JP2581754B2 - Oxide semiconductor composition for thermistor - Google Patents

Oxide semiconductor composition for thermistor

Info

Publication number
JP2581754B2
JP2581754B2 JP63117049A JP11704988A JP2581754B2 JP 2581754 B2 JP2581754 B2 JP 2581754B2 JP 63117049 A JP63117049 A JP 63117049A JP 11704988 A JP11704988 A JP 11704988A JP 2581754 B2 JP2581754 B2 JP 2581754B2
Authority
JP
Japan
Prior art keywords
thermistor
oxide
specific resistance
semiconductor composition
cobalt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63117049A
Other languages
Japanese (ja)
Other versions
JPH01290549A (en
Inventor
久 松本
淳一 福山
浩毅 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIZUKA DENSHI KK
Original Assignee
ISHIZUKA DENSHI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIZUKA DENSHI KK filed Critical ISHIZUKA DENSHI KK
Priority to JP63117049A priority Critical patent/JP2581754B2/en
Publication of JPH01290549A publication Critical patent/JPH01290549A/en
Application granted granted Critical
Publication of JP2581754B2 publication Critical patent/JP2581754B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はサーミスタ用の半導体に関し、特に負の抵抗
温度係数を有するサーミスタを得るための金属酸化物半
導体組成物に関する。
The present invention relates to a semiconductor for a thermistor, and more particularly to a metal oxide semiconductor composition for obtaining a thermistor having a negative temperature coefficient of resistance.

〔従来の技術〕[Conventional technology]

一般に負の抵抗温度係数を有するサーミスタは、マン
ガン、コバルト、ニッケル等の金属の酸化物を適当な配
合比で混合し、成形、焼結して抵抗体チップを得、これ
に端子等を取り付けて形成される。こうして得られたサ
ーミスタの電気的特性は、サーミスタを構成する材料に
含まれる金属元素の組合せやその成分比、あるいは製造
条件を種々変えることにより変化するものである。
Generally, a thermistor having a negative temperature coefficient of resistance is prepared by mixing oxides of metals such as manganese, cobalt, and nickel at an appropriate mixing ratio, molding and sintering to obtain a resistor chip, and attaching terminals and the like thereto. It is formed. The electrical characteristics of the thermistor thus obtained can be changed by variously changing the combination of metal elements contained in the material constituting the thermistor, the component ratio thereof, or the manufacturing conditions.

かかるサーミスタは、その抵抗温度特性を利用して温
度計測等に広く利用されているが、負の抵抗温度係数を
有するサーミスタ(以下NTCサーミスタという。)の利
用形態のひとつとして、電気機器の起動時に流れるラッ
シュ電流を抑制するために電源回路にサーミスタを組み
込むものがある。このような目的に使用されるサーミス
タとしては室温における比抵抗が小さいものが要求さ
れ、たとえば25℃で130Ω・cm以下のものが好ましいと
されている。
Such a thermistor is widely used for temperature measurement and the like by utilizing its resistance-temperature characteristic. One of the uses of a thermistor having a negative temperature coefficient of resistance (hereinafter referred to as NTC thermistor) is as follows. Some power supply circuits incorporate a thermistor to suppress the rush current that flows. A thermistor used for such a purpose is required to have a small specific resistance at room temperature. For example, a thermistor at 130 ° C. or less at 25 ° C. is preferable.

このような比抵抗値の小さなNTCサーミスタを得るた
めには、マンガン、コバルト、ニッケル等の金属の酸化
物に銅酸化物を添加配合することが行われ、銅酸化物の
添加量を増減することにより比抵抗を所望の範囲に調整
するようにしていた。
In order to obtain such an NTC thermistor with a small specific resistance value, copper oxide is added to and mixed with oxides of metals such as manganese, cobalt, and nickel, and the amount of copper oxide to be added is increased or decreased. To adjust the specific resistance to a desired range.

〔発明が解決しようとする課題〕[Problems to be solved by the invention]

前述のような銅を含むサーミスタにおいては、銅の配
合量を増加することにより比抵抗を低下させることがで
きるものの、それと共に比抵抗のバラツキが大きくなっ
て生産歩留りが低下し、これを避けるためには配合比や
製造条件の管理を一層厳密にする必要があるなど量産性
および経済性に問題があった。さらにまた、かかる銅を
含むサーミスタは、高温(たとえば200℃)で長時間使
用すると比抵抗が上昇し、信頼性に乏しい欠点もあっ
た。
In a thermistor containing copper as described above, although the specific resistance can be reduced by increasing the amount of copper, the variation in the specific resistance increases with the reduction of the production yield, and in order to avoid this, However, there are problems with mass productivity and economic efficiency, such as the need to more strictly control the mixing ratio and production conditions. Furthermore, such a thermistor containing copper has a drawback that when used at a high temperature (for example, 200 ° C.) for a long time, the specific resistance increases and the reliability is poor.

そこで本発明においては、比抵抗のバラツキが小さく
また高温での劣化も少ないNTCサーミスタを得ることを
目的とし、そのようなNTCサーミスタを製造するに適し
た酸化物半導体組成物を提供しようとするものである。
In view of the above, an object of the present invention is to provide an NTC thermistor having a small variation in specific resistance and a small deterioration at a high temperature, and to provide an oxide semiconductor composition suitable for producing such an NTC thermistor. It is.

〔課題を解決するための手段〕[Means for solving the problem]

上述の本発明の目的は、マンガン酸化物とコバルト酸
化物とランタン酸化物とから実質的になる金属酸化物の
焼結体であって、金属元素としてマンガンが10〜80原子
%、コバルトが10〜80原子%、ランタンが1.0〜45原子
%含まれることを特徴とするサーミスタ用酸化物半導体
組成物によって達成される。
An object of the present invention is to provide a sintered body of a metal oxide substantially consisting of a manganese oxide, a cobalt oxide, and a lanthanum oxide, wherein manganese is 10 to 80 atomic% and cobalt is 10% as a metal element. This is achieved by an oxide semiconductor composition for a thermistor, characterized in that it contains 〜80 at% and lanthanum in an amount of 1.0-45 at%.

かかる本発明の半導体組成物を製造するための原料と
しては、それぞれがマンガン、コバルトおよびランタン
の酸化物、または加熱焼成によってそれぞれの金属元素
の酸化物を与える化合物、たとえば水酸化物、炭酸塩、
あるいは蓚酸等の有機酸の塩などを用いることができる
が、必要とされる純度および組成の安定さを満足するも
のであれば、特にこれらに限定されるものではない。
As a raw material for producing such a semiconductor composition of the present invention, manganese, an oxide of cobalt and lanthanum, or a compound that gives an oxide of each metal element by heating and firing, for example, hydroxide, carbonate,
Alternatively, a salt of an organic acid such as oxalic acid can be used, but is not particularly limited as long as the required purity and composition stability are satisfied.

本発明の半導体組成物を製造するに当っては、前記の
ような原料を、それぞれ含まれる金属元素の配合比が本
発明の範囲内の所望の値となるように正確に秤取し、た
とえばボールミル等の粉砕機を用いて充分に粉砕混合
し、適宜成形したのち600〜1000℃で1〜3時間カ焼
し、粉砕して粒径を調整して酸化物粉末を得る。このよ
うにして得た酸化物粉末は、たとえばポリビニルアルコ
ール、デンプンその他の結合剤を加えて造粒用粉末と
し、1〜3t/cm2程度の圧力で加圧成形したのち空気中で
1200〜1400℃で1〜4時間焼成することにより本発明の
半導体組成物の焼結体が得られる。
In producing the semiconductor composition of the present invention, the raw materials as described above are accurately weighed such that the mixing ratio of the contained metal elements is a desired value within the range of the present invention, for example, The mixture is sufficiently pulverized and mixed using a pulverizer such as a ball mill, appropriately molded, calcined at 600 to 1000 ° C. for 1 to 3 hours, and pulverized to adjust the particle size to obtain an oxide powder. The oxide powder thus obtained is, for example, polyvinyl alcohol, starch and other binders added to obtain a powder for granulation, and is molded under pressure at a pressure of about 1 to 3 t / cm 2 and then in air.
By firing at 1200 to 1400 ° C. for 1 to 4 hours, a sintered body of the semiconductor composition of the present invention is obtained.

こうして得た焼結体は必要に応じて適宜の形状に切断
し、その端面等に、オーミック接触を形成する銀などの
導電性金属膜電極を公知の方法により形成して、サーミ
スタ素子を得る。
The sintered body thus obtained is cut into an appropriate shape as necessary, and a conductive metal film electrode such as silver for forming an ohmic contact is formed on the end face or the like by a known method to obtain a thermistor element.

本発明の半導体組成物は、それを構成する金属元素酸
化物中に含まれる金属元素が実質的にマンガンとコバル
トとランタンからなるものであって、金属元素としてマ
ンガンとコバルトとの含量がそれぞれ10〜80原子%の範
囲を外れると比抵抗の低い半導体組成物は得られない。
The semiconductor composition of the present invention is one in which the metal element contained in the metal element oxide constituting it substantially consists of manganese, cobalt and lanthanum, and the content of manganese and cobalt as the metal element is 10% respectively. If it is out of the range of 80 at%, a semiconductor composition having a low specific resistance cannot be obtained.

また、ランタンの配合量が1.0原子%未満では比抵抗
が高くなると共に高温放置による比抵抗の変化を示す比
抵抗変化率も大きくなり、また45原子%を超えると比抵
抗変化率が大きくなると共に得られる製品の比抵抗のバ
ラツキすなわち変動係数も大きくなり、いづれも信頼性
の高い製品は得られない。
If the amount of lanthanum is less than 1.0 atomic%, the specific resistance increases and the specific resistance change rate, which indicates a change in specific resistance due to high temperature storage, increases. Variations in the specific resistance of the products obtained, that is, the coefficient of variation also increases, and any product with high reliability cannot be obtained.

〔実施例〕〔Example〕

原料として四三酸化マンガン(Mn3O4)、四三酸化コ
バルト(Co3O4)、および酸化ランタン(La2O3)を用
い、それぞれを金属元素が第1表に示す配合組成となる
ように正確に秤取した。これらの原料はボールミル中で
20時間湿式粉砕混合したのち濾過脱水し、110℃で乾燥
してペレット状の乾燥混合物を得た。
The raw materials used are manganese tetroxide (Mn 3 O 4 ), cobalt tetroxide (Co 3 O 4 ), and lanthanum oxide (La 2 O 3 ), each of which has the composition shown in Table 1 Was weighed exactly as described. These raw materials are placed in a ball mill
After wet pulverization and mixing for 20 hours, the mixture was dewatered by filtration and dried at 110 ° C. to obtain a pellet-shaped dry mixture.

この乾燥混合物は空気中で800℃、2時間カ焼し、冷
却後結合剤としてポリビニルアルコールを重量で3%と
なるよう添加してボールミル中で粉砕し、300μmのふ
るいを通過する造粒粉末を得た。この造粒粉末は1.5t/c
m2の圧力を用いて直径7mm、厚さ1.2mmの円板状成形体と
した。このようにして得た円板状成形体は空気中で1300
℃で2時間焼成し、円板形焼結体組成物を得た。
This dried mixture is calcined in air at 800 ° C. for 2 hours, and after cooling, polyvinyl alcohol is added as a binder to a concentration of 3% by weight and pulverized in a ball mill to obtain a granulated powder passing through a 300 μm sieve. Obtained. This granulated powder is 1.5t / c
Using a pressure of m 2, a disk-shaped molded body having a diameter of 7 mm and a thickness of 1.2 mm was obtained. The disk-shaped compact obtained in this way is 1300 in air.
C. for 2 hours to obtain a disc-shaped sintered body composition.

こうして得た円板形焼結体の両面に銀を焼付し、導線
を半田付けしてサーミスタ素子を形成し、電気的特性を
測定した。
Silver was baked on both sides of the disk-shaped sintered body thus obtained, and a conductive wire was soldered to form a thermistor element, and the electrical characteristics were measured.

また、比較のため、酸化ランタンの代りに酸化銅(Cu
O)を用いて、同様な手順によりマンガン−コバルト−
銅系の半導体組成物を製造し、同様に電気的特性を測定
した。
For comparison, copper oxide (Cu) was used instead of lanthanum oxide.
O) and manganese-cobalt-
A copper-based semiconductor composition was manufactured, and the electrical characteristics were measured in the same manner.

サーミスタ素子の電気的特性のうち、比抵抗ρは、25
℃におけるゼロ負荷抵抗値の測定結果から求めた値であ
り、B定数は25℃と85℃のゼロ負荷抵抗値から求めた値
である。また比抵抗変化率Δρ/ρは、サーミスタ素子
を200℃の高温中に500時間放置した後の比抵抗の初期値
に対する変化率を示したものであり、変動係数は、25℃
における比抵抗のバラツキについて標準偏差と平均値の
比を百分率で示したものである。
Among the electrical characteristics of the thermistor element, the specific resistance ρ is 25
The value obtained from the measurement result of the zero load resistance value at ° C., and the B constant is a value obtained from the zero load resistance values at 25 ° C. and 85 ° C. The specific resistance change rate Δρ / ρ indicates the rate of change of the specific resistance after leaving the thermistor element at a high temperature of 200 ° C. for 500 hours, and the coefficient of variation is 25 ° C.
3 shows the ratio between the standard deviation and the average value in terms of the variation in the specific resistance in percentage.

得られた結果は、第1表中に合わせて示した。 The obtained results are shown in Table 1.

第1表の結果から、本発明の半導体組成物を比抵抗が
低く、比抵抗変化率および変動係数が小さなものである
ことがわかる。
From the results shown in Table 1, it can be seen that the semiconductor composition of the present invention has a low specific resistance, a small specific resistance change rate and a small coefficient of variation.

〔発明の効果〕 本発明のサーミスタ用酸化物半導体組成物は、従来の
マンガン−コバルト−銅系の半導体組成物の有する欠
点、すなわち高温使用による劣化および製品の品質のバ
ラツキの両方の点を解決して、高品質であってまた信頼
性の高いNTCサーミスタ素子を与えるものであり、特に
低比抵抗のNTC型サーミスタを量産するのに好適である
特長がある。
[Effect of the Invention] The oxide semiconductor composition for a thermistor of the present invention solves the disadvantages of the conventional manganese-cobalt-copper-based semiconductor composition, that is, both the deterioration due to high temperature use and the variation in product quality. Thus, the present invention provides a high-quality and highly reliable NTC thermistor element, and has a feature that is particularly suitable for mass-producing an NTC thermistor having a low specific resistance.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】マンガン酸化物とコバルト酸化物とランタ
ン酸化物とから実質的になる金属酸化物の焼結体であっ
て、金属元素としてマンガンが10〜80原子%、コバルト
が10〜80原子%、ランタンが1.0〜45原子%含まれるこ
とを特徴とするサーミスタ用酸化物半導体組成物。
1. A sintered body of a metal oxide substantially consisting of a manganese oxide, a cobalt oxide and a lanthanum oxide, wherein manganese is 10 to 80 atomic% and cobalt is 10 to 80 atomic% as a metal element. %, And lanthanum is contained in an amount of 1.0 to 45 atomic%.
JP63117049A 1988-05-16 1988-05-16 Oxide semiconductor composition for thermistor Expired - Lifetime JP2581754B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63117049A JP2581754B2 (en) 1988-05-16 1988-05-16 Oxide semiconductor composition for thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63117049A JP2581754B2 (en) 1988-05-16 1988-05-16 Oxide semiconductor composition for thermistor

Publications (2)

Publication Number Publication Date
JPH01290549A JPH01290549A (en) 1989-11-22
JP2581754B2 true JP2581754B2 (en) 1997-02-12

Family

ID=14702160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63117049A Expired - Lifetime JP2581754B2 (en) 1988-05-16 1988-05-16 Oxide semiconductor composition for thermistor

Country Status (1)

Country Link
JP (1) JP2581754B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69411047T2 (en) * 1993-02-05 1998-12-03 Murata Manufacturing Co Semiconducting ceramic materials with negative temperature coefficient of resistance
CN1079570C (en) * 1997-12-03 2002-02-20 中国科学院新疆物理研究所 Oxide semiconductor thermal sensitive resistor and its producing method
AU2003206083A1 (en) * 2003-02-25 2004-09-17 Council Of Scientific And Industrial Research A ceramic mixture having negative temperature co-efficient, a thermistor containing the ceramic mixture and a process for prepaing thereof
CN104086160B (en) * 2014-06-27 2016-06-29 句容市博远电子有限公司 Add the binary system thermistor material of lanthana
CN115894026B (en) * 2022-11-29 2023-08-08 唐山恭成科技有限公司 NTC thermistor material with low resistivity and high B value and preparation method thereof

Also Published As

Publication number Publication date
JPH01290549A (en) 1989-11-22

Similar Documents

Publication Publication Date Title
CN111116173B (en) Low-temperature sintered NTC thermistor ceramic material and preparation method thereof
JPH06263518A (en) Sintering ceramics for high-temperature stable thermistor and its preparation
JP2581754B2 (en) Oxide semiconductor composition for thermistor
JP2841395B2 (en) Method for manufacturing NTC thermistor
JPS604561B2 (en) Ceramic electrical resistor with non-linear voltage dependent characteristics and its manufacturing method
CN110304905A (en) A kind of copper samarium is the NTC thermistor material and preparation method thereof of semiconducting
JPH10233303A (en) Ntc thermistor
US2200854A (en) Electrical contact
JPS59903A (en) Voltage nonlinear resistor
JP2572310B2 (en) Composition for thermistor
JPH0590063A (en) Semiconductor ceramic capacitor and manufacture of the same
JP2572312B2 (en) Composition for thermistor
CN106946564A (en) A kind of new linear resistance material and preparation method thereof
JP5309586B2 (en) Thermistor composition
JP2572313B2 (en) Composition for thermistor
JPS63315554A (en) Thermistor porcelain composition
JP2658581B2 (en) Oxide semiconductor composition
JPS6115303A (en) Method of producing oxide voltage nonlinear resistor
JP2578805B2 (en) Oxide semiconductor for thermistor
JPH07211515A (en) Production of thermistor element
JPS6241401B2 (en)
JPS6028121B2 (en) Manufacturing method of voltage nonlinear resistor
JPS6396902A (en) Manufacture of oxide semiconductor device for thermistor
JPS5811721B2 (en) Kanshitsusoshi
CN117417179A (en) Method for preparing NTC thermal sensitive ceramic by doping in soluble salt form

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081121

Year of fee payment: 12