項4】温度感応型のスイッチは、冷媒通路部材に
密着して固定した鉄を用いて取り付けられている請求項
1記載の熱交換器。
4. The heat exchanger according to claim 1, wherein the temperature-sensitive switch is mounted using iron fixed in close contact with the refrigerant passage member.
JP2278580A 1990-10-17 1990-10-17 Heat exchanger Expired - Fee Related JP2834302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2278580A JP2834302B2 (en) 1990-10-17 1990-10-17 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2278580A JP2834302B2 (en) 1990-10-17 1990-10-17 Heat exchanger

Publications (2)

Publication Number Publication Date
JPH04155182A JPH04155182A (en) 1992-05-28
JP2834302B2 true JP2834302B2 (en) 1998-12-09

Family

ID=17599245

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2278580A Expired - Fee Related JP2834302B2 (en) 1990-10-17 1990-10-17 Heat exchanger

Country Status (1)

Country Link
JP (1) JP2834302B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7196186B2 (en) * 2018-09-28 2022-12-26 三菱電機株式会社 Outdoor unit of refrigerating cycle device, refrigerating cycle device, and air conditioner

Also Published As

Publication number Publication date
JPH04155182A (en) 1992-05-28

Similar Documents

Publication Publication Date Title
JP2834302B2 (en) Heat exchanger
JP2834303B2 (en) Heat exchanger
JP2850587B2 (en) Heat exchanger
JP3019548B2 (en) Heat exchanger
JP2921264B2 (en) Refrigerant heater controller
JP2548380B2 (en) Heat exchanger
JPH05118778A (en) Heat exchanger
JP2845566B2 (en) Heat exchanger
JP2848113B2 (en) Refrigerant heater controller
JP2845563B2 (en) Heat exchanger
JP2841975B2 (en) Heat exchanger
JP2619956B2 (en) Heat exchanger
JPH0351666A (en) Heat exchanger
JPH063088A (en) Controlling device for refrigerant heater
JP2584047B2 (en) Heat exchanger
JP2674217B2 (en) Heat exchange equipment
JP2861544B2 (en) Heat exchanger
JP2600930B2 (en) Heat exchange equipment
JPH0718596B2 (en) Heat exchanger
JPS63105395A (en) Heat exchanger
JPH0776637B2 (en) Heat exchanger
JPH07113497B2 (en) Heat exchanger
JPH0718595B2 (en) Heat exchanger
JP2605869B2 (en) Heat exchange equipment
JP2845564B2 (en) Heat exchanger

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees