JP2583340C - - Google Patents

Info

Publication number
JP2583340C
JP2583340C JP2583340C JP 2583340 C JP2583340 C JP 2583340C JP 2583340 C JP2583340 C JP 2583340C
Authority
JP
Japan
Prior art keywords
flame retardant
flame
bisphenol
polycarbonate resin
retardant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sakamoto Yakuhin Kogyo Co Ltd
Original Assignee
Sakamoto Yakuhin Kogyo Co Ltd
Publication date

Links

Description

【発明の詳細な説明】 産業上の利用分野 この発明は、建築材料、電気部品材料、装飾用材料等の広範な用途を有するポ
リカーボネートを主体とした難燃性樹脂組成物に関する。 従来技術とその課題 一般に、ポリカーボネート樹脂は、機械的物性、耐熱性および透明性に優れ、
また構造上から樹脂自体に自消性を有して比較的に燃えにくいものとして知られ
るが、建築材料や電気部品材料等の特に厳しい難燃性が要求される用途には不充
分であることから、更に難燃性を高める手段が必要となる。 従来、ポリカーボネート樹脂の難燃化手段として、例えば、芳香族スルホン酸
のアルカリ金属塩またはアルカリ土類金属塩を難燃剤として配合する方法(特公
昭57−43100号公報)、特定の枝分かれポリホスフェートとデカブロモジ
フェニルエーテル等とを併用する方法(特公平2−1185号公報)、テトラハ
ロビスフェノールAを原料として活性化ピリジン触媒を用いて難燃性ポリカーボ
ネートを製造する方法(特開昭64−65127号公報)、臭素化エポキシ化合
物を難燃剤として配合する方法(特公昭60−17224号公報)等が提案され
ている。 しかしながら、これら提案手段では、難燃性は向上する反面、透明性が低下し
たり、成型加工時に熱分解して成形品の帯色や気泡混入を招く等、ポリカーボネ
ート樹脂本来の特性が損われ易く、特に押出成形品にあってはいずれの手段でも
押出し方向(長手方向)とそれに直角な方向(幅方向)の物性に大きな差異を生
じるという問題があった。 この発明は、上述の事情に鑑みて、ポリカーボネートを主体として、それ本来
の優れた特性と高い難燃性とを兼ね備えた樹脂組成物を提供することを目的とし
ている。 課題を解決するための手段 この発明者らは、上記目的を達成するために鋭意検討を重ねた結果、特定の化
合物を難燃剤としてポリカーボネートに対して特定量配合することにより、ポリ
カーボネート樹脂本来の優れた機械的物性、耐熱性および透明性等を損うことな
く高い難燃性を付与できることを見出し、この発明をなすに至った。 即ち、この発明に係る難燃性樹脂組成物は、ポリカーボネート樹脂100重量
部に対し、下記一般式; (但し、式中A1は、 で示される基であり、Xはハロゲン原子、Rは低級アルキル基、iおよびjは
0〜5の範囲で且つ(i+j)<5となる整数、A2は水素原子、A1またはグリ
シジル基、Bは炭素数1〜4のアルキレン基、アルキリデン基または−SO2
基、lおよびmは0〜4の範囲で且つ全部のlとmが0になることのない整数、
平均重合度nは0〜5である) で表わされる難燃剤1〜15重量部を含有してなるものである。 発明の細部構成と作用 この発明で用いるポリカーボネート樹脂としては、種々のタイプのものが包含
され、それらの2種以上を併用しても差支えないが、例えば2・2´−ビス(4
−ヒドロキシフェニル)プロパン(以下、ビスフェノールAという)、2・2´
−ビス(4−ヒドロキシフェニル)メタン(以下、ビスフェノールFという)の
如き4・4´−ジヒドロキシジフェニルアルカン、4・4´−ジヒドロキシジフ
ェニルスルホン(以下、ビスフェノールSという)、4.4´−ジヒドロキシジ
フェニルエーテル等のビスフェノール成分の一種もしくは2種以上を使用してエ ステル交換あるいはホスゲン法にて合成されるポリカーボネートが好ましいもの
として挙げられ、更にこれらの中でも上記ビスフェノールA等を使用した2・2
´−ビス(4−ヒドロキシフェニル)アルカン系ポリカーボネートが特に好適で
ある。また、このようなポリカーボネート樹脂の平均分子量は、10000〜5
0000、好ましくは20000〜40000程度が良い。 この発明において難燃剤として用いる前記一般式(I)の化合物は、ハロゲン
化ビスフェノール・ジグリシジルエーテルとハロゲン化フェノール類を、または
これらに更にハロゲン化ビスフェノールを加えたものを、塩基性触媒の存在下、
80〜250℃、好ましくは100〜180℃で加熱反応させることにより得ら
れる。 こゝで、上記のハロゲン化ビスフェノールとしては、テトラブロモビスフェノ
ールAの如きハロゲン化ビスフェノールA、ハロゲン化ビスフェノールF、ハロ
ゲン化ビスフェノールS等を単独もしくは二種以上の併用で使用できる。またハ
ロゲン化ビスフェノール・ジグリシジルエーテルとしては、上記のハロゲン化ビ
スフェノールとエピハロヒドリンとの付加重合反応によって得られるモノマーま
たはオリゴマーを使用できる。ハロゲン化フェノール類としては、トリブロモフ
ェノール、ジブロモフェノール、トリクロロフェノール等のハロゲン化フェノー
ルのほか、ジブロモクレゾールの如きハロゲン化アルキルフェノールも使用でき
る。塩基性触媒としては、水酸化リチウム、水酸化ナトリウムの如きアルカリ金
属水酸化物、塩化リチウムの如きアルカリ金属ハロゲン化物、トリブチルアミン
の如き三級アミン、テトラメチルアンモニウムクロライドの如き四級アンモニウ
ム塩が挙げられる。 なお、上記反応においては、ハロゲン化ビスフェノール・ジグリシジルエーテ
ルと共に、ビスフェノールA・ジグリシジルエーテルの如き非ハロゲン化成分を
難燃性に支障のない範囲で併用することもできる。 かくして合成される難燃剤は、前記一般式中のnつまり平均重合度を5以下と
する必要がある。すなわち、この平均重合度nが5より大きくなると、ポリカー
ボネート樹脂に対する難燃剤の相溶性が悪くなり、樹脂組成物の透明性や機械的
物性の低下を招くことになる。なお、この平均重合度は、前述した合成反応にお ける各種の条件を適宜調整することによって任意に設定でき、基本的にはハロゲ
ン化ビスフェノールジグリシジルエーテルとハロゲン化ビスフェノールの比率を
変えることにより任意に調整できる。 このような難燃剤の配合量は、ポリカーボネート樹脂100重量部に対して1
〜15重量部、特に好ましくは3〜10重量部の範囲であり、1重量部未満では
充分な難燃性が得られず、逆に15重量部を超えるとより以上の難燃性改善が認
められない上に樹脂組成物の物性等に悪影響を及ぼすことになる。 ところで、前記一般式(I)におけるA1とA2が共にグリシジル基からなる化
合物のように、両末端に反応性のエポキシ基を有する構造(特に分子量が低いオ
リゴマー型)では、樹脂組成物の成形時に熱焼けを招き易く、組成物が高温でゲ
ル化を起こして流れ性が悪化するという難点がある。 なお、この発明の難燃性樹脂組成物は、前記したポリカーボネート樹脂および
難燃剤と共に、必要に応じて熱安定剤、耐候剤、着色剤、艶消剤、帯電防止剤等
の種々の添加剤を、この発明の効果を阻害しない範囲で配合できる。そして、こ
れら添加剤は、ポリカーボネート樹脂中に予め含まれるものであっても良い。 この発明に係る難燃性樹脂組成物を製造するには、常法に準じてポリカーボネ
ート樹脂の粉末またはペレットと難燃剤と必要に応じて配合される前記添加剤と
からなる混合物をニーダー、スクリュー押出機、バンバリーミキサー等にて溶融
混和すれば良い。 かくして得られる難燃性樹脂組成物は、熱可塑性であり、射出成形、押出成形
、吹込成形、圧縮成形等の様々な成形手段を利用して、シート状、フィルム状、
チューブ状、ボトル状その他のいかなる形状にも成形可能である。そして、この
組成物は、ポリカーボネート樹脂本来の優れた機械的特性、耐熱性、透明性と共
に良好な難燃性を有することから、建築材料、電気部品、インテリア用品、車輌
部品、自動車部品、雑貨等の広範な用途に好適に供し得る。 実施例 以下、この発明を合成例および実施例に基いて具体的に説明するが、この発明
はその要旨を逸脱しない限りはこれら合成例および実施例に制約されるものでは
ない。 合成例1 臭素化ビスフェノールA型エポキシ樹脂(阪本薬品社製の商品名SR−BS、
エポキシ当量334、以下BSと略す)334gとトリブロモフェノール(以下
TBPと略す)331gを温度計および窒素導入管、排気管、攪拌装置を取付け
たIL−セパラブル四つ口フラスコに採り、トリブチルアミン0.4gを添加し
たのち、窒素気流下120〜130℃で5時間反応させた。その後、更にBS3
34g、テトラブロモビスフェノールA(以下TBAと略す)129g、TBP
134gを加え、100℃にて溶解し、テトラメチルアンモニウムクロライド0
.6gを添加して140℃で6時間、続いて160℃で2時間反応させた。反応
終了後、生成物を冷却、粉砕し、酸価0.2(mgKOH/g)、エポキシ当量9
340(g/当量)、軟化点112℃、臭素含有量58.3%の淡黄色の粉末を
得た。このものは、GPC分析により、前記一般式(I)におけるn=0とn= のを難燃剤Aという。 合成例2 臭素化ビスフェノールA型エポキシ樹脂(阪本薬品社製の商品名SR−TBA
400、エポキシ当量395、以下TBA400と略す)790gとTBP34
7gとを合成例1と同様のフラスコに採り、トリブチルアミン0.8gを添加し
たのち、窒素気流下120〜130℃で7時間反応させ、次いで160℃にて更
に2時間反応させた。反応終了後、合成例1と同様にして、酸価0.1(mgKO
H/g)、エポキシ当量1240(g/当量)、軟化点92℃、臭素含有量55
.8%の粉末を得た。このものは、GPC分析により、前記一般式(I)におけ このものを難燃剤Bという。 合成例3 BA400(エポキシ当量395)790g、TBA343g、TBP222
gを合成例1と同様でかつ高粘度液の攪拌を可能としたフラスコに採り、トリブ
チルアミン0.8gを添加したのち、窒素気流下120〜130℃で3時間、更
に160〜170℃で15時間反応させた。反応終了後、合成例1と同様にして 、酸価0.5(mgKOH/g)、エポキシ当量18000(g/当量)、軟化点
155℃、臭素含有量54.9%の粉末を得た。このものは、GPC分析により 難燃剤Cという。 。 合成例4 TBA400(エポキシ当量395)790g、TBA400gを合成例3と
同様のフラスコに採り、トリブチルアミン0.8gを添加したのち、窒素気流下
120〜130℃で3時間、更に170〜180℃で7時間反応させた。反応終
了後、合成例1と同様にして、酸価0.3(mgKOH/g)、エポキシ当量22
00(g/当量)、軟化点162℃、臭素含有量51.8%の粉末を得た。この ものを難燃剤Dという。 合成例5 TBA400(エポキシ当量395)790g、TBA456g、TBP65
gを合成例3と同様のフラスコに採り、テトラメチルアンモニウムクロライド0
.9gを添加したのち、窒素気流下130〜140℃で5時間、更に170〜1
80℃で7時間反応させた。反応終了後、合成例1と同様にして、酸価0.5(
mgKOH/g)、エポキシ当量7920(g/当量)、軟化点181℃、臭素含
有量53.2%の粉末を得た。このものは、前記一般式(I)における平均重合実施例1〜5,比較例1〜8 ビスフェノールAを原料とするポリカーボネート樹脂粉末(平均分子量270
00)100重量部と後記表に示す難燃剤の表記部数とを均一に混合し、これを
40mm径のスクリュー式押出機に供給して押出成形し、3.0mm厚のシート状に
加工した。なお、後記表中の難燃剤FはテトラブロモビスフェノールA(Gre
at Lakes Chemical社製の商品名BA−59p)、難燃剤Gは
、パーブロモジフェニルエーテル(Great Lakes Chemical 社製の商品名DE−83R)、難燃剤Hは、前記一般式(I)におけるA1、A 社製の商品名 SR−T1000)である。 以上の実施例および比較例にて得られたシートよりそれぞれ試験片を切り出し
、難燃性、透明性、耐衝撃性の各試験に供した。なお、難燃性はUL−94垂直
燃焼テストによった。また透明性は、JISK−7105に示される方法で測定
した全光線透過率が80%以上で且つ曇度が5%以下のものを○、その範囲から
外れるものを×として評価した。更に耐衝撃性はASTM D−256に示され
る方法によるアイゾット衝撃試験によるもので、表中のMDはシートの押出方向
、TDは押出方向に対して直角な方向を示す。 発明の効果 この発明によれば、高い難燃性を有するポリカーボネート樹脂組成物として、
該樹脂本来の透明性や機械的物性を充分に保持し、特に押出成形品における押出
方向とそれに対する直角方向の物性差が殆どないものを提供できる。
Description: TECHNICAL FIELD The present invention relates to a flame-retardant resin composition mainly composed of polycarbonate having a wide range of applications such as building materials, electric component materials, decorative materials and the like. Conventional technology and its problems In general, polycarbonate resin has excellent mechanical properties, heat resistance and transparency,
It is also known from the structure that the resin itself has self-extinguishing properties and is relatively inflammable, but is insufficient for applications requiring particularly severe flame retardancy, such as building materials and electric parts materials. Therefore, means for further increasing the flame retardancy is required. Conventionally, as a means for making a polycarbonate resin flame-retardant, for example, a method in which an alkali metal salt or an alkaline earth metal salt of aromatic sulfonic acid is blended as a flame retardant (Japanese Patent Publication No. 57-43100), a method in which a specific branched polyphosphate is used. A method using a combination of decabromodiphenyl ether and the like (Japanese Patent Publication No. 2-1185) and a method of producing a flame-retardant polycarbonate using tetrahalobisphenol A as a raw material and using an activated pyridine catalyst (Japanese Patent Application Laid-Open No. 64-65127). ), And a method of blending a brominated epoxy compound as a flame retardant (Japanese Patent Publication No. Sho 60-17224). However, in these proposed means, although the flame retardancy is improved, the transparency of the polycarbonate resin is reduced, and the inherent properties of the polycarbonate resin are easily impaired, such as causing the molded article to be colored or mixed into bubbles due to thermal decomposition during molding. In particular, in the case of an extruded product, there is a problem that the physical properties in the extrusion direction (longitudinal direction) and the direction perpendicular thereto (width direction) are greatly different by any of the means. The present invention has been made in view of the above circumstances, and has as its object to provide a resin composition mainly composed of polycarbonate, which has excellent inherent properties and high flame retardancy. Means for Solving the Problems The present inventors have conducted intensive studies to achieve the above object, and as a result, by blending a specific compound as a flame retardant in a specific amount with respect to polycarbonate, the polycarbonate resin inherently excellent The present inventors have found that high flame retardancy can be imparted without impairing the mechanical properties, heat resistance, transparency, and the like, and have accomplished the present invention. That is, the flame-retardant resin composition according to the present invention has the following general formula per 100 parts by weight of the polycarbonate resin: (However, A 1 in the formula is Wherein X is a halogen atom, R is a lower alkyl group, i and j are integers ranging from 0 to 5 and (i + j) <5, A 2 is a hydrogen atom, A 1 or a glycidyl group, B is an alkylene group having 1 to 4 carbon atoms, an alkylidene group or -SO 2-
Groups, l and m are integers ranging from 0 to 4 and all l and m are never 0;
(Average degree of polymerization n is 0 to 5). DETAILED DESCRIPTION OF THE INVENTION AND EFFECT OF THE INVENTION The polycarbonate resin used in the present invention includes various types, and two or more of them may be used in combination.
-Hydroxyphenyl) propane (hereinafter referred to as bisphenol A), 2.2 '
4.4'-dihydroxydiphenylalkane, such as bis (4-hydroxyphenyl) methane (hereinafter referred to as bisphenol F), 4.4'-dihydroxydiphenylsulfone (hereinafter referred to as bisphenol S), 4.4'-dihydroxydiphenylether Preferred are polycarbonates synthesized by transesterification or phosgene method using one or more bisphenol components such as bisphenol A. Among them, 2.2 or more polycarbonates using bisphenol A or the like are also preferred.
'-Bis (4-hydroxyphenyl) alkane-based polycarbonate is particularly preferred. The average molecular weight of such a polycarbonate resin is 10,000 to 5
0000, preferably about 20,000 to 40,000. The compound of the general formula (I) used as a flame retardant in the present invention is obtained by adding a halogenated bisphenol / diglycidyl ether and a halogenated phenol or a mixture thereof to a halogenated bisphenol in the presence of a basic catalyst. ,
It is obtained by heating and reacting at 80 to 250 ° C, preferably 100 to 180 ° C. Here, as the above-mentioned halogenated bisphenol, halogenated bisphenol A such as tetrabromobisphenol A, halogenated bisphenol F, halogenated bisphenol S, etc. can be used alone or in combination of two or more. Further, as the halogenated bisphenol / diglycidyl ether, a monomer or oligomer obtained by the addition polymerization reaction of the above-mentioned halogenated bisphenol and epihalohydrin can be used. As the halogenated phenols, halogenated phenols such as tribromophenol, dibromophenol and trichlorophenol, and halogenated alkylphenols such as dibromocresol can be used. Examples of the basic catalyst include alkali metal hydroxides such as lithium hydroxide and sodium hydroxide, alkali metal halides such as lithium chloride, tertiary amines such as tributylamine, and quaternary ammonium salts such as tetramethylammonium chloride. Can be In the above reaction, a non-halogenated component such as bisphenol A / diglycidyl ether can be used in combination with the halogenated bisphenol / diglycidyl ether as long as flame retardancy is not hindered. The flame retardant thus synthesized needs to have n in the above general formula, that is, the average degree of polymerization of 5 or less. That is, if the average degree of polymerization n is larger than 5, the compatibility of the flame retardant with the polycarbonate resin becomes poor, and the transparency and mechanical properties of the resin composition are reduced. The average degree of polymerization can be arbitrarily set by appropriately adjusting various conditions in the above-described synthesis reaction, and basically, can be arbitrarily adjusted by changing the ratio of halogenated bisphenol diglycidyl ether to halogenated bisphenol. it can. The amount of such a flame retardant is 1 to 100 parts by weight of the polycarbonate resin.
When the amount is less than 1 part by weight, sufficient flame retardancy cannot be obtained, and when the amount exceeds 15 parts by weight, further improvement in flame retardancy is recognized. In addition to this, it adversely affects the physical properties and the like of the resin composition. Incidentally, in a structure having a reactive epoxy group at both terminals (especially an oligomer type having a low molecular weight), such as a compound in which both A 1 and A 2 in the general formula (I) each comprise a glycidyl group, There is a problem that the composition is liable to be burned at the time of molding and the composition is gelled at a high temperature to deteriorate the flowability. Incidentally, the flame-retardant resin composition of the present invention, together with the above-mentioned polycarbonate resin and flame retardant, optionally contains various additives such as a heat stabilizer, a weathering agent, a coloring agent, a matting agent, and an antistatic agent. Can be blended within a range that does not impair the effects of the present invention. These additives may be contained in advance in the polycarbonate resin. In order to produce the flame-retardant resin composition according to the present invention, a mixture consisting of a polycarbonate resin powder or pellets, a flame retardant and, if necessary, the above-mentioned additive is kneaded by a conventional method. May be melt-mixed using a mixer or a Banbury mixer. The flame-retardant resin composition thus obtained is thermoplastic, and can be formed into a sheet, film, or the like by using various molding means such as injection molding, extrusion molding, blow molding, and compression molding.
It can be formed into a tube, bottle, or any other shape. And, since this composition has good flame retardancy as well as excellent mechanical properties, heat resistance and transparency inherent to polycarbonate resin, it can be used for building materials, electric parts, interior goods, vehicle parts, automobile parts, miscellaneous goods, etc. For a wide range of applications. EXAMPLES Hereinafter, the present invention will be described specifically with reference to Synthesis Examples and Examples, but the present invention is not limited to these Synthesis Examples and Examples unless departing from the gist thereof. Synthesis Example 1 Brominated bisphenol A type epoxy resin (trade name: SR-BS, manufactured by Sakamoto Pharmaceutical Co., Ltd.)
334 g of epoxy equivalent 334 (hereinafter abbreviated as BS) and 331 g of tribromophenol (hereinafter abbreviated as TBP) are placed in an IL-separable four-necked flask equipped with a thermometer, a nitrogen inlet tube, an exhaust tube, and a stirrer, and tributylamine 0 is added. After adding 0.4 g, the mixture was reacted at 120 to 130 ° C. for 5 hours under a nitrogen stream. After that, BS3
34 g, 129 g of tetrabromobisphenol A (hereinafter abbreviated as TBA), TBP
134 g was added and dissolved at 100 ° C., and tetramethylammonium chloride
. 6 g was added and reacted at 140 ° C. for 6 hours, then at 160 ° C. for 2 hours. After completion of the reaction, the product was cooled and pulverized, and the acid value was 0.2 (mg KOH / g) and the epoxy equivalent was 9
A pale yellow powder having a melting point of 340 (g / equivalent), a softening point of 112 ° C. and a bromine content of 58.3% was obtained. According to GPC analysis, n = 0 and n = Is called flame retardant A. Synthesis Example 2 Brominated bisphenol A type epoxy resin (trade name SR-TBA manufactured by Sakamoto Pharmaceutical Co., Ltd.)
400, epoxy equivalent 395, hereinafter abbreviated as TBA400) 790 g and TBP34
7 g was placed in the same flask as in Synthesis Example 1, and after adding 0.8 g of tributylamine, the mixture was reacted at 120 to 130 ° C. for 7 hours in a nitrogen stream, and then further reacted at 160 ° C. for 2 hours. After the reaction, the acid value was 0.1 (mg KO) in the same manner as in Synthesis Example 1.
H / g), epoxy equivalent 1240 (g / equivalent), softening point 92 ° C., bromine content 55
. 8% of powder was obtained. The product was obtained by GPC analysis and was represented by the general formula (I). This is called flame retardant B. Synthesis Example 3 790 g of BA400 (epoxy equivalent: 395), 343 g of TBA, and TBP222
g in a flask similar to that of Synthesis Example 1 and capable of stirring a high-viscosity liquid, and after adding 0.8 g of tributylamine, 3 hours at 120 to 130 ° C. under a nitrogen stream, and 15 hours at 160 to 170 ° C. Allowed to react for hours. After completion of the reaction, a powder having an acid value of 0.5 (mg KOH / g), an epoxy equivalent of 18000 (g / equivalent), a softening point of 155 ° C, and a bromine content of 54.9% was obtained in the same manner as in Synthesis Example 1. This is based on GPC analysis Flame retardant C. . Synthesis Example 4 790 g of TBA400 (epoxy equivalent: 395) and 400 g of TBA were placed in the same flask as in Synthesis Example 3, 0.8 g of tributylamine was added, and then under a nitrogen stream at 120 to 130 ° C. for 3 hours, and further at 170 to 180 ° C. The reaction was performed for 7 hours. After completion of the reaction, an acid value of 0.3 (mg KOH / g) and an epoxy equivalent of 22 were obtained in the same manner as in Synthesis Example 1.
00 (g / equivalent), a powder having a softening point of 162 ° C. and a bromine content of 51.8% were obtained. this The thing is called flame retardant D. Synthesis Example 5 790 g of TBA400 (epoxy equivalent: 395), 456 g of TBA, TBP65
g was placed in the same flask as in Synthesis Example 3 and tetramethylammonium chloride 0
. After addition of 9 g, the mixture was added at 130-140 ° C. for 5 hours under a nitrogen stream, and further added at 170-1
The reaction was carried out at 80 ° C. for 7 hours. After completion of the reaction, an acid value of 0.5 (
mgKOH / g), a powder having an epoxy equivalent of 7920 (g / equivalent), a softening point of 181 ° C, and a bromine content of 53.2% were obtained. This is obtained by the average polymerization in the general formula (I). Examples 1 to 5, Comparative Examples 1 to 8 Polycarbonate resin powder using bisphenol A as a raw material (average molecular weight 270)
00) 100 parts by weight and the indicated number of flame retardants shown in the following table were uniformly mixed, supplied to a screw type extruder having a diameter of 40 mm, extruded, and processed into a sheet having a thickness of 3.0 mm. The flame retardant F in the following table is tetrabromobisphenol A (Gre
at Lakes Chemical Co., trade name BA-59p), flame retardant G is perbromodiphenyl ether (Great Lakes Chemical Co., trade name DE-83R), flame retardant H is A 1 in the general formula (I), A (Trade name: SR-T1000). Test pieces were cut out from the sheets obtained in the above Examples and Comparative Examples, and were subjected to each test of flame retardancy, transparency, and impact resistance. The flame retardancy was determined by a UL-94 vertical combustion test. The transparency was evaluated as ○ when the total light transmittance measured by the method described in JISK-7105 was 80% or more and the haze was 5% or less, and evaluated as × when the haze was out of the range. Further, the impact resistance is measured by an Izod impact test according to the method shown in ASTM D-256. In the table, MD indicates the sheet extrusion direction, and TD indicates the direction perpendicular to the extrusion direction. According to the present invention, as a polycarbonate resin composition having high flame retardancy,
A resin having sufficient transparency and mechanical properties inherent in the resin and having almost no difference in physical properties between an extrusion direction and a direction perpendicular to the extrusion direction in an extruded product can be provided.

Claims (1)

【特許請求の範囲】 ポリカーボネート樹脂100重量部に対し、下記一般式; (但し、式中A1は、 で示される基であり、Xはハロゲン原子、Rは低級アルキル基、iおよびjは
0〜5の範囲で且つ(i+j)<5となる整数、A2は水素原子、A1またはグリ
シジル基、Bは炭素数1〜4のアルキレン基、アルキリデン基または−SO2
基、lおよびmは0〜4の範囲で且つ全部のlとmが0になることのない整数、
平均重合度nは0〜5である) で表わされる難燃剤1〜15重量部を含有してなる難燃性樹脂組成物。
[Claims] The following general formula: (However, A 1 in the formula is Wherein X is a halogen atom, R is a lower alkyl group, i and j are integers ranging from 0 to 5 and (i + j) <5, A 2 is a hydrogen atom, A 1 or a glycidyl group, B is an alkylene group having 1 to 4 carbon atoms, an alkylidene group or -SO 2-
Groups, l and m are integers ranging from 0 to 4 and all l and m are never 0;
(Average degree of polymerization n is 0 to 5) A flame retardant resin composition containing 1 to 15 parts by weight of a flame retardant represented by the following formula:

Family

ID=

Similar Documents

Publication Publication Date Title
US9527984B2 (en) Polyphosphonate and copolyphosphonate additive mixtures
JP3037588B2 (en) Polycarbonate resin composition
JP5715083B2 (en) Flame retardant resin composition
CA2231571C (en) Carbonate polymer resins containing low volatility aromatic phosphate ester compounds
KR20130077351A (en) Flame-retardant thermoplastic resin composition and molded article thereof
EP3363848A1 (en) Polysiloxane-polycarbonate copolymer with improved transparency and flame retardancy and method for producing same
JP4212841B2 (en) Thermoplastic resins and molded products
EP0645422A1 (en) Flame retardant polycarbonate blends
KR101256262B1 (en) Flame retardant thermoplastic resin composition and article prepared using the same
JP2583340B2 (en) Flame retardant resin composition
JP2009235361A (en) Flame-retardant polyarylate resin composition
JP4290250B2 (en) Flame retardant polycarbonate composition
JP2583340C (en)
JP4212722B2 (en) Polycarbonate resin composition
JP4629856B2 (en) Polycarbonate resin composition
JP4275278B2 (en) Polycarbonate resin composition
JP2584922B2 (en) Flame retardant transparent resin composition
JP5144426B2 (en) Flame retardant resin composition and method for producing the same
US4448950A (en) Polycarbonate having improved critical thickness
CA1174400A (en) Copolycarbonates based on bis-(4- hydroxyphenyl)biphenyl disulfone
JP2693360B2 (en) Flame retardant resin composition
JP5507396B2 (en) Polycarbonate resin composition
JP3246627B2 (en) Flame retardant polycarbonate resin composition
JP4275279B2 (en) Polycarbonate resin composition
JPH06298922A (en) Polycarbonate-polyorganosiloxane copolymer