JP2568648B2 - Heat exchange device and method of manufacturing the same - Google Patents

Heat exchange device and method of manufacturing the same

Info

Publication number
JP2568648B2
JP2568648B2 JP63260792A JP26079288A JP2568648B2 JP 2568648 B2 JP2568648 B2 JP 2568648B2 JP 63260792 A JP63260792 A JP 63260792A JP 26079288 A JP26079288 A JP 26079288A JP 2568648 B2 JP2568648 B2 JP 2568648B2
Authority
JP
Japan
Prior art keywords
heat transfer
heat
partition plate
plate
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63260792A
Other languages
Japanese (ja)
Other versions
JPH02106656A (en
Inventor
隆夫 西山
則和 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP63260792A priority Critical patent/JP2568648B2/en
Publication of JPH02106656A publication Critical patent/JPH02106656A/en
Application granted granted Critical
Publication of JP2568648B2 publication Critical patent/JP2568648B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、ガス・石油などを熱源とする高温燃焼ガス
を利用して冷媒などを加熱する熱交換装置に関するもの
である。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a heat exchange device that heats a refrigerant or the like using a high-temperature combustion gas that uses gas or oil as a heat source.

従来の技術 被加熱側流体に冷媒を用い、燃焼ガスにより加熱して
液状の前記冷媒を蒸発気化させて潜熱により熱を運び暖
房を行なうものに従来例1として第3図に示すような冷
媒加熱暖房機がある。これはバーナ1aの燃焼ガスにより
加熱される冷媒を封入した熱交換装置1と放熱器2を密
閉管路3で連結するとともに、密閉管路3中に設けた冷
媒搬送機4により冷媒を強制循環させるものである。
2. Description of the Related Art As a conventional example 1, refrigerant heating is performed by using a refrigerant as a fluid to be heated and heating by a combustion gas to evaporate and vaporize the liquid refrigerant to carry heat by latent heat and heat. There is a heater. In this method, the heat exchanger 1 in which the refrigerant heated by the combustion gas of the burner 1a is sealed and the radiator 2 are connected by the closed conduit 3, and the refrigerant is forcibly circulated by the refrigerant transporter 4 provided in the closed conduit 3. It is to let.

第4図は前記熱交換装置1の従来例を示したもので
(特開昭59−107167号公報)水平方向に延びて円筒状内
周面に複数のフィン5を設け、外周面軸方向にはパイプ
保持部6および冷媒が円部を流れるパイプ7を設けたも
のでバーナ部8からの燃焼ガスを円筒内面9に水平横方
向に流して冷媒搬送機4により送られてきた水平方向の
パイプ7内を流れる冷媒を加熱するものである。
FIG. 4 shows a conventional example of the heat exchange apparatus 1 (Japanese Patent Laid-Open Publication No. Sho 59-107167). A plurality of fins 5 are provided on a cylindrical inner peripheral surface extending in the horizontal direction, Is a pipe provided with a pipe holding portion 6 and a pipe 7 through which a refrigerant flows through a circular portion. A horizontal pipe which is supplied by a refrigerant carrier 4 by flowing combustion gas from a burner portion 8 horizontally and horizontally to a cylindrical inner surface 9. 7 is for heating the refrigerant flowing in the inside 7.

発明が解決しようとする課題 前述の暖房システムでは冷媒搬送に外部動力が必要で
あり、暖房運転時のランニングコスト低減には冷媒搬送
用外部動力をなくし無動力で熱搬送することが有効であ
る。無動力搬送による冷媒加熱暖房を行なう場合、液状
の冷媒が加熱されて発生する気体冷媒の浮力による自然
循環力が重要となる。しかし第4図に示した従来の熱交
換装置1のような構成では冷媒は水平横方向に延びるパ
イプ7内を流れるため、加熱された気液二相混合状態の
冷媒の気体成分がスムーズに出口に向かって流れないた
め冷媒のよどみを生じ局部的な異常加熱が発生し、冷媒
の熱分解あるいは機器の異常温度上昇等、機器の信頼性
上の課題がある。また一方では燃焼排ガスはその出口付
近では放熱し、低温となるため、熱交換装置1の円筒状
内面には燃焼排ガス中の水分が凝縮結露し、腐食等を進
行させる恐れがあった。また従来例2の第2図は前述従
来例1の第4図の欠点をなくすべく、上部に燃焼ガス排
気室19を形成し、かつ下部には平行接近面をもち前記平
行接近面下端より末広がり状の燃焼室を有する伝熱隔壁
筒15の外面に縦方向の通路を有する冷媒通路部材16を配
設し、前記平行接近面間に伝熱フィン18を多数設けると
ともに前記伝熱隔壁筒15の排気室19一方端より燃焼排ガ
ス出口の排気接続口を設けている。他方伝熱隔壁筒15の
末がり状の燃焼室は排気のよどみをなくして部分過熱を
防止し、かつ燃焼排ガス中の水分結露は前記末広がり状
の燃焼室を形成している伝熱隔壁筒15の傾斜壁をつたわ
りバーナケース11の一部穴23より外部に流出し熱交換装
置の結露による腐食、劣化の防止をはかることが出来
た。
Problems to be Solved by the Invention In the above-described heating system, external power is required for transporting the refrigerant, and in order to reduce the running cost during the heating operation, it is effective to eliminate the external power for transporting the refrigerant and carry out heat transport without power. When performing refrigerant heating and heating by unpowered conveyance, natural circulation force due to the buoyancy of a gas refrigerant generated by heating a liquid refrigerant is important. However, in the configuration of the conventional heat exchange device 1 shown in FIG. 4, since the refrigerant flows through the pipe 7 extending in the horizontal direction, the gas component of the heated gas-liquid two-phase mixed refrigerant smoothly exits. Since the refrigerant does not flow toward the outlet, the refrigerant stagnates, causing local abnormal heating, and there is a problem in reliability of the equipment such as thermal decomposition of the refrigerant or an abnormal rise in temperature of the equipment. On the other hand, since the flue gas radiates heat near its outlet and has a low temperature, the moisture in the flue gas may condense and condense on the cylindrical inner surface of the heat exchange device 1 and cause corrosion or the like to progress. FIG. 2 of the conventional example 2 has a combustion gas exhaust chamber 19 formed in the upper part, and has a parallel approaching surface in the lower part and is divergent from the lower end of the parallel approaching surface in order to eliminate the drawbacks of FIG. A refrigerant passage member 16 having a vertical passage is disposed on the outer surface of the heat transfer partition tube 15 having a combustion chamber in a shape of a circle, and a large number of heat transfer fins 18 are provided between the parallel approach surfaces, and the heat transfer partition tube 15 An exhaust connection port for a combustion exhaust gas outlet is provided from one end of the exhaust chamber 19. On the other hand, the end-shaped combustion chamber of the heat transfer partition tube 15 eliminates stagnation of exhaust gas to prevent partial overheating, and moisture condensation in the combustion exhaust gas forms the flared combustion chamber. It was possible to prevent corrosion and deterioration due to dew condensation of the heat exchange device by flowing out from a part of the hole 23 of the burner case 11 by connecting the inclined wall of the burner case 11.

しかしながら、第2図において次のような課題が発生
する。
However, the following problem occurs in FIG.

(1) 両サイドの冷媒通路部材16が入口ヘッダパイプ
14と出口ヘッダパイプ20で接続され、前記冷媒通路部材
16の内側に伝熱隔壁筒15、さらに伝熱フィン18は前記伝
熱隔壁筒15の内側平行接近面に狭持されているため、連
続運転あるいは断続運転において収縮、膨張によって伝
熱フィンが著しく変形し、燃焼特性ならびに熱交換特性
など耐久品質を著しく低下させる。
(1) Refrigerant passage members 16 on both sides are inlet header pipes
14 and an outlet header pipe 20, the refrigerant passage member
Since the heat transfer partition tube 15 and the heat transfer fins 18 are sandwiched by the inner parallel approaching surface of the heat transfer partition tube 15, the heat transfer fins are markedly shrunk or shrunk during continuous operation or intermittent operation. Deforms and significantly reduces durability quality such as combustion characteristics and heat exchange characteristics.

(2) 入口ヘッダパイプ14、出口ヘッダパイプ20と冷
媒通路部材16との接続バラツキ(傾き、差し込代等)お
よび出口パイプ21と出口ヘッダパイプ20の接続バラツキ
ならびにろう付時の冷媒通路17にフラックス等が詰るな
どによって冷媒の分流が両サイド均等に行なわれない場
合が多々あり冷媒の局部的過熱をもたらし、冷媒の熱分
解あるいは機器の異常温度上昇等、機器の信頼性上の課
題が発生する。
(2) Inconsistencies (inclination, insertion allowance, etc.) between the inlet header pipe 14, the outlet header pipe 20 and the refrigerant passage member 16, the connection irregularities between the outlet pipe 21 and the outlet header pipe 20, and the refrigerant passage 17 during brazing. There are many cases where the refrigerant is not equally distributed on both sides due to clogging of flux etc., causing local overheating of the refrigerant, causing thermal decomposition of the refrigerant or abnormal temperature rise of the equipment, etc., resulting in equipment reliability issues I do.

(3) ろう付が多いため冷媒加熱することでかなり、
サイクル自体が高温でしかも高圧になるため接続部から
の冷媒、あるいは気化ガスの漏れ信頼性が低下する。
(3) Because of the large amount of brazing, heating the refrigerant considerably
Since the cycle itself has a high temperature and a high pressure, the reliability of leakage of the refrigerant or the vaporized gas from the connection portion is reduced.

(4) 形状が複雑であり、部品寸法、あるいは熱交換
器性能を保証するため設備ならびに治具の製作ならびに
管理に大きな投資を必要とし、割高な部品提供となる。
本発明は前記従来例の課題を解決するもので冷媒の円滑
な流れをはかるとともに熱交換器の結露による腐食防
止、耐久による品質劣化防止ならびに部品の信頼性向上
をはかるものである。
(4) The shape is complicated, a large investment is required for the production and management of equipment and jigs to guarantee the dimensions of the parts or the performance of the heat exchanger, and the provision of expensive parts is required.
The present invention solves the above-mentioned problems of the prior art, and aims to prevent the flow of the refrigerant smoothly, prevent corrosion due to dew condensation in the heat exchanger, prevent quality deterioration due to durability, and improve the reliability of parts.

課題を解決するための手段 前記課題を解決するために本発明の熱交換装置は上部
に排気室を形成した伝熱隔壁板と、前記排気室の下部に
伝熱隔壁板とは一定間隔を持して相対向する平行接近面
を構成させた遮熱内胴板とを有し、前記伝熱隔壁板と遮
熱内胴板は前記平行接近面の下端部より漸次末広がりに
拡幅する形状をなして燃焼室を形成するとともに、前記
伝熱隔壁板の外面には縦方向の通路を有する冷媒通路部
材を接合せしめ、前記平行接近部分の伝熱隔壁板内面に
伝熱フィンを接合せしめ、かつ遮熱内胴板と前記伝熱フ
ィン間にすき間を設け、かつ伝熱隔壁板と遮熱外胴板の
下端部にバーナ部を内装したバーナケースを取付け、前
記遮熱外胴板と遮熱内胴板にてバイパス孔を有するバイ
パス空気通路を形成して排気室まで臨ませる構成とした
ものである。
Means for Solving the Problems In order to solve the above problems, a heat exchange device of the present invention has a heat transfer partition plate having an exhaust chamber formed at an upper portion thereof and a heat transfer partition plate formed at a lower portion of the exhaust chamber having a fixed interval. And a heat shield inner body plate having opposing parallel approaching surfaces, wherein the heat transfer bulkhead plate and the heat shield inner body plate gradually widen from the lower end of the parallel approaching surface. A heat transfer member having a vertical passage is joined to the outer surface of the heat transfer partition plate, and heat transfer fins are joined to the inner surface of the heat transfer partition plate at the parallel approach portion. A burner case with a burner inside is provided at the lower end of the heat transfer partition plate and the heat shield outer shell plate, and a gap is provided between the heat inner shell plate and the heat transfer fins. A configuration in which a bypass air passage with a bypass hole is formed in the body plate to reach the exhaust chamber It is what it was.

作用 本発明は上記した構成によって縦方向通路内の冷媒を
平行接近面に設けた伝熱フィンによって十分加熱して冷
媒の気泡発生を下部位置から漸次促進させて気位上昇に
よる自然循環力を増大させるもので、無動力熱搬送を確
実に行なわせ、冷媒の熱分解を生じない信頼性の高いシ
ステムを得るものである。
Function The present invention sufficiently heats the refrigerant in the vertical passage by the heat transfer fins provided on the parallel approach surface by the above-described structure, and gradually promotes the generation of air bubbles of the refrigerant from the lower position, thereby increasing the natural circulation force due to the rise in air level. The purpose of the present invention is to provide a highly reliable system that reliably performs non-powered heat transfer and does not cause thermal decomposition of a refrigerant.

一方末広がり状の燃焼室は排気のよどみをなくして部
分過熱を防止し、かつ燃焼排ガス中の水分結露は伝熱隔
壁板および遮熱内胴板の傾斜壁をつたわりバーナケース
の一部穴より外部に流出し、熱交換器装置の腐食防止が
図れる。また一方、本発明の構成は第2図に示される従
来例と比較し、非対象構造になっているが、このことは
以下の点において優れた特徴を呈するものである。
On the other hand, the flared combustion chamber eliminates stagnation of exhaust gas to prevent partial overheating, and moisture condensation in the combustion exhaust gas is connected to the heat transfer partition plate and the inclined wall of the heat shield inner body plate, and from the partial hole of the burner case. It leaks to the outside, preventing corrosion of the heat exchanger device. On the other hand, the configuration of the present invention has an asymmetric structure as compared with the conventional example shown in FIG. 2, but this is an excellent feature in the following points.

(1)冷媒通路部材の形状がシンプルに構成されている
ので、製造組み立てが容易となる。
(1) Since the shape of the refrigerant passage member is simple, manufacturing and assembling become easy.

(2)冷媒通路部材は、伝熱隔壁筒を狭持した構造をも
たないので、バーナ部の加熱冷却による伝熱隔壁筒(本
実施例の伝熱隔壁板24)の膨張、収縮に伴う応力が加わ
ることなく、冷媒通路部材と伝熱隔壁板との間の接合部
にクラック等の発生が生じ難い。
(2) Since the refrigerant passage member does not have a structure in which the heat transfer partition tube is sandwiched, the refrigerant passage member accompanies expansion and contraction of the heat transfer partition tube (heat transfer partition plate 24 of this embodiment) due to heating and cooling of the burner portion. Cracks and the like hardly occur at the joint between the refrigerant passage member and the heat transfer partition plate without applying stress.

(3)伝熱フィンと遮熱内胴板の間に隙間を設けている
ため、伝熱隔壁筒や伝熱フィン自体の膨張、収縮に伴う
クラックや変形が生じ難い。
(3) Since a gap is provided between the heat transfer fin and the heat shield inner body plate, cracks and deformation due to expansion and contraction of the heat transfer partition tube and the heat transfer fin itself are unlikely to occur.

実施例 以下本発明の実施例を添付図面にもとづいて説明す
る。第1図において、伝熱隔壁板24と遮熱内胴板25は一
定間隔を有して相対向する一対の平行接近部29を構成し
ている。両者の平行接近部29の下部より末広がり状の燃
焼室30を形成している。16は前記伝熱隔壁板24の外面に
熱的に接合させた偏平状の冷媒通路部材であり、縦方向
の通路17が多数独立して設けられている。14は冷媒通路
部材16の下端に設けた入口ヘッダ管、20は冷媒通路部材
16の上部に設けた出口ヘッダ管であり、それぞれ縦方向
の通路17により連通している。18は平行接近部29の内側
でしかも伝熱隔壁板24に熱的に接するよう設けられた伝
熱フィンである。伝熱フィン18と遮熱内胴板25とは最小
限度のすき間bが設けてある。27aは遮熱外胴板26と遮
熱内胴板25とで構成するバイパス孔であり、27は前記遮
熱内外胴板で構成されるバイパス空気通路である。なお
バイパス空気通路27は排気室28まで臨むよう構成されて
いる。11はバーナ部10を覆うように構成したバーナケー
スで底面一部に結露水を流出する孔23が設けてある。ま
た伝熱隔壁板24と遮熱外胴板下端縁にシールパッキン12
を介して装置されている。13は伝熱隔壁板の遮熱目的で
取付けている遮熱板バーナ部に装置されている。22は燃
焼空気取入口である。
An embodiment of the present invention will be described below with reference to the accompanying drawings. In FIG. 1, a heat transfer partition plate 24 and a heat shield inner body plate 25 constitute a pair of parallel approaching portions 29 which face each other at a constant interval. A combustion chamber 30 diverging from the lower part of the parallel approach portion 29 is formed. Reference numeral 16 denotes a flat refrigerant passage member thermally joined to the outer surface of the heat transfer partition plate 24, and a plurality of vertical passages 17 are provided independently. 14 is an inlet header tube provided at the lower end of the refrigerant passage member 16, and 20 is a refrigerant passage member
Outlet header pipes provided at the upper part of 16, each communicating with a vertical passage 17. Reference numeral 18 denotes a heat transfer fin provided inside the parallel approach portion 29 and in thermal contact with the heat transfer partition plate 24. The heat transfer fins 18 and the heat shield inner body plate 25 have a minimum gap b. 27a is a bypass hole formed by the heat shield outer body plate 26 and the heat shield inner body plate 25, and 27 is a bypass air passage formed by the heat shield inner and outer body plate. The bypass air passage 27 is configured to reach the exhaust chamber 28. Reference numeral 11 denotes a burner case configured to cover the burner unit 10, and a hole 23 for discharging dew condensation water is provided on a part of the bottom surface. Also, seal packing 12 is provided on the heat transfer bulkhead plate 24 and the lower edge of the heat shield outer shell plate.
Has been through the device. 13 is installed in the heat shield plate burner part which is attached for the purpose of shielding the heat transfer partition plate from heat. 22 is a combustion air intake.

以上の構成において、冷媒入口を通って入口ヘッダー
管14に入った液状の冷媒は、冷媒通路部材16の下部より
多数の縦方向の通路17に分散する。伝熱隔壁板24は伝熱
フィンが設けられた平行接近面29において、燃焼室30か
ら伝熱フィン18を通過する燃焼排ガスの有する熱を吸熱
し、熱的に接合された冷媒通路部材の縦方向通路17の冷
媒を入口ヘッダー管14に近い下部より十分に加熱する。
そこで加熱された液状の冷媒は気化蒸発を開始し液の中
に気泡を生ずる気液二相状態となる。そしてこの発生し
た気泡は浮力効果で縦方向に設けた通路17内を下方から
上方に上昇し、強い自然循環力になるとともにまだ気化
していない液状の冷媒を伴って通路17の上部へ冷媒を送
る気泡ポンプ作用が発生する。通路17の上端に達した冷
媒は出口ヘッダー管20より放熱器(図示せず)に向って
流出する。このように縦方向の通路17の下部から上部に
至るまで加熱することにより自然循環力を高め上昇流に
より流れの撹拌乱流効果を発生させて冷媒の局部異常過
熱を防止することにより冷媒の熱分解あるいは機器の異
常温度上昇防止による信頼性向上を図ることが出来る。
In the above-described configuration, the liquid refrigerant that has entered the inlet header pipe 14 through the refrigerant inlet is distributed to the plurality of vertical passages 17 from the lower portion of the refrigerant passage member 16. The heat transfer partition plate 24 absorbs the heat of the combustion exhaust gas passing through the heat transfer fins 18 from the combustion chamber 30 on the parallel approach surface 29 provided with the heat transfer fins, and the heat transfer partition plate 24 has a vertically joined refrigerant passage member. The refrigerant in the directional passage 17 is sufficiently heated from the lower portion near the inlet header tube 14.
Then, the heated liquid refrigerant starts vaporizing and evaporating, and enters a gas-liquid two-phase state in which bubbles are generated in the liquid. Then, the generated bubbles rise upward from below in the passage 17 provided in the vertical direction due to the buoyancy effect, and become a strong natural circulation force, and at the same time, transfer the refrigerant to the upper part of the passage 17 with the liquid refrigerant that has not been vaporized yet. Sending bubble pump action occurs. The refrigerant having reached the upper end of the passage 17 flows out of the outlet header tube 20 toward a radiator (not shown). In this way, by heating from the lower part to the upper part of the vertical passage 17, the natural circulation force is increased, the stir turbulence effect of the flow is generated by the ascending flow, and the local abnormal overheating of the refrigerant is prevented, so that the heat of the refrigerant is Reliability can be improved by disassembly or prevention of abnormal temperature rise of equipment.

また燃焼排ガス中の水分結露は末広がり状の燃焼室30
を形成している伝熱隔壁板24と遮熱内胴板25の傾斜壁を
つたわりバーナケース11に流入し、そして一部に設けた
結露水を外部に流出させる孔23より流出するため熱交換
装置の腐食、耐久性に影響を及ぼさない。
In addition, dew condensation in the combustion exhaust gas reduces the size of the combustion chamber 30.
The heat transfer partition plate 24 and the inclined wall of the heat shield inner body plate 25 are formed, and the heat flows into the burner case 11 and flows out from the hole 23 provided in a part of the hole 23 through which dew condensation water flows out. Does not affect the corrosion and durability of the replacement device.

また伝熱フィン18と遮熱内胴板25との間には連続、断
続燃焼によって生ずる収縮、膨張を吸収する最小限のす
き間bを設けているため伝熱フィン18の変形が生ずるこ
となく長期間に渡る機器の信頼性を確保できる。バイパ
ス空気通路27およびバイパス孔27aにて遮熱内胴板25の
温度上昇をおさえかつバイパス孔27aにて燃焼空気過剰
率の調整を容易に行なうことが出来る。
Further, since a minimum gap b is provided between the heat transfer fin 18 and the heat shield inner body plate 25 to absorb the contraction and expansion caused by continuous and intermittent combustion, the heat transfer fin 18 can be formed without deformation. The reliability of the equipment over the period can be secured. The bypass air passage 27 and the bypass hole 27a can suppress the temperature rise of the heat shield inner body plate 25, and the bypass hole 27a can easily adjust the excess combustion air rate.

さらに冷媒通路部材16を内部に多数の穴をもつアルミ
ニウム製の多穴偏平押出管とし、伝熱フィン18として帯
状のアルミニウム製の板を波形あるいは矩形あるいは台
形状に屈曲させて構成し、かつ伝熱隔壁板24はアルミニ
ウム製芯材の表裏の両面にろう材を事前にクラッドにし
たブレージングシートとして加工し、この素材を用いた
伝熱隔壁板24と内外面にアルミニウム製の伝熱フィン18
およびアルミニウム製の多穴偏平押出管の冷媒通路部材
16を組立て、同時に一体ブレージング加工することによ
り熱的に接合する。したがって、接触熱抵抗がない伝熱
性能に優れる熱交換器を軽量でかつ低コストで実用に供
することができる。
Further, the refrigerant passage member 16 is a multi-hole flat extruded tube made of aluminum having a large number of holes therein, and the heat transfer fins 18 are formed by bending a band-shaped aluminum plate into a corrugated or rectangular or trapezoidal shape, and The heat bulkhead plate 24 is processed as a brazing sheet in which a brazing material is preliminarily clad with a brazing material on both the front and back surfaces of an aluminum core material, and the heat transfer bulkhead plate 24 using this material and aluminum heat transfer fins 18 on the inner and outer surfaces.
Passage member of multi-hole flat extruded pipe made of aluminum and aluminum
16 is assembled and simultaneously thermally bonded by integrally brazing. Therefore, a heat exchanger having excellent heat transfer performance without contact heat resistance can be practically used at a low cost and at a low cost.

発明の効果 以上のように本発明の熱交換装置は上部に排気室を形
成した伝熱隔壁板と、前記排気室下部に伝熱隔壁板とは
一定間隔を持して相対向する平行接近面を構成させた遮
熱内胴板とを有し、前記伝熱隔壁板と遮熱内胴板は前記
平行接近面の下端部より漸次末広がりに拡幅する形状を
なして燃焼室を形成するとともに、前記伝熱隔壁板の外
面には縦方向の通路を有する冷媒通路部材を接合せし
め、前記平行接近面部分の伝熱隔壁板内面に伝熱フィン
を接合せしめ、かつ遮熱内胴板と前記伝熱フィン間にす
き間を設けた構成としたものであるから、次のような効
果を期待できる。
Effect of the Invention As described above, the heat exchange device of the present invention has a heat transfer partition plate having an exhaust chamber formed in the upper part, and a parallel approaching surface that is opposed to the heat transfer partition plate in the lower part of the exhaust chamber at a certain interval. Having a heat shield inner body plate, wherein the heat transfer bulkhead plate and the heat shield inner body plate form a combustion chamber in a shape that gradually widens from the lower end of the parallel approach surface to a divergent shape, A refrigerant passage member having a vertical passage is joined to an outer surface of the heat transfer partition plate, a heat transfer fin is joined to an inner surface of the heat transfer partition plate at the parallel approach surface portion, and the heat shield inner body plate and the heat transfer fin are joined to each other. Since the gap is provided between the heat fins, the following effects can be expected.

(1) 冷媒の通路の下部より加熱するため気泡ポンプ
作用を強くすることができ、発生した気泡の上昇流によ
り流れを撹拌流効果により冷媒の局部過熱防止および機
器の異常温度上昇防止により信頼性を向上できる。
(1) Since the refrigerant is heated from the lower part of the passage, the bubble pump action can be strengthened, and the flow of the generated bubbles rises, and the flow is agitated. Can be improved.

(2) 上昇気泡流による気泡ポンプ作用により無動力
熱搬送が可能となり低ランニングコストと暖房の提供が
できる。
(2) The non-powered heat transfer becomes possible by the bubble pump action by the rising bubble flow, so that low running cost and heating can be provided.

(3) 伝熱フィンの著しい変形による燃焼特性ならび
に熱交換特性など耐久品質の劣化を防止するため伝熱フ
ィンの他方を開放し、遮熱内胴板とすき間を設けること
により機器の信頼性を飛躍的に向上できる。
(3) In order to prevent deterioration of durability quality such as combustion characteristics and heat exchange characteristics due to remarkable deformation of the heat transfer fins, open the other of the heat transfer fins and increase the reliability of the equipment by providing a gap with the heat shield inner body plate. It can be dramatically improved.

(4) 構成部品点数が少なく、冷媒の分流性能の向
上、ならびに漏れ箇所削減による信頼性の向上と安価な
部品提供が出来る。
(4) The number of constituent parts is small, and the improvement of the refrigerant branching performance, the improvement of reliability by reducing leakage points, and the provision of inexpensive parts can be achieved.

(5) 末広がり状の燃焼室をもつため燃焼排ガス中の
水分結露水は傾斜壁をつたわりバーナケースの一部に設
けてある穴より外部へ流出されるため熱交換装置の腐食
による劣化を防止し機器の耐久性向上が出来る。
(5) Because of the flared combustion chamber, moisture condensate in the combustion exhaust gas is connected to the inclined wall and flows out to the outside through a hole provided in a part of the burner case, preventing deterioration of the heat exchange device due to corrosion. The durability of the equipment can be improved.

(6) クラッド材を使用した伝熱隔壁板に伝熱フィ
ン、冷媒通路部材をブレージング加工で一体化している
ので接触熱抵抗が少なく伝熱性能が優れる。
(6) Since the heat transfer fins and the coolant passage member are integrated by brazing on the heat transfer partition plate using the clad material, the contact heat resistance is small and the heat transfer performance is excellent.

【図面の簡単な説明】 第1図は本発明の一実施例を示す熱交換装置の縦断面
図、第2図は従来例(2)の熱交換装置の縦断面図で、
第3図は従来例(1)の冷媒加熱暖房機の回路構成図、
第4図は従来例(1)の熱交換器外観斜視図である。 24……伝熱隔壁板、25……遮熱内胴板、26……遮熱外胴
板、27……バイパス空気通路、27a……バイパス孔、28
……排気室、29……平行接近面、b……すき間、16……
冷媒通路部材、17……冷媒通路、18……伝熱フィン、30
……燃焼室、11……バーナケース、10……バーナ部。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a longitudinal sectional view of a heat exchanger showing one embodiment of the present invention, and FIG. 2 is a longitudinal sectional view of a heat exchanger of a conventional example (2).
FIG. 3 is a circuit configuration diagram of a refrigerant heating / heating machine of a conventional example (1),
FIG. 4 is an external perspective view of a heat exchanger of a conventional example (1). 24 heat transfer partition plate, 25 heat shield inner shell plate, 26 heat shield outer shell plate, 27 bypass air passage, 27a bypass hole, 28
…… Exhaust chamber, 29… Parallel approaching surface, b …… Gap, 16 ……
Refrigerant passage member, 17 refrigerant passage, 18 heat transfer fins, 30
… Combustion chamber, 11 Burner case, 10 Burner section.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】上部に排気室を形成した伝熱隔壁板と、前
記排気室の下部に前記伝熱隔壁板とは一定間隔を持して
相対向する平行接近面を構成させた遮熱内胴板とを有
し、前記伝熱隔壁板と遮熱内胴板は前記平行接近面の下
端部より漸次末広がりに拡幅する形状をなして燃焼室を
形成するとともに、前記伝熱隔壁板の外面には縦方向の
通路を有する冷媒通路部材を接合せしめ、前記平行接近
面部分の伝熱隔壁板内面に伝熱フィンを接合せしめ、か
つ遮熱内胴板と前記伝熱フィン間にすき間を設けた熱交
換装置。
1. A heat shield in which a heat transfer partition plate having an exhaust chamber formed in an upper part thereof and a parallel approach surface which is opposed to the heat transfer partition plate in a lower part of the exhaust chamber at a predetermined interval. Having a body plate, wherein the heat transfer partition plate and the heat shield inner body plate form a combustion chamber in a shape that gradually widens from a lower end portion of the parallel approaching surface to form a combustion chamber, and an outer surface of the heat transfer partition plate. In this case, a refrigerant passage member having a vertical passage is joined, a heat transfer fin is joined to the inner surface of the heat transfer partition plate in the parallel approaching surface portion, and a gap is provided between the heat shield inner body plate and the heat transfer fin. Heat exchange equipment.
【請求項2】伝熱隔壁板と遮熱外胴板の下端部に取付
け、バーナ部を内装したバーナケースを設け、前記遮熱
外胴板と遮熱内胴板にてバイパス孔を有するバイパス空
気通路を形成し、かつ前記バイパス空気通路を排気室ま
で臨ませた請求項1記載の熱交換装置。
2. A bypass which is attached to the lower end portions of the heat transfer partition plate and the heat shield outer shell plate, and has a burner case provided with a burner therein, and has a bypass hole in the heat shield outer shell plate and the heat shield inner shell plate. 2. The heat exchange device according to claim 1, wherein an air passage is formed, and the bypass air passage faces the exhaust chamber.
【請求項3】請求項1記載の熱交換装置において、冷媒
通路部材は、内部に多数の穴をもつアルミニウム多穴偏
平押出管とし、伝熱フィンは波形あるいは矩形あるいは
台形状に屈曲したアルミニウム板とし伝熱隔壁板は表裏
面にろう材をクラッドしたアルミニウム板とし、前記冷
媒通路部材を前記伝熱隔壁板の外面に、前記伝熱フィン
を前記伝熱隔壁板の内面にそれぞれ当接して加熱せしめ
ブレージング加工してなる熱交換装置の製造方法。
3. The heat exchanger according to claim 1, wherein the refrigerant passage member is an aluminum multi-hole flat extruded tube having a large number of holes therein, and the heat transfer fins are aluminum plates bent in a corrugated, rectangular or trapezoidal shape. The heat transfer partition plate is an aluminum plate clad with brazing material on the front and back surfaces, and the refrigerant passage member is heated by contacting the heat transfer fins to the outer surface of the heat transfer partition plate and the heat transfer fins to the inner surface of the heat transfer partition plate. A method for manufacturing a heat exchange device that is at least brazed.
JP63260792A 1988-10-17 1988-10-17 Heat exchange device and method of manufacturing the same Expired - Lifetime JP2568648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63260792A JP2568648B2 (en) 1988-10-17 1988-10-17 Heat exchange device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63260792A JP2568648B2 (en) 1988-10-17 1988-10-17 Heat exchange device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH02106656A JPH02106656A (en) 1990-04-18
JP2568648B2 true JP2568648B2 (en) 1997-01-08

Family

ID=17352802

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63260792A Expired - Lifetime JP2568648B2 (en) 1988-10-17 1988-10-17 Heat exchange device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2568648B2 (en)

Also Published As

Publication number Publication date
JPH02106656A (en) 1990-04-18

Similar Documents

Publication Publication Date Title
JP2568648B2 (en) Heat exchange device and method of manufacturing the same
CN215982881U (en) Efficient finned heat exchanger for air conditioning unit
JP2548380B2 (en) Heat exchanger
JP2845566B2 (en) Heat exchanger
JP2845563B2 (en) Heat exchanger
JPH0697143B2 (en) Heat exchanger
JP2532630B2 (en) Refrigerant heater
JP2600930B2 (en) Heat exchange equipment
JP2605869B2 (en) Heat exchange equipment
JPH0351666A (en) Heat exchanger
CN220017731U (en) Heat exchanger structure with flue gas turbulence and water heating equipment using same
JPH01217150A (en) Heat exchanging device and manufacture thereof
JPH0694948B2 (en) Heat exchanger
JP3021860B2 (en) Heat exchanger
JP2619956B2 (en) Heat exchanger
JP2584047B2 (en) Heat exchanger
JPH01169270A (en) Heat exchanger
JP2841975B2 (en) Heat exchanger
RU2088765C1 (en) Device for cooling and preheating of oil in internal combustion engine
JP2845564B2 (en) Heat exchanger
JPH02171550A (en) Heat exchanger
KR100864840B1 (en) Heat exchanger
JP2861544B2 (en) Heat exchanger
JP2845565B2 (en) Heat exchanger
JPH02171551A (en) Heat exchanger