JPH01217150A - Heat exchanging device and manufacture thereof - Google Patents

Heat exchanging device and manufacture thereof

Info

Publication number
JPH01217150A
JPH01217150A JP63041318A JP4131888A JPH01217150A JP H01217150 A JPH01217150 A JP H01217150A JP 63041318 A JP63041318 A JP 63041318A JP 4131888 A JP4131888 A JP 4131888A JP H01217150 A JPH01217150 A JP H01217150A
Authority
JP
Japan
Prior art keywords
heat transfer
coolant
refrigerant
passage member
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63041318A
Other languages
Japanese (ja)
Inventor
Takao Nishiyama
西山 隆夫
Norikazu Yamada
則和 山田
Naoki Kotani
直樹 小谷
Shoichi Hara
正一 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63041318A priority Critical patent/JPH01217150A/en
Publication of JPH01217150A publication Critical patent/JPH01217150A/en
Pending legal-status Critical Current

Links

Landscapes

  • Instantaneous Water Boilers, Portable Hot-Water Supply Apparatuses, And Control Of Portable Hot-Water Supply Apparatuses (AREA)

Abstract

PURPOSE:To prevent a local overheating of a coolant by a method wherein a thermal conducting partition wall cylinder having a combustion chamber diverged from a lower end of a parallel approaching plane and a coolant passage member having a vertical passage at an outer surface of the thermal conducting partition wall cylinder are provided. CONSTITUTION:Liquid coolant passed through a coolant inlet pipe 19 and entered inlet header pipes 14 and 14 is dispersed from a lower part of a coolant passage member 12 into several vertical passages 13. A thermal conducting partition wall cylinder 10 may absorb heat of combustion discharged gas passing from a combustion chamber 21 through a thermal conducting fin 16 at a parallel approaching surface 11 where the thermal conducting fin 16 is arranged and heat the coolant in the vertical passage 13 of the coolant passage member 12 thermally connected from a lower part near an inlet header pipe 14. The heated liquid coolant may start to vaparize and evaporate to become a gas-liquid two phase state in the liquid, it may ascend within the passage 13 from downward to upward directions,. flow into an outlet header pipe 15 and then flow out of a coolant outlet pipe 20 toward a radiator. An effect of agitation and disturbance of flow is generated by such an ascending flow so as to prevent an abnormal local overheating of the coolant.

Description

【発明の詳細な説明】 産業上の利用分野− 本発明は、ガス・石油などを熱源とする高温燃焼ガスを
利用して冷媒などを加熱する熱交換装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application - The present invention relates to a heat exchange device that heats a refrigerant or the like using high-temperature combustion gas using gas, oil, or the like as a heat source.

従来の技術 被加熱側流体に冷媒を用い、燃焼ガスにより加熱して液
状の前記冷媒を蒸発気化させて潜熱により熱を運び暖房
を行なうものに第4図に示すような冷媒加熱暖房機があ
る。これはバーナ1aの燃焼ガスにより加熱される冷媒
を封入した熱交換装置1と放熱器2を密閉管路3で連結
するとともに、密閉管路3中に設けた冷媒搬送機4によ
り冷媒を5強制循環させるものである。第5図は前記熱
交換装置1の従来例を示したもので(特開昭59−’+
07167号公報)水平方向に延びる円筒状内周面に復
数のフィン5を設け、外周面軸方向にはパイプ保持部6
および冷媒が内部を流れるパイプ7を設けたもので、バ
ーナ部8からの燃焼ガスを円筒状内面9に水平横方向に
流して冷媒搬送機4により送られてきた水平方向のパイ
プ7内を流れる冷媒を加熱するものである。
BACKGROUND ART A refrigerant heating machine as shown in Fig. 4 uses a refrigerant as the fluid to be heated and heats it with combustion gas to evaporate the liquid refrigerant and transport heat by latent heat to perform heating. . In this system, a heat exchange device 1 containing a refrigerant heated by the combustion gas of a burner 1a and a radiator 2 are connected by a sealed pipe 3, and a refrigerant is forcibly transferred by a refrigerant transfer device 4 installed in the sealed pipe 3. It is something that circulates. FIG. 5 shows a conventional example of the heat exchanger 1 (JP-A-59-'+
Publication No. 07167) A plurality of fins 5 are provided on the cylindrical inner circumferential surface extending in the horizontal direction, and a pipe holding portion 6 is provided on the outer circumferential surface in the axial direction.
and a pipe 7 through which the refrigerant flows, and the combustion gas from the burner part 8 flows horizontally and laterally to the cylindrical inner surface 9 and flows through the horizontal pipe 7 sent by the refrigerant conveyor 4. It heats the refrigerant.

発明が解決しようとする課題 前述の暖房システムでは冷媒豪速に外部動力が必要であ
り、暖房運転時のランニングコスト低減には冷媒搬送用
外部動力をなくし無動力で熱搬送することが有効である
。無動力搬送による冷媒加熱暖房を行なう場合、液状の
冷媒が加熱されて発生する気体冷媒の浮力による自然循
環力が重要となる。しかし第5図に示した従来の熱交換
装置1のような構成では冷媒は水平横方向に延びるパイ
プ7内を流れるため、加熱されて気液二相混合状態の冷
媒の気体成分がスムーズに出口に向って流れないため冷
媒のよどみを生じ局部的な異常過熱が発生し、冷媒の熱
分解あるいは機器の異常温度上昇等、機器の信頼性上の
問題がある。また一方では燃焼排ガスはその出口付近で
は放熱し、低温となるため、熱交換装置1の円筒状内面
には燃焼排ガス中の水分が凝縮結露し、腐食等を進行さ
せる恐れがあった。
Problems to be Solved by the Invention The above-mentioned heating system requires external power to move the refrigerant at high speed, and it is effective to eliminate the external power for transporting the refrigerant and transport heat without power in order to reduce running costs during heating operation. . When performing refrigerant heating and heating by non-powered conveyance, the natural circulation force due to the buoyancy of the gaseous refrigerant generated when the liquid refrigerant is heated is important. However, in the configuration of the conventional heat exchange device 1 shown in FIG. 5, the refrigerant flows in the pipe 7 extending horizontally and laterally, so that the gas component of the refrigerant that is heated and in a gas-liquid two-phase mixed state can smoothly exit. Since the refrigerant does not flow toward the refrigerant, it may stagnate and cause localized abnormal overheating, leading to equipment reliability problems such as thermal decomposition of the refrigerant or abnormal temperature rise of the equipment. On the other hand, since the combustion exhaust gas radiates heat near its outlet and becomes low temperature, there is a fear that moisture in the combustion exhaust gas may condense and condense on the cylindrical inner surface of the heat exchanger 1, leading to corrosion and the like.

本発明は前記従来例の課題を解決するもので冷媒の円滑
な流れをはかるとともに熱交換器の腐食防止をはかるも
のである。
The present invention solves the problems of the conventional example, and aims to ensure smooth flow of refrigerant and prevent corrosion of the heat exchanger.

課題を解決するための手段 前記課題を解決するために本発明の熱交換装置は上部に
燃焼ガス排気室を形成し、かつ下部には平行接近面をも
ち前記平行接近面下端より末広がり状の燃焼室を有する
伝熱隔壁筒の外面に縦方向の通路を有する冷媒通路部材
を配設し、前記平行接近面間に伝熱フィンを多数設ける
とともに、前記伝熱隔壁筒の排気室−万端より燃焼排ガ
ス出口の排気接続口を設けた構成としたものである。
Means for Solving the Problems In order to solve the above problems, the heat exchange device of the present invention has a combustion gas exhaust chamber in the upper part, a parallel approach surface in the lower part, and a combustion chamber that spreads out from the lower end of the parallel approach surface. A refrigerant passage member having a vertical passage is disposed on the outer surface of the heat transfer partition tube having a chamber, a large number of heat transfer fins are provided between the parallel approach surfaces, and the exhaust chamber of the heat transfer partition tube is combusted by all means. The structure includes an exhaust connection port for the exhaust gas outlet.

作  用 本発明は上記した構成によって縦方向通路内の冷媒を平
行接近面に設けた伝熱フィンによって十分加熱して冷媒
の気泡発生を下部位置から漸次促進させて気位上昇によ
る自然循環力を増大させるもので、無動力熱搬送を確実
に行なわせ、冷媒の熱分解を生じない信頼性の高いシス
テムを得るものである。他方、伝熱隔壁筒の末広がり状
の燃焼室は排気のよどみをなくして部分過熱を防止し、
かつ燃焼排ガス中の水分結露は前記末広がり状の燃焼室
を形成している伝熱隔壁筒の傾斜壁をつたわり、バーナ
ケースの一部穴より外部に流出し、熱交換装置の腐食・
劣化が防止され大巾な耐久性の向上が図れる。
Effect of the present invention With the above-described configuration, the refrigerant in the vertical passage is sufficiently heated by the heat transfer fins provided on the parallel approach surfaces, and the generation of bubbles in the refrigerant is gradually promoted from the lower position, thereby suppressing the natural circulation force due to the rise in air level. The purpose of this is to ensure that non-powered heat transfer is performed and to obtain a highly reliable system that does not cause thermal decomposition of the refrigerant. On the other hand, the flared combustion chamber of the heat transfer bulkhead eliminates stagnation of exhaust gas and prevents partial overheating.
In addition, moisture condensation in the combustion exhaust gas flows through the inclined wall of the heat transfer partition tube forming the flared combustion chamber and flows out through a hole in the burner case, causing corrosion and corrosion of the heat exchange device.
Deterioration is prevented and durability is greatly improved.

実施例 以下本発明の実施例を添付図面にもとづいて説、  明
する。第1図、第2図、第3図に於いて、10は上部に
筒状の排気室17と下部に一定間隔を有して相対向する
一対の平行接近部11と前記平行接近部11の下部より
末広がり状の燃焼室21を有する伝熱隔壁筒である。1
2は前記伝熱隔壁筒10の外面に熱的に接合させた偏平
状の冷媒通路部材であり、縦方向の通路13が多数独立
して設けられている。14は冷媒通路部材12の下端に
設けた入口ヘッダー管、15は冷媒通路部材12の上端
に設けた出口ヘッダー管であり、それぞれ左右一対ずつ
設けられ入口ヘッダー管14と出口ヘッダー管15はそ
れぞれ縦方向の通路13により連通している。16は一
対の平行接近面11の内側(間)に熱的に接するように
設けられた伝熱フィンである。18は筒状の排気室17
より流出する排気ガス接続口である。19は入口ヘッダ
ー管14.14に接続された冷媒入口管、2oは出口ヘ
ッダー管15.15に接続された冷媒出口管である。2
2はバーナ部23を覆うように構成したバーナケースで
底部両隅である一部に結露水を外部へ流出させる孔26
を設けである。また伝熱隔壁筒10の下端開口縁にシー
ルパツキン25を介して装着されている。24は伝熱隔
壁筒10の遮熱目的で取付けている遮熱板でバーナ部に
装着されている。
EXAMPLES Hereinafter, examples of the present invention will be described and explained based on the accompanying drawings. In FIGS. 1, 2, and 3, reference numeral 10 includes a cylindrical exhaust chamber 17 in the upper part, a pair of parallel approach parts 11 facing each other with a constant interval in the lower part, and the parallel approach part 11 in the lower part. This is a heat transfer partition cylinder having a combustion chamber 21 that widens toward the bottom. 1
Reference numeral 2 denotes a flat refrigerant passage member thermally joined to the outer surface of the heat transfer partition cylinder 10, in which a large number of vertical passages 13 are independently provided. Reference numeral 14 indicates an inlet header pipe provided at the lower end of the refrigerant passage member 12, and reference numeral 15 indicates an outlet header pipe provided at the upper end of the refrigerant passage member 12.The inlet header pipe 14 and the outlet header pipe 15 are provided in pairs on the left and right sides, respectively. They are communicated by a passage 13 in the direction. Reference numeral 16 denotes a heat transfer fin provided so as to be in thermal contact with the inside (between) the pair of parallel approach surfaces 11 . 18 is a cylindrical exhaust chamber 17
This is the exhaust gas connection port where the exhaust gas flows out. 19 is a refrigerant inlet pipe connected to the inlet header pipe 14.14, and 2o is a refrigerant outlet pipe connected to the outlet header pipe 15.15. 2
2 is a burner case configured to cover the burner part 23, and holes 26 are provided at both corners of the bottom for allowing condensed water to flow out to the outside.
This is provided. Further, it is attached to the lower opening edge of the heat transfer partition cylinder 10 via a seal packing 25. Reference numeral 24 denotes a heat shield plate attached to the heat transfer partition cylinder 10 for the purpose of heat shielding, and is attached to the burner section.

以上の構成において、冷媒入口管19を通って入口ヘッ
ダー管14.14に入った液状の冷媒は、冷媒通路部材
12の下部より多数の縦方向の通路13に分散する。°
伝熱隔壁筒10は伝熱フィン16が設けられた平行接近
面11において、燃焼室21から伝熱フィン16を通過
する燃焼排ガスの有する熱を吸熱し、熱的に接合された
冷媒通路部材12の縦方向通路13の冷媒を入口ヘッダ
ー管14に近い下部より十分に加熱する。そこで加熱さ
れた液状の冷媒は気化蒸発を開始し液の中に気泡を生ず
る気液二相状態となる。そしてこの発生した気泡は浮力
効果で縦方向に設けた通路13内を下方から上方に上昇
し、強い自然循環力になるとともにまだ気化していない
液状の冷媒を伴って通路13の上部へ冷媒を送る気泡ポ
ンプ作用が発生する。通路1aの上端に達した冷媒は出
口ヘッダー管15に流入し冷媒出口管20より放熱器(
図示せず)に向って流出する。
In the above configuration, the liquid refrigerant entering the inlet header pipe 14 . °
The heat transfer partition cylinder 10 absorbs the heat of the combustion exhaust gas passing through the heat transfer fins 16 from the combustion chamber 21 at the parallel approach surface 11 where the heat transfer fins 16 are provided, and connects the refrigerant passage member 12 thermally. The refrigerant in the vertical passage 13 is sufficiently heated from the lower part near the inlet header pipe 14. The heated liquid refrigerant then begins to evaporate and enters a gas-liquid two-phase state in which bubbles are generated in the liquid. The generated air bubbles rise from below to above within the vertical passage 13 due to the buoyancy effect, creating a strong natural circulation force and transporting the refrigerant to the upper part of the passage 13 along with the liquid refrigerant that has not yet vaporized. A bubble pumping action occurs. The refrigerant that has reached the upper end of the passage 1a flows into the outlet header pipe 15 and passes through the refrigerant outlet pipe 20 to the radiator (
(not shown).

このように縦方向の通路13の下部から上部に至るまで
加熱することにより自然循環力を高め上昇流により流れ
の撹拌乱流効果を発生させて冷媒の局部異常過熱を防止
することにより冷媒の熱分解あるいは機器の異常温度上
昇防止による信頼性向上を図ることが出来る。
By heating from the bottom to the top of the vertical passage 13 in this way, the natural circulation force is increased, and the upward flow creates a stirring turbulent flow effect to prevent local abnormal overheating of the refrigerant, thereby reducing the heat of the refrigerant. Reliability can be improved by preventing disassembly or abnormal temperature rise of equipment.

また燃焼排ガス中の水分結露は末広がり状の燃焼室21
を形成している伝熱隔壁筒10の傾斜壁をつたわりバー
ナケース22に流入し、そして−部に設けた結露水を外
部に流出させる孔26より流出するため熱交換装置の耐
久性に影響を及ぼさない。
In addition, moisture condensation in the combustion exhaust gas is caused by the combustion chamber 21, which is flared at the end.
The dew water flows into the burner case 22 through the inclined wall of the heat transfer partition tube 10 that forms the dew condensation water, and then flows out through the hole 26 provided at the negative part through which the condensed water flows out to the outside, which affects the durability of the heat exchange device. does not affect

さらに冷媒通路部材12を内部に多数の穴をもつアルミ
ニウム製の多穴偏平押出管とし、伝熱フィン16として
帯状のアルミニウム製の板を波形あるいは矩形あるいは
台形状に屈曲させて構成し、かつ伝熱隔壁筒10はアル
ミニウム製芯材の表裏の両面にろう材を事前にクラッド
にしたプレージングシートとして加工し、この素材を用
いた伝熱隔壁筒10の内外面にアルミニウム製の伝熱フ
ィン16およびアルミニウム製の多穴偏平押出管の冷媒
通路部材12を組立て、同時に一部ブレージング加工す
ることにより熱的に接合する。したがって、接触熱抵抗
がない伝熱性能に優れる熱交換器を軽量でかつ低コスト
で実用に供することができる。
Further, the refrigerant passage member 12 is made of a multi-hole flat extruded tube made of aluminum with many holes inside, and the heat transfer fins 16 are made of belt-shaped aluminum plates bent into a corrugated, rectangular or trapezoidal shape. Thermal partition cylinder 10 is processed as a plating sheet in which the front and back sides of an aluminum core material are clad in advance with brazing material, and aluminum heat transfer fins 16 are provided on the inner and outer surfaces of the heat transfer partition cylinder 10 using this material. Then, the refrigerant passage member 12, which is a multi-hole flat extruded tube made of aluminum, is assembled, and at the same time, a part of the refrigerant passage member 12 is brazed to be thermally joined. Therefore, it is possible to put into practical use a lightweight and low-cost heat exchanger that has no contact thermal resistance and has excellent heat transfer performance.

発明の効果 以上のように本発明の熱交換装置は、上部に排気室、下
部に平行接近面をもち、その平行接近面下端部より末広
がり状の燃焼室を有する伝熱隔壁筒と、前記平行接近面
間に伝熱フィンを有し、前記伝熱隔壁筒外面に縦方向の
通路を有する冷媒通路部材を配置したものであるから次
のような効果を期待できる。
Effects of the Invention As described above, the heat exchange device of the present invention includes a heat transfer partition cylinder having an exhaust chamber at the upper part, a parallel approach surface at the lower part, and a combustion chamber which widens from the lower end of the parallel approach surface; Since heat transfer fins are provided between the approaching surfaces and a refrigerant passage member having a vertical passage is disposed on the outer surface of the heat transfer partition cylinder, the following effects can be expected.

(1)冷媒の通路の下部より加熱するため気泡ポンプ作
用を強くすることができ、発生した気泡の上昇流により
流れを撹拌乱流効果により冷媒の局部過熱防止および機
器の異常温度上昇防止により信頼性を向上できる。
(1) Since the refrigerant is heated from the bottom of the passage, the bubble pump action can be strengthened, and the upward flow of the generated bubbles stirs the flow, creating a turbulent flow effect that prevents local overheating of the refrigerant and abnormal temperature rises in equipment, making it reliable. You can improve your sexuality.

(2)上昇気泡流による気泡ポンプ作用により無動力熱
搬送が可能となり低ランニングコストの暖房の提供がで
きる。
(2) Non-powered heat transfer is possible due to the bubble pump action of the rising bubble flow, making it possible to provide heating at low running costs.

(3)末広がり状の燃焼室をもつ伝熱隔壁筒のため燃焼
排ガス中の水分結露水は伝熱隔壁筒の傾斜壁をつたわっ
てバーナケースの一部に設けである穴より外部へ流出さ
れるので熱交換装置の腐食・劣化を防止し礪器の耐久性
向上が大巾に図れる。
(3) Since the heat transfer bulkhead tube has a combustion chamber that widens toward the end, moisture condensation in the combustion exhaust gas flows through the inclined wall of the heat transfer bulkhead tube and flows out through a hole provided in a part of the burner case. Therefore, corrosion and deterioration of the heat exchange device can be prevented, and the durability of the container can be greatly improved.

(4)クラツド材を使用した伝熱隔壁筒に伝熱フィン・
冷媒通路部材をブレージング加工で一体化しているので
接触熱抵抗が少なく伝熱性能が優れる。
(4) Heat transfer fins and heat transfer bulkhead tubes made of clad material
Since the refrigerant passage members are integrated by brazing, contact thermal resistance is low and heat transfer performance is excellent.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す熱交換装置の外観斜視
図、第2図は同冷媒通路部材のA−A断面図、第3図は
同熱交換装置の縦断面図、第4図は従来の冷媒加熱暖房
機の回路構成図、第5図は従来の熱交換器の外観斜視図
である。 10・・・・・・伝熱隔壁筒、11・・・・・・平行接
近部、12・・・・・・冷媒通路部材、13・・・・・
・冷媒通路、16・・・・・・伝熱フィン、17・・・
・・・排気室、18・・・・・・排気ガス接続口1.2
1・・・・・・燃焼室、22・・・・・・バーナケース
、23・・・・・・バーナ部。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名ノ0
−−−イ云 弁ル3−1之 筒 四−パーナ韻 1112  図 W!13図
FIG. 1 is an external perspective view of a heat exchange device showing an embodiment of the present invention, FIG. 2 is a sectional view taken along line AA of the refrigerant passage member, FIG. The figure is a circuit diagram of a conventional refrigerant heater, and FIG. 5 is an external perspective view of a conventional heat exchanger. 10...Heat transfer partition cylinder, 11...Parallel approach part, 12...Refrigerant passage member, 13...
・Refrigerant passage, 16...Heat transfer fin, 17...
...Exhaust chamber, 18...Exhaust gas connection port 1.2
1... Combustion chamber, 22... Burner case, 23... Burner section. Name of agent: Patent attorney Toshio Nakao and 1 other person
---Iun Benru 3-1 No. 4-Pana rhyme 1112 Figure W! Figure 13

Claims (3)

【特許請求の範囲】[Claims] (1)上部に筒状の排気室を形成し、かつ下部には一定
間隔を有して相対向する平行接近面をもち、かつ前記平
行接近面下端部より漸次末広がり状の燃焼室を有する伝
熱隔壁筒と、前記伝熱隔壁筒の外面に配設された縦方向
の通路を有する冷媒通路部材と、前記伝熱隔壁筒の平行
接近面間に設けた伝熱フィンを備えた熱交換装置。
(1) A transmission having a cylindrical exhaust chamber in the upper part, parallel approach surfaces facing each other at a constant interval in the lower part, and a combustion chamber that gradually widens from the lower end of the parallel approach surface. A heat exchange device comprising a heat transfer partition tube, a refrigerant passage member having a vertical passage provided on the outer surface of the heat transfer partition tube, and heat transfer fins provided between parallel approaching surfaces of the heat transfer partition tube. .
(2)伝熱隔壁筒の下端部に取付け、バーナ部を内装し
たバーナケースの底面に孔を設けてなる熱交換装置。
(2) A heat exchange device that is attached to the lower end of a heat transfer partition tube and has a hole in the bottom of a burner case that houses a burner section.
(3)冷媒通路部材は内部に多数の穴をもつアルミニウ
ム多穴偏平押出管とし、伝熱フィンは、波形あるいは矩
形あるいは台形状に屈曲したアルミニウム板とし、伝熱
隔壁筒は表裏面にろう材をクラッドしたアルミニウム板
とし、前記伝熱フィンを伝熱隔壁筒間に挾持せしめると
ともに、冷媒通路部材を伝熱隔壁筒外面に当接して加熱
せしめブレージング加工してなる熱交換装置の製造方法
(3) The refrigerant passage member is an extruded aluminum multi-hole flat extruded tube with many holes inside, the heat transfer fin is an aluminum plate bent into a corrugated, rectangular or trapezoidal shape, and the heat transfer partition tube has brazing material on the front and back surfaces. A method for producing a heat exchange device, in which a clad aluminum plate is used, the heat transfer fins are sandwiched between heat transfer partition cylinders, and a refrigerant passage member is brought into contact with the outer surface of the heat transfer partition cylinder to be heated and brazed.
JP63041318A 1988-02-24 1988-02-24 Heat exchanging device and manufacture thereof Pending JPH01217150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63041318A JPH01217150A (en) 1988-02-24 1988-02-24 Heat exchanging device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63041318A JPH01217150A (en) 1988-02-24 1988-02-24 Heat exchanging device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH01217150A true JPH01217150A (en) 1989-08-30

Family

ID=12605164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63041318A Pending JPH01217150A (en) 1988-02-24 1988-02-24 Heat exchanging device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH01217150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158650A (en) * 1989-11-15 1991-07-08 Matsushita Electric Ind Co Ltd Heat exchanger

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187655A (en) * 1984-03-08 1985-09-25 Sanden Corp Heat exchanger made of aluminum alloy

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60187655A (en) * 1984-03-08 1985-09-25 Sanden Corp Heat exchanger made of aluminum alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03158650A (en) * 1989-11-15 1991-07-08 Matsushita Electric Ind Co Ltd Heat exchanger

Similar Documents

Publication Publication Date Title
JPH01217150A (en) Heat exchanging device and manufacture thereof
JPH01169270A (en) Heat exchanger
JPS63105395A (en) Heat exchanger
JP2548380B2 (en) Heat exchanger
JP2532630B2 (en) Refrigerant heater
JPH0351666A (en) Heat exchanger
JP2568648B2 (en) Heat exchange device and method of manufacturing the same
KR860000523A (en) Air-cooled absorption chiller
JP2584047B2 (en) Heat exchanger
JPH02171550A (en) Heat exchanger
JPH02171549A (en) Heat exchanger device
JPH02171551A (en) Heat exchanger
JP2605869B2 (en) Heat exchange equipment
JP2600930B2 (en) Heat exchange equipment
JPH0697146B2 (en) Heat exchanger
JPH04167A (en) Heat exchanger
JP2619956B2 (en) Heat exchanger
JPH04164A (en) Heat exchanger
KR100864840B1 (en) Heat exchanger
JPH0351665A (en) Heat exchanger
JP2841975B2 (en) Heat exchanger
JPH05118778A (en) Heat exchanger
JPH0351663A (en) Heat exchanger
JP2845564B2 (en) Heat exchanger
JPH0645171Y2 (en) Heat pipe heat exchanger