JP2573948C - - Google Patents

Info

Publication number
JP2573948C
JP2573948C JP2573948C JP 2573948 C JP2573948 C JP 2573948C JP 2573948 C JP2573948 C JP 2573948C
Authority
JP
Japan
Prior art keywords
pour point
comparative example
lubricating oil
weight
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
Other languages
Japanese (ja)
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Idemitsu Kosan Co Ltd
Original Assignee
Idemitsu Kosan Co Ltd
Publication date

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明はオリフィス機構を有する機械装置用潤滑油組成物に関し、詳しくはオ
リフィス機構を有する各種の機械装置に使用するものであって、低温時の作動性
にすぐれた潤滑油組成物に関する。 〔従来の技術及び発明が解決しようとする問題点〕 従来から、オリフィス機構を有する機械装置、例えば自動車用ショックアブソ
ーバー,ドアクローザーなどの油圧機械や鉄道ポイント切替用自動給油装置など
の各種機械装置に使用する潤滑油には、特に低温時における作動性を考慮して、
比較的低流動点(−15℃程度)の基油に流動点降下剤を多量に配合して流動点
を−35℃程度にまで改良したものが用いられている。 しかし、このような潤滑油では、低温における油圧抵抗が増大して、様々な不
都合、例えばショックアブソーバーにあっては低温衝撃吸収力の低下、ドアクロ
ーザーにあっては低温作動性不良、また鉄道ポイント切替用の給油装置にあって
は低温給油不能などの問題が発生している。さらに、これらの問題とともに、流 動点降下剤として多量に配合したポリマー(ポリメタクリレートなど)が機械的
剪断を受けるため、その性能の経時変化が大きいという問題があった。 〔問題点を解決するための手段〕 そこで本発明者は、上述の如き各種機械装置に使用する潤滑油の問題点を解消
し、低温時の作動性を改善するとともに、その性能が長期間安定な潤滑油を開発
すべく鋭意研究を重ねた。その結果、特定の性状を有する潤滑油基油ならびにこ
れに適当な添加剤を配合したものが、所期の目的を達成しうることを見出し、こ
の知見に基いて本発明を完成するに至った。 すなわち本発明は、(A)40℃における動粘度が3〜500 cStであるとと
もに、流動点が−25℃以下であり、かつくもり点が−25℃以下である深脱ロ
ウ油を基油に、(B)α−オレフィン重合体およびα−オレフィン共重合体から
選ばれた少なくとも一種の粘度指数向上剤および/または流動点降下剤を、組成
物全量の0.01重量%以上、および(C)リン酸エステル、亜リン酸エステル
、リン酸エステルアミン塩および亜リン酸エステルアミン塩から選ばれた少なく
とも一種のリン系極圧剤を、組成物全量の0.01重量%以上で、かつ、前記(
B)成分と(C)成分の合計量が11.5重量%以下であるように配合したこと
を特徴とするオリフィス機構を有する機械装置用潤滑油組成物を提供するもので
ある。 本発明で用いる潤滑油の性状は上述の如く、まず40℃における動粘度が3〜
500cSt の範囲であり、好ましくは5〜300cSt の範囲である。ここで動粘
度が3cSt 未満では、引火性が高いため安全性が確保できず、また極圧性や耐摩
耗性が低下するという不都合があり、一方500cSt を越えるものでは、粘性抵
抗が大き過ぎて様々なトラブルを引き起こすおそれがある。 また、この潤滑油基油は、流動点が−25℃以下、好ましくは−30℃以下の
ものである。ここで流動点が−25℃を越えるものでは、低温特性が劣るため流
動点降下剤を多量に加えなければならず、その結果油圧抵抗の増大により種々の
不都合が生ずる。 さらに上記潤滑油基油は、そのくもり点が−25℃以下、好ましくは−30℃
以下である。くもり点が−25℃を越えるものでは、これを用いたオリフィス機
構を有する機械装置が低温下で充分作動しなくなるおそれがある。 本発明の潤滑油基油は、特にくもり点が−25℃以下であることに大きな特徴
があり、流動点,くもり点がともに非常に低いために、オリフィス機構を有する
各種の機械装置の潤滑油として有効に機能するのである。ここで流動点が−25
℃以下であっても、くもり点が−25℃より高いものでは、低温下において上記
機械装置のオリフィスに目詰まりが生ずるなどのため、作動性が低下する。 なお、本発明の潤滑油基油である深脱ロウ油は、具体的には、パラフィン基系
原油,中間基系原油,ナフテン基系原油を常圧蒸留するかあるいは常圧蒸留の残
渣油を減圧蒸留して得られる留出油 を常法にしたがって精製し、さらに深脱ロ
ウ処理することによって得られる。この際の留出油の精製法は特に制限はなく様
々な方法が考えられる。通常は(a)水素化処理,(b)脱ロウ処理(溶剤脱ロ
ウまたは水添脱ロウ),(c)溶剤抽出処理,(d)アルカリ蒸留または硫酸洗
浄処理,(e)白土処理を単独であるいは適宜順序で組み合わせて行う。また同
一処理を複数段に分けて繰り返し行うことも有効である。例えば、留出油を水
素化処理するか、または水素化処理した後、アルカリ蒸留または硫酸洗浄処理を
行う方法、留出油を水素化処理した後、脱ロウ処理する方法、留出油を溶剤
抽出処理した後、水素化処理する方法、留出油に二段あるいは三段の水素化処
理を行う、またはその後にアルカリ蒸留または硫酸洗浄処理する方法などがある
。 本発明の潤滑油基油は、このようにして得られる精製油を、再度脱ロウ処理し
て深脱ロウ油としたものが好適に使用される。ここで行う脱ロウ処理は、深脱ロ
ウ処理と称されるもので、苛酷な条件下での溶剤脱ロウ処理法やゼオライト触媒
を用いた接触水添脱ロウ処理法などによって行われる。 本発明ではこの深脱ロウ油基油(A)に、特定の粘度指数向上剤および/また
は流動点降下剤(B)と特定のリン系極圧剤(C)を添加して潤滑油組成物とし
ている。 ここで特定の粘度指数向上剤および/あるいは流動点降下剤としては、α−オ
レフィン重合体およびα−オレフィン共重合体(例えば、エチレン−プロピレン
共重合体)から選ばれた少なくとも1種を成分とする。このうち、数平均分子量
1000〜30000のα−オレフィン重合体やα−オレフィン共重合体、特に 数平均分子量1000〜10000のエチレン−α−オレフィン共重合体が好ま
しい。 また、特定のリン系極圧剤としては、リン酸エステル(トリクレジルホスフェ
ート(TCP)など),亜リン酸エステル,リン酸エステルアミン塩,亜リン酸
エステルアミン塩から選ばれた少なくとも1種を成分とする。 さらに、本発明の潤滑油組成物で用いられる前記(B)成分と(C)成分の添
加量としては、各々組成物全量に対して0.01重量%以上で、且つ、(B)成
分と(C)成分の添加量の合計が11.5重量%以下であるようにする。 上記潤滑油組成物には、さらに所望により耐摩耗剤、油性剤または酸化防止剤
を添加することもできるが、その添加量は、(B),(C)を含む全添加剤量と
して、組成物全量の11.5重量%以下であることが好ましい。 ここに、例えば、耐摩耗剤としては、MoDTP,MoDTC等の有機モリブデ
ン化合物;アルキルメルカプチルボレート等の有機ホウ素化合物;グラファイト
,二硫化モリブデン,硫化アンチモン,ホウ素化合物,ポリテトラフルオロエチ
レン等の固体潤滑剤系耐摩耗剤などをあげることができる。 また、油性剤(摩擦調整剤)としては、オレイン酸,ステアリン酸等の高級脂
肪酸;オレイルアルコール等の高級アルコール;アミン;エステル;油脂;硫化
油脂;塩素化油脂などをあげることができる。 酸化防止剤の例としては、フェノール系化合物,アミン系化合物,いおう系化
合物,りん系化合物など各種のものがあげられる。 上述の発明の潤滑油組成物には、さらに所望により腐食防止剤、防錆剤、清浄
分散剤、消泡剤などを適量加えることもできる。 〔実施例〕 次に、本発明を実施例および比較例によりさらに詳しく説明する。比較例1 中間基系原油からの留出油を二段水素化処理し、さらに深脱ロウ処理(ゼオラ
イト触媒を用いる水添脱ロウ処理)して得られた基油(40℃における動粘度1
0cSt,流動点−42.5℃,くもり点−45℃,粘度指数80)に、ジチオリン
酸亜鉛(Zn−DTP)0.5重量%(組成物全量に対する割合。以下同じ。),ジ チオリン酸モリブデン(Mo−DTP)0.5重量%、トリクレジルホスフェート
(TCP)0.5重量%、および粘度指数向上剤および/または流動点降下剤と
してのポリメタクリレート(数平均分子量6万)5重量%(最終的に得られる組
成物全量に対する割合)を配合して、40℃における動粘度15cSt,流動点−
45℃以下,くもり点−45℃の潤滑油組成物を得た。 この潤滑油組成物を自動車用ショックアブソーバー(筒型ショックアブソーバ
ー:ロッド20mm(直径)×400mm(長さ),外筒43mm(直径)×400mm
(長さ),内筒30mm(直径)×350mm(長さ))に充填し、温度−30℃に
て所定時間経過後、速度0.1m/sec,ストローク±30mmの条件で外筒を上下
運動させて、該ショックアブソーバーの作動荷重(衝撃吸収作用を起し始める衝
撃力)を測定した。 次に加振機にて、上記ショックアブソーバーの外筒を、温度15℃,速度1m
/sec,ストローク±30mmの条件で100万回加振して剪断応力を与えた後、
上述と同じ条件でショックアブソーバーの作動荷重を測定した。 加振前後のショックアブソーバーの作動荷重の測定結果を表に示す。 実施例 比較例1において、粘度指数向上剤としてのポリメタクリレート(数平均分子
量6万)5重量%の代わりに、エチレン−α−オレフィン共重合体(数平均分子
量3600)10重量%(最終的に得られる組成物全量に対する割合)を配合し
たこと以外は、比較例1と同様に行なって、40℃における動粘度15cSt,流動
点−45℃,くもり点−45℃の潤滑油組成物を得た。 次いで、この得られた潤滑油組成物を用い、比較例1と同様の方法にて加振前
後のショックアブソーバーの作動荷重を測定した。結果を表に示す。 比較例 比較例1において、粘度指数向上剤および/または流動点降下剤としてのポリ
メタクリレートを配合しなかったこと以外は、比較例1と同様にして、潤滑油組
成物を調製した。 次いで、この得られた潤滑油組成物を用い、比較例1と同様の方法にて加振前
後のショックアブソーバーの作動荷重を測定した。結果を表に示す。 比較例 比較例において、基油として、中間基系原油からの留出油を水素化処理し、
さらに深脱ロウ処理(ゼオライト触媒を用いる水添脱ロウ処理)して得られた基
油(40℃における動粘度10cSt,流動点−35℃,くもり点−33℃,粘度指
数82)を用いたこと以外は、比較例と同様にして加振前後のショックアブソ
ーバーの作動荷重を測定した。結果を表に示す。 比較例 比較例において、基油として中間基系原油からの留出油を溶剤抽出処理して
得られた基油(40℃における動粘度10cSt,流動点−17.5℃,くもり点−
10℃,粘度指数90)を用いたこと以外は、比較例と同様にして加振前後の
ショックアブソーバーの作動荷重を測定した。結果を表に示す。 比較例 比較例において、基油としてナフテン基系原油からの留出油を溶剤抽出処理
して得られた基油(40℃における動粘度10cSt,流動点−35℃,くもり点
−20℃,粘度指数50)を用いたこと以外は、比較例と同様にして加振前後
のショックアブソーバーの作動荷重を測定した。結果を表に示す。 比較例 比較例で調製した潤滑油組成物に、さらに粘度指数向上剤および/または流
動点降下剤としてのポリメタクリレート(数平均分子量6万)5重量%(最終的
に得られる組成物全量に対する割合)を配合して、40℃における動粘度15cS
t,流動点−35℃,くもり点−10℃の潤滑油組成物を得た。 次いで、この得られた潤滑油組成物を用い、比較例1と同様の方法にて加振前
後のショックアブソーバーの作動荷重を測定した。結果を表に示す。 比較例 比較例で調製した潤滑油組成物に、さらに粘度指数向上剤としてのエチレン
−α−オレフィン共重合体(数平均分子量3600)10重量%(最終的に得ら
れる組成物全量に対する割合)を配合して、40℃における動粘度15cSt,流
動点−20℃,くもり点−10℃の潤滑油組成物を得た。 次いで、この得られた潤滑油組成物を用い、比較例1と同様の方法にて加振前
後のショックアブソーバーの作動荷重を測定した。結果を表に示す。 上記表から次のことがわかる。すなわち、流動点,くもり点の高い基油にポ
リメタクリレートを加えて流動点を下げても、低温時の作動荷重は改良されるが
、その持続性がない(比較例比較例1参照)。流動点,くもり点の低い基
油とポリメタクリレート又はエチレン−α−オレフィン共重合体を用いたものは
、低温時の作動荷重が長時間にわたって小さく、また、その剪断安定性も充分で
ある(比較例1,実施例1参照)。特に、この基油にエチレン−α−オレフィン
共重合体を添加したものは、低温時の作動荷重が極めて小さく、その持続性,剪
断安定性も充分である(実施例参照)。 〔発明の効果〕 叙上の如く、本発明の潤滑油組成物は、低温時における作動性が良好であり、
例えばショックアブソーバーに用いたときは、その衝撃吸収効果が著しく、また
その効果の持続性,安定性が大きい。しかも、エチレン−α−オレフィン共重合
体等のポリマーを僅かに加えただけでも充分にその効果を発現できるため、剪断
安定性にすぐれ、長期間の使用に耐えうるものである。 したがって、本発明の潤滑油組成物は、自動車用ショックアブソーバー,ドア
クローザーなどの油圧機械や鉄道ポイント切替用自動給油装置など各種のオリフ
ィス機構を有する機械装置、特に低温下に曝される機械装置に幅広くかつ有効に
利用される。
Description: TECHNICAL FIELD The present invention relates to a lubricating oil composition for a mechanical device having an orifice mechanism, and more particularly to a lubricating oil composition for various mechanical devices having an orifice mechanism. And a lubricating oil composition having excellent operability. [Problems to be Solved by Conventional Techniques and Inventions] Conventionally, mechanical devices having an orifice mechanism, such as hydraulic machines such as automobile shock absorbers and door closers, and various mechanical devices such as automatic refueling devices for changing train points, have been used. The lubricating oil to be used, especially considering the operability at low temperatures,
A base oil having a relatively low pour point (about −15 ° C.) mixed with a large amount of a pour point depressant to improve the pour point to about −35 ° C. is used. However, such lubricating oils increase hydraulic resistance at low temperatures, causing various disadvantages, such as a reduction in low-temperature shock absorption in a shock absorber, a low-temperature operability in a door closer, and a railway point. In the refueling device for switching, problems such as inability to refuel at low temperatures have occurred. Further, in addition to these problems, a polymer (such as polymethacrylate) blended in a large amount as a pour point depressant is subjected to mechanical shearing, so that there is a problem that its performance changes greatly with time. [Means for Solving the Problems] Accordingly, the present inventor has solved the problems of the lubricating oil used in the various types of mechanical devices as described above, improved the operability at low temperatures, and maintained the performance for a long time. Intensive research to develop a new lubricant. As a result, they found that a lubricating base oil having a specific property and a compound containing an appropriate additive could achieve the intended purpose, and based on this finding, completed the present invention. . That is, the present invention relates to (A) a deep-dewaxed oil having a kinematic viscosity at 40 ° C of 3 to 500 cSt, a pour point of -25 ° C or less, and a cloud point of -25 ° C or less as a base oil. , (B) at least one viscosity index improver and / or pour point depressant selected from α-olefin polymers and α-olefin copolymers in an amount of 0.01% by weight or more of the total amount of the composition, and (C) ) At least one phosphorous extreme pressure agent selected from phosphate esters, phosphite esters, phosphate amine salts and phosphite amine salts in an amount of 0.01% by weight or more of the total amount of the composition, and The (
An object of the present invention is to provide a lubricating oil composition for a mechanical device having an orifice mechanism, wherein the total amount of the component (B) and the component (C) is 11.5% by weight or less. As described above, the properties of the lubricating oil used in the present invention are as follows.
It is in the range of 500 cSt, preferably in the range of 5 to 300 cSt. If the kinematic viscosity is less than 3 cSt, safety is not ensured due to high flammability, and extreme pressure resistance and wear resistance are disadvantageously reduced. On the other hand, if the kinematic viscosity exceeds 500 cSt, the viscous resistance is too large and various Cause serious trouble. The lubricating base oil has a pour point of -25 ° C or lower, preferably -30 ° C or lower. If the pour point exceeds -25 ° C., the low-temperature characteristics are inferior, so a large amount of pour point depressant must be added, and as a result, various disadvantages occur due to an increase in hydraulic resistance. Further, the lubricating base oil has a cloud point of −25 ° C. or less, preferably −30 ° C.
It is as follows. If the cloud point exceeds -25 ° C, there is a possibility that a mechanical device having an orifice mechanism using the same will not operate sufficiently at low temperatures. The lubricating base oil of the present invention is particularly characterized in that the cloud point is −25 ° C. or lower, and since both the pour point and the cloud point are extremely low, the lubricating oil of various mechanical devices having an orifice mechanism is used. It works effectively as Here the pour point is -25
If the cloud point is higher than −25 ° C., the operability is lowered because the orifice of the mechanical device is clogged at a low temperature. The deeply dewaxed oil, which is the lubricating base oil of the present invention, is specifically prepared by subjecting a paraffin-based crude oil, an intermediate-based crude oil, or a naphthenic-based crude oil to atmospheric distillation or a residual oil obtained by atmospheric distillation. The distillate obtained by distillation under reduced pressure is obtained by purifying according to a conventional method and further deep-waxing. The method for refining the distillate at this time is not particularly limited, and various methods can be considered. Usually, (a) hydrogenation treatment, (b) dewaxing treatment (solvent dewaxing or hydrogenation dewaxing), (c) solvent extraction treatment, (d) alkali distillation or sulfuric acid washing treatment, and (e) clay treatment alone Or by combining them in an appropriate order. It is also effective to repeat the same process in a plurality of stages. For example, hydrogenated distillate or hydrogenated, followed by alkali distillation or sulfuric acid washing, hydrogenated distillate, dewaxing, distillate oil solvent After the extraction treatment, there are a method of performing a hydrotreatment, a method of performing a two-stage or a three-stage hydrogenation treatment on the distillate, and a method of subsequently performing an alkali distillation or a sulfuric acid washing treatment. As the lubricating base oil of the present invention, the refined oil thus obtained is preferably subjected to a dewaxing treatment again to obtain a deeply dewaxed oil. The dewaxing process performed here is called a deep dewaxing process, and is performed by a solvent dewaxing process under severe conditions, a contact hydrodewaxing process using a zeolite catalyst, or the like. In the present invention, a lubricating oil composition is prepared by adding a specific viscosity index improver and / or a pour point depressant (B) and a specific phosphorus-based extreme pressure agent (C) to the deeply dewaxed oil base oil (A). And Here, as the specific viscosity index improver and / or pour point depressant, at least one selected from α-olefin polymers and α-olefin copolymers (for example, ethylene-propylene copolymer) is used as a component. I do. Among them, α-olefin polymers and α-olefin copolymers having a number average molecular weight of 1,000 to 30,000, particularly ethylene-α-olefin copolymers having a number average molecular weight of 1,000 to 10,000 are preferred. The specific phosphorus-based extreme pressure agent is at least one selected from phosphate esters (tricresyl phosphate (TCP) and the like), phosphite esters, phosphate ester amine salts, and phosphite ester amine salts. As a component. The components (B) and (C) used in the lubricating oil composition of the present invention are each added in an amount of 0.01% by weight or more based on the total amount of the composition, and (C) The total amount of the added components is 11.5% by weight or less. The lubricating oil composition may further contain an antiwear agent, an oiliness agent, or an antioxidant, if desired. However, the amount of the additive is defined as the total amount of the additives including (B) and (C). It is preferably 11.5% by weight or less of the total amount of the substance. Here, for example, examples of the antiwear agent include organic molybdenum compounds such as MoDTP and MoDTC; organic boron compounds such as alkyl mercaptyl borate; solid lubricants such as graphite, molybdenum disulfide, antimony sulfide, boron compounds, and polytetrafluoroethylene. Agent-based antiwear agents and the like. Examples of the oil agent (friction modifier) include higher fatty acids such as oleic acid and stearic acid; higher alcohols such as oleyl alcohol; amines; esters; fats and oils; sulfurized fats and oils; Examples of the antioxidant include various compounds such as phenol compounds, amine compounds, sulfur compounds, and phosphorus compounds. The lubricating oil composition of the invention described above may further contain an appropriate amount of a corrosion inhibitor, a rust inhibitor, a detergent / dispersant, a defoamer, or the like, if desired. EXAMPLES Next, the present invention will be described in more detail with reference to Examples and Comparative Examples. Comparative Example 1 A base oil obtained by subjecting a distillate from an intermediate base crude oil to two-stage hydrogenation treatment and further deep dewaxing treatment (hydrodewaxing treatment using a zeolite catalyst) (kinematic viscosity at 40 ° C. 1
0 cSt, pour point -42.5 ° C, cloud point -45 ° C, viscosity index 80), 0.5% by weight of zinc dithiophosphate (Zn-DTP) (ratio to the total amount of the composition; the same applies hereinafter), molybdenum dithiophosphate. (Mo-DTP) 0.5% by weight, tricresyl phosphate (TCP) 0.5% by weight, and 5% by weight of polymethacrylate (number average molecular weight 60,000) as a viscosity index improver and / or a pour point depressant (The ratio to the total amount of the composition finally obtained) was added, and the kinematic viscosity at 40 ° C. was 15 cSt, and the pour point was −
A lubricating oil composition having a cloud point of -45 ° C or lower at 45 ° C or lower was obtained. This lubricating oil composition is applied to an automobile shock absorber (cylindrical shock absorber: rod 20 mm (diameter) × 400 mm (length), outer cylinder 43 mm (diameter) × 400 mm
(Length), inner cylinder 30mm (diameter) x 350mm (length)), and after elapse of a predetermined time at a temperature of -30 ° C, the outer cylinder is moved up and down under the conditions of a speed of 0.1m / sec and a stroke of ± 30mm. By moving the shock absorber, the working load of the shock absorber (impact force at which the shock absorbing action is started) was measured. Next, the outer cylinder of the shock absorber was heated at a temperature of 15 ° C. and a speed of 1 m with a vibrator.
After applying 1 million times of vibration under the condition of ± 30 mm / sec and stroke ± 30 mm to give shear stress,
The working load of the shock absorber was measured under the same conditions as described above. The measurement results of the working load of the shock absorber before and after the vibration are shown in the table. Example 1 In Comparative Example 1, instead of 5% by weight of polymethacrylate (number average molecular weight 60,000) as a viscosity index improver, 10% by weight of ethylene-α-olefin copolymer (number average molecular weight 3600) (final Comparative Example 1 was carried out in the same manner as in Comparative Example 1 except that a lubricating oil composition having a kinematic viscosity at 40 ° C of 15 cSt, a pour point of -45 ° C, and a cloudy point of -45 ° C was obtained. Was. Next, using the obtained lubricating oil composition, the working load of the shock absorber before and after the vibration was measured in the same manner as in Comparative Example 1. The results are shown in the table. In Comparative Example 2 Comparative Example 1, except for not blending the polymethacrylate as viscosity index improvers and / or pour point depressants, in the same manner as in Comparative Example 1 to prepare a lubricating oil composition. Next, using the obtained lubricating oil composition, the working load of the shock absorber before and after the vibration was measured in the same manner as in Comparative Example 1. The results are shown in the table. Comparative Example 3 In Comparative Example 2 , a distillate from an intermediate base crude oil was hydrotreated as a base oil,
Further, a base oil (kinematic viscosity at 40 ° C. of 10 cSt, pour point of −35 ° C., cloud point of −33 ° C., viscosity index of 82) obtained by deep dewaxing treatment (hydrodewaxing treatment using a zeolite catalyst) was used. Except for this, the working load of the shock absorber before and after the vibration was measured in the same manner as in Comparative Example 2 . The results are shown in the table. Comparative Example 4 In Comparative Example 2 , a base oil obtained by subjecting a distillate from an intermediate base crude oil to a solvent extraction treatment as a base oil (kinematic viscosity at 40 ° C. 10 cSt, pour point −17.5 ° C., cloud point −
The working load of the shock absorber before and after the vibration was measured in the same manner as in Comparative Example 2 except for using 10 ° C. and a viscosity index of 90). The results are shown in the table. Comparative Example 5 In Comparative Example 2 , a base oil obtained by subjecting a distillate from a naphthene-based crude oil to a solvent extraction treatment as a base oil (kinematic viscosity at 40 ° C. 10 cSt, pour point −35 ° C., cloud point −20 ° C.) The working load of the shock absorber before and after the vibration was measured in the same manner as in Comparative Example 2 , except that the viscosity index 50) was used. The results are shown in the table. Comparative Example 6 5% by weight of a polymethacrylate (number average molecular weight of 60,000) as a viscosity index improver and / or a pour point depressant was added to the lubricating oil composition prepared in Comparative Example 4 (total amount of the finally obtained composition). Kinematic viscosity at 40 ° C. of 15 cS
t, a lubricating oil composition having a pour point of -35 ° C and a cloud point of -10 ° C was obtained. Next, using the obtained lubricating oil composition, the working load of the shock absorber before and after the vibration was measured in the same manner as in Comparative Example 1 . The results are shown in the table. Comparative Example 7 10% by weight of an ethylene-α-olefin copolymer (number average molecular weight of 3600) as a viscosity index improver was added to the lubricating oil composition prepared in Comparative Example 4 (ratio to the total amount of the finally obtained composition) ) To obtain a lubricating oil composition having a kinematic viscosity at 40 ° C. of 15 cSt, a pour point of −20 ° C., and a cloud point of −10 ° C. Next, using the obtained lubricating oil composition, the working load of the shock absorber before and after the vibration was measured in the same manner as in Comparative Example 1. The results are shown in the table. The following can be seen from the above table. That is, the pour point, also lower the pour point by adding polymethacrylate to the high base oil of the cloud point, but the operation load at low temperatures is improved, its no persistence (see Comparative Example 1 and Comparative Example 6) . Pour point, one using a low base oil having a cloud point and polymethacrylate or ethylene -α- olefin copolymer is smaller over a long period of time operation load at low temperatures, also, it is also sufficient that the shear stability (compare See Example 1 and Example 1 ). In particular, those obtained by adding an ethylene-α-olefin copolymer to this base oil have a very low operating load at low temperatures, and have sufficient durability and shear stability (see Example 1 ). [Effect of the Invention] As described above, the lubricating oil composition of the present invention has good operability at low temperatures,
For example, when used in a shock absorber, the effect of absorbing the shock is remarkable, and the effect is persistent and stable. In addition, since the effect can be sufficiently exhibited even by adding a small amount of a polymer such as an ethylene-α-olefin copolymer, the polymer has excellent shear stability and can be used for a long time. Therefore, the lubricating oil composition of the present invention can be applied to mechanical devices having various orifice mechanisms, such as hydraulic machines such as automobile shock absorbers and door closers, and automatic lubricating devices for railway point switching, and particularly to mechanical devices exposed to low temperatures. Widely and effectively used.

Claims (1)

【特許請求の範囲】 (1)(A)40℃における動粘度が3〜500 cStであるとともに、流動点が
−25℃以下であり、かつくもり点が−25℃以下である深脱ロウ油を基油に、
(B)数平均分子量1000〜10000のα−オレフィン重合体およびα−オ
レフィン共重合体から選ばれた少なくとも一種の粘度指数向上剤および/または
流動点降下剤を、組成物全量の0.01重量%以上、および(C)リン酸エステ
ル、亜リン酸エステル、リン酸エステルアミン塩および亜リン酸エステルアミン
塩から選ばれた少なくとも一種のリン系極圧剤を、組成物全量の0.01重量%
以上で、かつ、前記(B)成分と(C)成分の合計量が11.5重量%以下であ
るように配合したことを特徴とするオリフィス機構を有する機械装置用潤滑油組
成物。
Claims (1) (A) A deep-dewaxed oil having a kinematic viscosity at 40 ° C of 3 to 500 cSt, a pour point of -25 ° C or lower, and a cloud point of -25 ° C or lower. To base oil,
(B) at least one kind of a viscosity index improver and / or a pour point depressant selected from an α-olefin polymer and an α-olefin copolymer having a number average molecular weight of 1,000 to 10,000, in an amount of 0.01 wt. % Or more, and (C) at least one phosphorus-based extreme pressure agent selected from phosphate esters, phosphite esters, phosphate amine salts and phosphite amine salts, in an amount of 0.01% by weight of the total amount of the composition. %
A lubricating oil composition for a mechanical device having an orifice mechanism, wherein the total amount of the components (B) and (C) is 11.5% by weight or less.

Family

ID=

Similar Documents

Publication Publication Date Title
JP2573948B2 (en) Lubricating oil composition for machinery with orifice mechanism
EP0291006B1 (en) Lubricating oil composition having improved temperature characteristics
US4776967A (en) Lubricating oil composition
KR900005107B1 (en) Lubricating oil composition
JP4800635B2 (en) Lubricating oil composition for automatic transmission
WO1997016511A1 (en) Automatic transmission fluids with improved transmission performance
JPH0813982B2 (en) Lubricating base oil composition for internal combustion engine
CA2284343A1 (en) Hydraulic oil composition for shock absorbers
EP0259808B1 (en) Lubricating oil composition
JP2546795B2 (en) Lubricating oil composition
JP2608098B2 (en) Lubricating oil composition
CN103502408B (en) Lubricant oil composite
WO2018175830A4 (en) Method for improving engine fuel efficiency and energy efficiency
KR20140047606A (en) Lubricating oil composition
JP3844892B2 (en) Hydraulic fluid composition for shock absorber
JP2022512880A (en) Use of diesters to improve wear resistance of lubricant compositions
JP2573948C (en)
JP2504778B2 (en) Oil-impregnated bearing oil
JP2017066220A (en) Lubricating oil composition
JPH09208976A (en) Gear oil and its production
JP4354030B2 (en) Shock absorber oil composition for automobiles
EP1259579A4 (en) Functional fluid
JP7460757B2 (en) Lubricating oil composition for agricultural machinery
JP5039275B2 (en) Lubricating oil composition
JP2555284C (en)