JP2580905B2 - Manufacturing method of prepreg - Google Patents

Manufacturing method of prepreg

Info

Publication number
JP2580905B2
JP2580905B2 JP3255642A JP25564291A JP2580905B2 JP 2580905 B2 JP2580905 B2 JP 2580905B2 JP 3255642 A JP3255642 A JP 3255642A JP 25564291 A JP25564291 A JP 25564291A JP 2580905 B2 JP2580905 B2 JP 2580905B2
Authority
JP
Japan
Prior art keywords
resin
fibers
fiber
organic
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3255642A
Other languages
Japanese (ja)
Other versions
JPH05416A (en
Inventor
春已 根岸
直樹 寺本
利行 飯島
陽一 金子
隆之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP3255642A priority Critical patent/JP2580905B2/en
Publication of JPH05416A publication Critical patent/JPH05416A/en
Application granted granted Critical
Publication of JP2580905B2 publication Critical patent/JP2580905B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Landscapes

  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Moulding By Coating Moulds (AREA)
  • Reinforced Plastic Materials (AREA)
  • Laminated Bodies (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、プリプレグの製造方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a prepreg.

【0002】[0002]

【従来の技術】回路の信号伝送速度及び伝送損失は基板
の誘電率及び誘電正接に大きく影響される。基板の誘電
率が小さいほどその信号の伝送速度は大きく、又誘電正
接が小さいほど伝送損失は小さくなる。コンピュータな
ど信号伝送速度の高速度化、高効率化が要求される用途
向けの基板は、誘電正接、誘電率共に小さいことが要求
される。
2. Description of the Related Art The signal transmission speed and transmission loss of a circuit are greatly affected by the dielectric constant and dielectric loss tangent of a substrate. The transmission rate of the signal is higher as the dielectric constant of the substrate is lower, and the transmission loss is lower as the dielectric loss tangent is lower. Substrates for applications requiring high signal transmission speed and high efficiency, such as computers, are required to have low dielectric loss tangents and dielectric constants.

【0003】耐熱性有機繊維は、誘電率、誘電正接がガ
ラスに比較して小さいため、耐熱性有機繊維を基材とす
る積層板の誘電率も小さくなる。そこで、プリプレグの
材料として、ガラス繊維基材のほか耐熱性有機繊維基材
が使用されるようになっている。耐熱性有機繊維として
はアラミド繊維、フッ素樹脂繊維、耐熱性エンジニアリ
ングプラスチックと称されるポリエーテルエーテルケト
ンやポリエーテルイミド等の繊維があり、これらを単独
若しくは混合して撚糸した糸、あるいはガラス繊維と前
記の繊維とを混合して撚糸した糸を用いた織布又はこれ
らの繊維を用いた不織布に樹脂を含浸し、乾燥してプリ
プレグとしている。
[0003] Since the heat-resistant organic fiber has a smaller dielectric constant and a dielectric loss tangent than glass, the dielectric constant of a laminate made of the heat-resistant organic fiber as a base material also becomes smaller. Therefore, a heat-resistant organic fiber base has been used as a material for the prepreg in addition to the glass fiber base. Examples of heat-resistant organic fibers include aramid fibers, fluororesin fibers, and fibers such as polyetheretherketone and polyetherimide, which are called heat-resistant engineering plastics. A woven fabric using a yarn twisted by mixing with the above-mentioned fibers or a non-woven fabric using these fibers is impregnated with a resin and dried to form a prepreg.

【0004】ところで、ガラス繊維も耐熱性有機繊維
も、カップリング剤処理、プラズマ処理、金属ナトリウ
ムによる表面処理などを単独又は組み合わせて樹脂との
親和性を高めている。
By the way, both glass fibers and heat-resistant organic fibers are improved in affinity with resins by using a coupling agent treatment, a plasma treatment, a surface treatment with metallic sodium, etc., alone or in combination.

【0005】[0005]

【発明が解決しようとする課題】ところが、カップリン
グ剤処理では、いまだ不充分であり、基材中に樹脂が充
分含浸されず、ボイドを含むため、積層板の耐熱性が悪
くなり、成形に高圧力を必要とする。このため、多層化
接着に使用すると、層間の位置精度が悪くなる。また、
得られた積層板が高温にさらされるとブリスター(界面
剥離)やミーズリング(交絡点の剥離)が発生し、ま
た、多層化する際に寸法安定性が低下してしまうことや
ドリル加工性も悪い。
However, the treatment with the coupling agent is still inadequate, the resin is not sufficiently impregnated in the base material and contains voids, so that the heat resistance of the laminated board is deteriorated, and the molding is difficult. Requires high pressure. Therefore, when used for multi-layer bonding, the positional accuracy between layers deteriorates. Also,
When the obtained laminate is exposed to a high temperature, blisters (interfacial peeling) and measling (peeling of entangled points) occur, and the dimensional stability decreases when multi-layering is performed. bad.

【0006】金属ナトリウムによる表面処理では、取扱
いが困難で、処理しにくい。プラズマ処理する方法は、
真空チャンバを必要とし、また、処理法も複雑なため効
率が悪く、連続的に処理することが困難である。本発明
は、基材と樹脂との親和性を改善する簡便な方法を提供
することを目的とするものである。
[0006] Surface treatment with metallic sodium is difficult to handle and difficult to treat. The method of plasma treatment is
Since a vacuum chamber is required and the processing method is complicated, the efficiency is low and it is difficult to continuously process. An object of the present invention is to provide a simple method for improving the affinity between a substrate and a resin.

【0007】[0007]

【課題を解決するための手段】本発明は、有機繊維又は
有機繊維と無機繊維を複合した織布又は不織布の繊維基
材に紫外線を照射した後、樹脂ワニスを含浸、乾燥する
ことを特徴とする。
SUMMARY OF THE INVENTION The present invention provides an organic fiber or
The method is characterized in that, after irradiating ultraviolet rays to a woven or nonwoven fabric base material in which organic fibers and inorganic fibers are combined , a resin varnish is impregnated and dried.

【0008】繊維基材として、無機繊維ではガラス繊
維、石英繊維が用いられる。有機繊維としては、アラミ
ド樹脂、フッ素樹脂(四フッ化エチレン樹脂、四フッ化
エチレン−六フッ化プロピレン共重合樹脂、四フッ化エ
チレンパーアルキルエーテル共重合樹脂など)耐熱性エ
ンジニアリングプラスチック(全芳香族ポリアミド、ポ
リフェニレンサルファイド、ポリエーテルエーテルケト
ン、ポリエーテルイミド、全芳香族ポリエステルなど)
が挙げられる。要するに、マトリックス樹脂の成形温度
及びはんだ溶融温度にえられる繊維であればおおむね
使用可能である。
As the fiber base, glass fibers and quartz fibers are used as inorganic fibers. Organic fibers include aramid resin, fluororesin (ethylene tetrafluoride resin, ethylene tetrafluoride-hexafluoropropylene copolymer resin, tetrafluoroethylene peralkyl ether copolymer resin, etc.) and heat-resistant engineering plastics (wholly aromatic) Polyamide, polyphenylene sulfide, polyetheretherketone, polyetherimide, wholly aromatic polyester, etc.)
Is mentioned. In short, it is generally available if Tolerant fibers to the molding temperature and the solder melting temperature of the matrix resin.

【0009】これらの有機繊維を単独又は有機繊維と無
機繊維を混合したヤーンを平織、綾織、朱子織などの各
種織物とし、あるいは不織布とし、基材として使用す
る。特に無機繊維と有機繊維との混合材が好ましい。繊
維のフィラメント径は、数μmから数十μmが好まし
い。このような繊維を複数本合わせて得られるヤーン
を、通常の織物製造と同様にして製織する。この織布の
厚さは、20μmないし250μmの範囲のものが望ま
しい。
These organic fibers may be used alone or in combination with the organic fibers.
Yarns mixed with machine fibers are used as various woven fabrics such as plain weave, twill weave and satin weave, or as nonwoven fabrics, and used as a base material. Particularly, a mixed material of inorganic fibers and organic fibers is preferable. The filament diameter of the fiber is preferably several μm to several tens μm. The yarn obtained by combining a plurality of such fibers is woven in the same manner as in ordinary woven fabric production. The thickness of the woven fabric is desirably in the range of 20 μm to 250 μm.

【0010】本発明において、熱硬化性樹脂として、エ
ポキシ樹脂、ポリイミド樹脂、ビスマレイミドートリア
ジシン樹脂、変性ポリイミド樹脂などを使用することが
できるが、誘電率が低いシアネートエステル樹脂、マレ
イミド−スチリル脂などが好適である。
[0010] In the present invention, as the thermosetting resin, epoxy resin, polyimide resin, bismaleimide over thoria own resin, etc. can be used polyimide resin, the dielectric constant is low cyanate ester resin, a maleimide - styryl tree Fats and the like are preferred.

【0011】紫外線照射と、カップリング剤処理と組み
合わせてもよい。この場合、カップリング剤で処理した
繊維基材に紫外線を照射してもよく、紫外線を照射した
繊維基材をカップリング剤で処理してもよい。紫外線を
照射した繊維基材をカップリング剤で処理し、さらに紫
外線を照射することも可能である。
[0011] UV irradiation and coupling agent treatment may be combined. In this case, the fiber substrate treated with the coupling agent may be irradiated with ultraviolet light, or the fiber substrate irradiated with ultraviolet light may be treated with the coupling agent. It is also possible to treat the fiber substrate irradiated with ultraviolet rays with a coupling agent and further irradiate ultraviolet rays.

【0012】カップリング剤としては、有機シランを主
成分とするものが広く用いられている。有機シランは、
一般式RnSiX(4-n)で表される。この式において、R
は少なくとも炭素原子を一つ有する基を表し、炭素原子
に結合する水素原子を、アミノ基、エポキシ基、メルカ
プト基又はビニル基等の反応性を有する基で置換したも
であってもよい。Xは任意の一価の加水分解し得る
基、例えば、ハロゲン原子、アルコキシ基又はアシロキ
シ基を表し、nは1〜3の整数である。nが1又は2の
とき、Xは互いに同一のものでも異なっていてもよい。
有機シランは、二種以上を混合して使用してもよい。
As the coupling agent, those containing an organic silane as a main component are widely used. Organosilane is
It is represented by the general formula R n SiX (4-n) . In this formula, R
Represents a group having at least one carbon atom, and the hydrogen atom bonded to the carbon atom is substituted with a reactive group such as an amino group, an epoxy group, a mercapto group, or a vinyl group.
It may be. X represents any monovalent hydrolyzable group, for example, a halogen atom, an alkoxy group or an acyloxy group, and n is an integer of 1 to 3. When n is 1 or 2, Xs may be the same or different.
The organic silane may be used as a mixture of two or more kinds.

【0013】パーフルオロアルキルシラン(たとえば、
3,3,3−トリフロロプロピルトリメトキシシラン、
3,3−4,4−5,5−6,6−7,7−8,8−ト
リデカフルオロオクチルトリメトキシシラン)、アミノ
シラン(たとえば、γ−(2−アミノエチル)アミノプ
ロピルトリメトキシシラン)のように、繊維基材との親
和性がよいカップリング剤を使用するときは、カップリ
ング剤で処理した後に紫外線を照射し、逆に樹脂との親
和性のよいカップリング剤を使用するときは、紫外線を
照射した後にカップリング剤で処理すれば、効果的であ
る。
A perfluoroalkylsilane (for example,
3,3,3-trifluoropropyltrimethoxysilane,
3,3-4,4-5,5-6,6-7,7-8,8-tridecafluorooctyltrimethoxysilane), aminosilane (for example, γ- (2-aminoethyl) aminopropyltrimethoxysilane) When a coupling agent having a good affinity for the fiber base material is used, as in the case of (1), the resin is treated with the coupling agent and then irradiated with ultraviolet rays, and conversely, a coupling agent having a good affinity for the resin is used. In some cases, treatment with a coupling agent after irradiation with ultraviolet rays is effective.

【0014】有機シランは、通常水溶液又はアルコール
類、ケトン類、グリコールエーテル類などの有機溶剤と
水との混合溶液として、0.01〜5重量%程度の濃度
に調整して使用される。基材に適用する方法としては、
浸漬法、噴霧法、ガス化法などの、任意の公知の方法が
採用できる。一般に多用される浸漬法は、室温に近い温
度で基材を溶液に数秒浸漬した後、マングルで絞り、続
いて80〜180℃で数分間乾燥キュアリングすること
により、有機シランが0.01〜2重量%程度付与され
た基材を得ている。
The organic silane is usually used as an aqueous solution or a mixed solution of an organic solvent such as alcohols, ketones, glycol ethers and the like and water at a concentration of about 0.01 to 5% by weight. As a method to apply to the substrate,
Any known method such as an immersion method, a spray method, and a gasification method can be adopted. A commonly used immersion method is that a substrate is immersed in a solution at a temperature close to room temperature for several seconds, then squeezed with a mangle, and then dried and cured at 80 to 180 ° C. for several minutes, so that the organic silane is 0.01 to 0.01%. A base material having about 2% by weight is obtained.

【0015】照射する紫外線としては波長が200〜4
00nmのものを使用し、紫外線ランプを用い一般に公
知の処理条件が採用される。紫外線ランプとしては10
0〜1000nmの波長の光を放出する各種ランプ(例
えば、低圧水銀ランプ、高圧水銀ランプ)が使用でき
る。
The ultraviolet light to be irradiated has a wavelength of 200 to 4
A known treatment condition is generally adopted using a UV lamp having a thickness of 00 nm and an ultraviolet lamp. 10 for UV lamp
Various lamps that emit light having a wavelength of 0 to 1000 nm (for example, a low-pressure mercury lamp and a high-pressure mercury lamp) can be used.

【0016】照射量は、累積で100mJ/cm2 〜2
000mJ/cm2 の範囲とする。100mJ/cm2
に満たないと、効果がない。紫外線照射の効果は、20
00mJ/cm2 で飽和し、また、材料により差異はあ
るが、カップリング剤及び有機基材が熱劣化して変質す
るおそれがある。
The irradiation amount is 100 mJ / cm 2 to 2 in total.
000 mJ / cm 2 . 100mJ / cm 2
If less than, there is no effect. The effect of UV irradiation is 20
It saturates at 00 mJ / cm 2 , and although different depending on the material, the coupling agent and the organic base material may be thermally deteriorated and deteriorated.

【0017】[0017]

【作用】紫外線のエネルギーによって基材又はカップリ
ング剤表面の電子状態が不安定となり、空気中の水分、
炭酸ガス、酸素と反応して−OH、−COOHのような
極性基ができるものと推定される。このため基材−カッ
プリング剤、カップリング剤−樹脂、基材−樹脂の親和
性がよくなり、樹脂の含浸性が向上し、ボイドがなくな
るため、低い圧力での成形が可能となり、従来のプリプ
レグが有していた種々の欠陥がなくなるものと考えられ
る。
[Effect] The electronic state of the substrate or the surface of the coupling agent becomes unstable due to the energy of ultraviolet rays, and the moisture in the air,
It is presumed that polar groups such as -OH and -COOH are formed by reacting with carbon dioxide and oxygen. For this reason, the affinity of the base material-coupling agent, the coupling agent-resin, and the base material-resin is improved, the impregnation property of the resin is improved, and voids are eliminated. It is considered that various defects of the prepreg disappear.

【0018】[0018]

【実施例】実施例1 Sガラス繊維60容量%、四フッ化エチレン樹脂繊維4
0容量%からなる厚み0.1mmの混合織布(60本/
25mm×58本/25mm)をコンベア式紫外線照射
装置で累積照射量が700mJ/cm2 (80W、1分
間)になるように照射した。次にこの照射処理織布をN
−(β−アミノエチル)−γ−アミノプロピルメトキシ
シラン0.1重量%水溶液に浸漬した後、織布100重
量部に対して水溶液30重量部になるようにマングルで
均一に絞り、熱風乾燥機で150℃にて2分間乾燥し
た。次に、NEMA規格FR−4のエポキシ樹脂を、織
布55重量部にたいして、樹脂付着量が45重量部にな
るように含浸し、プリプレグとした。このプリプレグを
8枚重ねて、170℃、圧力2MPaで1時間加圧成形
して積層板とした。得られた積層板の耐熱性は10時
間、加熱処理(E−0.5/170)後の寸法変化は経
糸方向−0.040、緯糸方向−0.055であった。
またドリル加工時にクラック又は剥離の発生がなかっ
た。耐熱性は、50mm×50mmの積層板試験片を常
圧で煮沸し、260℃のはんだ槽に30秒浸漬し、取り
出してブリスター、ミーズリングの有無を調べ、ブリス
ターまたはミーズリングが発生する煮沸時間で表す。比
較のため、紫外線照射を除き、外は実施例と同様にし
て製造した積層板は耐熱性が5時間、加熱処理後の寸法
変化は経糸方向が−0.110、緯糸方向が−0.12
0であった。また、ドリル加工時にクラックまたは剥離
が若干発生した。
EXAMPLES Example 1 S glass fiber 60% by volume, ethylene tetrafluoride resin fiber 4
0.1 volume thick mixed woven fabric consisting of 0% by volume (60 /
(25 mm × 58 lines / 25 mm) was irradiated by a conveyor type ultraviolet irradiation apparatus so that the cumulative irradiation amount became 700 mJ / cm 2 (80 W, 1 minute). Next, this irradiated fabric is
After dipping in a 0.1% by weight aqueous solution of-(β-aminoethyl) -γ-aminopropylmethoxysilane, the solution is uniformly squeezed with a mangle so that the aqueous solution becomes 30 parts by weight with respect to 100 parts by weight of a woven fabric. At 150 ° C. for 2 minutes. Next, epoxy resin of NEMA standard FR-4 was impregnated with 55 parts by weight of the woven fabric so that the resin adhesion amount was 45 parts by weight to prepare a prepreg. Eight of these prepregs were stacked and pressed under a pressure of 2 MPa at 170 ° C. for 1 hour to form a laminate. The heat resistance (E-0.5 / 170) of the obtained laminate was 10 hours, and the dimensional change after the heat treatment (E-0.5 / 170) was -0.040 in the warp direction and -0.055 in the weft direction.
No cracking or peeling occurred during drilling. The heat resistance is as follows. A 50 mm × 50 mm laminated plate test piece is boiled at normal pressure, immersed in a solder bath at 260 ° C. for 30 seconds, taken out and checked for blisters and measling, and the boiling time at which blisters or measling occurs. Expressed by For comparison, a laminate manufactured in the same manner as in Example 1 except for the irradiation of ultraviolet light had a heat resistance of 5 hours, and the dimensional change after the heat treatment was -0.110 in the warp direction and -0.110 in the weft direction. 12
It was 0. Further, cracking or peeling occurred slightly during drilling.

【0019】実施例2 Sガラス繊維60容量%、ポリエーテルエーテルケトン
樹脂繊維40容量%とからなる厚さ0.1mmの混合織
布(60本/25mm×58本/25mm)を基材とし
以下実施例と同様にして積層板を得た。得られた積層
板の耐熱性は11時間であった。加熱処理後の寸法変化
は、経糸方向が−0.035、緯糸方向が−0.040
であった。またドリル加工時にクラックまたは剥離の発
生がなかった。比較のため、紫外線照射を除き、他は実
施例と同様にして製造した積層板は耐熱性が6時間、
加熱処理後の寸法変化は経糸方向が−0.100、緯糸
方向が−0.105であった。また、ドリル加工時にク
ラックまたは剥離が若干発生した。
EXAMPLE 2 A 0.1 mm thick mixed woven fabric (60 fibers / 25 mm × 58 fibers / 25 mm) composed of 60 volume% of S glass fiber and 40 volume% of polyetheretherketone resin fiber was used as a base material. A laminate was obtained in the same manner as in Example 1 . The heat resistance of the obtained laminate was 11 hours. The dimensional change after the heat treatment was -0.035 in the warp direction and -0.040 in the weft direction.
Met. No cracking or peeling occurred during drilling. For comparison, the laminates produced in the same manner as in Example 2 except for the irradiation of ultraviolet rays had heat resistance of 6 hours,
The dimensional change after the heat treatment was -0.100 in the warp direction and -0.105 in the weft direction. Further, cracking or peeling occurred slightly during drilling.

【0020】実施例3 実施例において、エポキシ樹脂に代えてマレイミド−
スチリル脂を用い以下実施例と同じ条件で積層板を
得た。得られた積層板の耐熱性は12時間であった。加
熱処理後の寸法変化は、経糸方向が−0.035、緯糸
方向が−0.040であった。またドリル加工時にクラ
ックまたは剥離の発生がなかった。比較のため、紫外線
照射を除き、他は実施例と同様にして製造した積層板
の耐熱性は5時間であった。加熱処理後の寸法変化は、
経糸方向が−0.110、緯糸方向が−0.120であ
った。また、ドリル加工時にクラックまたは剥離が若干
発生した。
Example 3 In Example 1 , maleimide was used in place of the epoxy resin.
To obtain a laminated board under the same conditions as in Example 1 using a styryl resins. The heat resistance of the obtained laminate was 12 hours. The dimensional change after the heat treatment was -0.035 in the warp direction and -0.040 in the weft direction. No cracking or peeling occurred during drilling. For comparison, the heat resistance of the laminate manufactured in the same manner as in Example 3 except for the irradiation of ultraviolet rays was 5 hours. The dimensional change after heat treatment is
The warp direction was -0.110 and the weft direction was -0.120. Further, cracking or peeling occurred slightly during drilling.

【0021】実施例4 四フッ化エチレン樹脂繊維からなる厚み0.1mmの織
布(60本/25mm×58本/25mm)に繊維基材
との親和性の良いγ−(2−アミノエチル)アミノプロ
ピルトリメトキシシラン処理し、次にコンベア式紫外線
照射装置で累積照射量が700mJ/cm2 (80W、
1分間)になるように照射した。この織布にエポキシ樹
脂を、織布55重量部に対して、樹脂付着量が45重量
部になるように含浸し、プリプレグとし、実施例と同
じ条件で積層板を得た。得られた積層板の耐熱性は8時
間であった。加熱処理後の寸法変化は、経糸方向が−
0.060、緯糸方向が−0.080であった。また、
ドリル加工時にクラック又は剥離の発生がなかった。比
較のため、紫外線照射を除き、他は実施例と同様にし
て製造した積層板の耐熱性は3時間であった。加熱処理
後の寸法変化は、経糸方向が−0.130、緯糸方向が
−0.150であった。また、ドリル加工時にクラック
又は剥離が発生した。
Example 4 A 0.1 mm thick woven fabric (60 fibers / 25 mm.times.58 fibers / 25 mm) made of tetrafluoroethylene resin fiber was applied to .gamma .- (2-aminoethyl) having a good affinity with the fiber base material. Aminopropyltrimethoxysilane treatment, and then a cumulative irradiation amount of 700 mJ / cm 2 (80 W,
(1 minute). This woven fabric was impregnated with an epoxy resin so that the resin adhesion amount was 45 parts by weight with respect to 55 parts by weight of the woven fabric to prepare a prepreg, and a laminate was obtained under the same conditions as in Example 1 . The heat resistance of the obtained laminate was 8 hours. The dimensional change after the heat treatment is
0.060, and the weft direction was -0.080. Also,
No cracking or peeling occurred during drilling. For comparison, the heat resistance of the laminate manufactured in the same manner as in Example 4 except for the irradiation of ultraviolet light was 3 hours. The dimensional change after the heat treatment was -0.130 in the warp direction and -0.150 in the weft direction. In addition, cracking or peeling occurred during drilling.

【0022】[0022]

【発明の効果】本発明のよれば、樹脂と基材との親和性
がよくなるため、樹脂の基材への含浸性がよくなり、印
刷配線板としての耐熱性、寸法安定性、信頼性が向上す
る。
According to the present invention, since the affinity between the resin and the base material is improved, the impregnation property of the resin with the base material is improved, and the heat resistance, dimensional stability and reliability as a printed wiring board are improved. improves.

フロントページの続き (72)発明者 金子 陽一 茨城県下館市大字小川1500番地 日立化 成工業株式会社下館工場内 (72)発明者 鈴木 隆之 茨城県下館市大字小川1500番地 日立化 成工業株式会社下館工場内 (56)参考文献 特開 平4−16530(JP,A)Continuing from the front page (72) Inventor Yoichi Kaneko 1500 Ogawa, Shimodate-shi, Ibaraki Pref.Hitachi Chemical Industry Co., Ltd. Inside the factory (56) References JP-A-4-16530 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 有機繊維又は有機繊維と無機繊維を複合
した織布又は不織布の繊維基材に紫外線を照射した後、
樹脂ワニスを含浸、乾燥することを特徴とするプリプレ
グの製造方法。
An organic fiber or a composite of an organic fiber and an inorganic fiber.
After irradiating the woven or non-woven fiber base material with ultraviolet light,
A method for producing a prepreg, comprising impregnating and drying a resin varnish.
【請求項2】 カップリング剤で処理した有機繊維又は
有機繊維と無機繊維を複合した織布又は不織布の繊維基
材に紫外線を照射した後、樹脂ワニスを含浸、乾燥する
ことを特徴とするプリプレグの製造方法。
2. Organic fibers treated with a coupling agent or
After irradiation with ultraviolet rays of organic fibers and inorganic fibers in the fiber base material of the composite and woven or nonwoven fabric, impregnated with a resin varnish, wherein the to pulp prepreg manufacturing method of drying.
JP3255642A 1990-11-08 1991-10-03 Manufacturing method of prepreg Expired - Lifetime JP2580905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3255642A JP2580905B2 (en) 1990-11-08 1991-10-03 Manufacturing method of prepreg

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP30332090 1990-11-08
JP2-303320 1990-11-08
JP3255642A JP2580905B2 (en) 1990-11-08 1991-10-03 Manufacturing method of prepreg

Publications (2)

Publication Number Publication Date
JPH05416A JPH05416A (en) 1993-01-08
JP2580905B2 true JP2580905B2 (en) 1997-02-12

Family

ID=26542341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3255642A Expired - Lifetime JP2580905B2 (en) 1990-11-08 1991-10-03 Manufacturing method of prepreg

Country Status (1)

Country Link
JP (1) JP2580905B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0979815A1 (en) * 1998-08-11 2000-02-16 Lonza A.G. Unsaturated oligophenolcyanates
JP2016056491A (en) * 2014-09-11 2016-04-21 倉敷紡績株式会社 Fiber sheet for fiber-reinforced resin and production method of the same, and molded body using the same and production method of the molded body

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2844840B2 (en) * 1990-05-10 1999-01-13 日東紡績株式会社 Method for producing glass fiber substrate, glass fiber substrate and glass fiber reinforced resin laminate

Also Published As

Publication number Publication date
JPH05416A (en) 1993-01-08

Similar Documents

Publication Publication Date Title
CN107532348B (en) Glass cloth
US4937132A (en) Laminating material for printed circuit board of low dielectric constant
EP0192510A1 (en) A method for the preparation of a laminate
CN109721752B (en) Glass cloth, prepreg, and printed wiring board
JP2580905B2 (en) Manufacturing method of prepreg
CA1293605C (en) Process for treating reinforced polymer composite
JP6684095B2 (en) Glass cloth, prepreg, and printed wiring board
JP3291100B2 (en) Glass fiber fabric for resin reinforcement
JP2844840B2 (en) Method for producing glass fiber substrate, glass fiber substrate and glass fiber reinforced resin laminate
JPS62111493A (en) Treatment of glass cloth
JPH0586214A (en) Prepreg for laminate and copper-clad laminate using the same
JPH038832A (en) Inorganic yarn woven fabric for laminate
JPH055243A (en) Glass cloth and laminated sheet using the same
JP3227874B2 (en) Manufacturing method of laminated board
JPH02103238A (en) Production of prepreg
JPS63162731A (en) Production of thermosetting resin laminate
JPS6293992A (en) Treatment of glass cloth
JP2024111836A (en) Glass cloth and its manufacturing method, as well as prepreg and printed wiring board
JPH07157972A (en) Woven glass fiber fabric for resin-reinforcement
JPH10190174A (en) Printed wiring board
JPH04192489A (en) Prepreg and copper-clad laminated board
JPH04163364A (en) Production of glass fiber fabric
JPS62274688A (en) Printed wiring board
JPH04192496A (en) Manufacture of laminated boards
JPH1045921A (en) Prepreg