JP2572777C - - Google Patents
Info
- Publication number
- JP2572777C JP2572777C JP2572777C JP 2572777 C JP2572777 C JP 2572777C JP 2572777 C JP2572777 C JP 2572777C
- Authority
- JP
- Japan
- Prior art keywords
- titanium
- alloy
- tic
- dispersed
- matrix
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010936 titanium Substances 0.000 claims description 24
- 229910034327 TiC Inorganic materials 0.000 claims description 23
- 229910045601 alloy Inorganic materials 0.000 claims description 23
- 239000000956 alloy Substances 0.000 claims description 23
- 229910052719 titanium Inorganic materials 0.000 claims description 22
- RTAQQCXQSZGOHL-UHFFFAOYSA-N titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 21
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical class [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 claims description 19
- 239000011159 matrix material Substances 0.000 claims description 17
- 239000002245 particle Substances 0.000 claims description 16
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 13
- 239000006185 dispersion Substances 0.000 claims description 4
- 238000005728 strengthening Methods 0.000 claims description 3
- 239000000463 material Substances 0.000 description 15
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- 229910052799 carbon Inorganic materials 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 14
- 239000002131 composite material Substances 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 8
- 238000005299 abrasion Methods 0.000 description 8
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000010959 steel Substances 0.000 description 8
- 239000007791 liquid phase Substances 0.000 description 6
- 238000005260 corrosion Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 230000001131 transforming Effects 0.000 description 5
- 239000000203 mixture Substances 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000007792 addition Methods 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 150000001247 metal acetylides Chemical class 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- TWXTWZIUMCFMSG-UHFFFAOYSA-N nitride(3-) Chemical compound [N-3] TWXTWZIUMCFMSG-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000006104 solid solution Substances 0.000 description 2
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- -1 alloy carbides Chemical class 0.000 description 1
- 238000005275 alloying Methods 0.000 description 1
- 229910002056 binary alloy Inorganic materials 0.000 description 1
- QXUAMGWCVYZOLV-UHFFFAOYSA-N boride(3-) Chemical compound [B-3] QXUAMGWCVYZOLV-UHFFFAOYSA-N 0.000 description 1
- 229910001567 cementite Inorganic materials 0.000 description 1
- 230000023298 conjugation with cellular fusion Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007542 hardness measurement Methods 0.000 description 1
- 238000001192 hot extrusion Methods 0.000 description 1
- 238000005098 hot rolling Methods 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 238000011068 load Methods 0.000 description 1
- 229910000529 magnetic ferrite Inorganic materials 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000010587 phase diagram Methods 0.000 description 1
- 238000004663 powder metallurgy Methods 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000001226 reprecipitation Methods 0.000 description 1
- 229910021332 silicide Inorganic materials 0.000 description 1
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 230000021037 unidirectional conjugation Effects 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Description
【発明の詳細な説明】
[産業上の利用分野]
本発明は、軽量・高強度・高耐食性といった特性を有するTiまたはTi合金
に、更に耐摩耗性および耐熱性を与え、耐熱・耐摩耗性材料としても適用できる
様にしたTiC粒子分散強化型鋳造チタン基合金に関するものである。 [従来の技術] 耐摩耗性の要求される金属材料としては従来より主に軸受鋼(SUJ−2)等
の鋼材が汎用されていたが、耐摩耗性に対する要求度合いが厳しくなってくるに
つれて高速度鋼・超硬合金、サーメット等が使用される様になり、最近ではセラ
ミックスの利用も検討されている。しかしながらこれらの耐摩耗性材料には夫々
次の様な欠点がある。 即ち鋼材は比重が大きいため、回転もしくは往復運動をする耐摩耗性部品とし
て使用した場合は運動機構への負担が大きく、エネルギーロスが増大するという
難点があり、たとえばエンジン部品(インテークバルブ、バルブロッカー、コン
ロッド、バルブリテーナー、ロッカーアーム等)等に使用すると燃費がかさむ。
また高速度鋼や超硬合金は更に比重が大きいため、上記の欠点は一段とクローズ
アップされてくる。これに対しセラミックスは軽量であり、鋼材等に見られる上
記の様な問題は生じないが、製法が複雑であるばかりでなく延性や靭性が極端に
低いので衝撃破壊等に対する信頼性が乏しく、機械部品としての総合的品質を満
たすものとは言い難い。 この様な欠点を解消するための新しい耐摩耗性素材として、様々の粒子分散型
合金が開発され注目を集めている。即ち粒子分散型合金とは、耐熱・耐摩耗性に 富む炭化物、ほう化物、珪化物、窒化物、酸化物等の化合物と高靭性の金属とを
複合したものであり、複合方法としては粉末同士を混合し、プレス成形後焼結す
る粉末冶金法が最も一般的であり、その他溶湯混合法、内部酸化法、表面酸化法
等が知られている。 [発明が解決しようとする問題点] ところが上記の様な粒子分散型合金にはその製法を含めて次の様な欠点がある
。 分散粒子とマトリックス金属との均一混合が難しく、均質性に問題がある。 焼結乃至熱間押出加工と複合工程を組合わさなければ分散粒子による強化効
果は得られ難く、生産性が低い。 分散粒子とマトリックスは共存状態で熱力学的に不安定な状態にあることが
多く、後工程の加熱処理あるいは高温条件での使用時に分散粒子(化合物)やマ
トリックス(金属)が熱力学的に安定な方向に変化(固溶、再結晶化、拡散、変
態等)することがあり、複合材自体の変質を招き易い。 他方チタンおよびチタン合金は軽量で耐食性に優れ且つ高強度であるといった
特徴を有しているところから、航空機等の飛翔体用構造材料等として活用されて
いるが、耐摩耗性に劣るためそのままでは摩擦を受ける摺動部に適用することは
できない。従って摩擦を受ける部分に適用する場合は窒化、溶射等の表面硬化処
理を施す方法が採用されているが、これらの表面硬化処理法では満足のいく様な
耐摩耗性を得ることはできない。 本発明はこの様な事情に着目してなされたものであって、その目的は、チタン
およびチタン合金の有する軽量性、高耐食性、高強度を維持しつつ、その欠点で
ある耐摩耗性と耐熱性を、前記粒子分散型合金に対して指摘した様な問題を生じ
ることなく分散粒子との複合化によって改善し、軽量性、耐食性、強度、耐熱性
、耐摩耗性等を満足し得る様な材料を提供しようとするものである。 [問題点を解決するための手段] 上記の目的を達成することのできた本発明に係る粒子分散強化型鋳造チタン基
合金の構成は、1.8〜18重量%のCを含み、チタンまたはチタン合金マトリッ
クス中にTiC粒子が均一に分散晶出したものであるところに要旨を有するもの である。 [作用] 従来の粒子分散型金属もしくは合金に見られる欠点は、前述の如く分散粒子(
化合物)とマトリックスが共存状態で熱力学的に不安定な状態にあり、後工程で
の加熱あるいは高温条件下での使用等に際し、化合物またはマトリックスが熱力
学的に安定な方向に変化し、複合素材としての性質が変わることである。従って
この様な欠点を改善するためには、金属もしくは合金からなるマトリックスと化
合物を共存状態で安定な状態、即ち熱力学的平衡状態に維持する必要がある。 そのための1つの考え方として、たとえば合金の平衡状態図において液相と化
合物(炭化物、窒化物、酸化物、金属間化合物)が共存し得る組成のものを対象
とし、マトリックスと共に化合物が完全に液相となる温度域に加熱保持した後、
この溶融物を冷却して固体にする鋳造法が考えられる。即ち溶融混合物を冷却凝
固していく過程で、液相と化合物固相との共存域における液相が凝固して固相に
なると、このとき変態が起こり、合金の固体単相もしくはこれと化合物(この化
合物は液相と共存していた化合物とは異なることもある)との混合固相になる場
合もあるが、いずれにせよ、この固相は合金マトリックスに化合物が分散した粒
子分散型鋳造合金となり、化合物としての含有量を適正に調整すれば、従来の粒
子分散型合金と同様の組成のものが得られるはずである。しかもこの方法を採用
すれば、鋳造工程で液相から徐々に固相が晶出して最終的に全体が凝固するもの
であるから、マトリックスと晶出粒子(化合物)とは熱力学的に安定な状態にあ
り、界面での変態等は起こり難いと考えられる。 他方、チタンやチタン合金にみられる耐摩耗性不足の改善策としては、硬質粒
状物の分散強化が考えられる。これは鋼材における耐摩耗性向上のメカニズムか
ら導かれるものであり、鋼はマトリックス(フェライトやマルテンサイト)中に
硬質の炭化物(セメンタイトや合金炭化物)が分散した複合組織であり、炭化物
の共存によって耐摩耗性は著しく高められている。 従ってチタンやチタン合金についても、耐摩耗性鋼材の場合と同様マトリック
ス中に超硬質の炭化物粒子が分散した複合組織とすることができれば、耐摩耗性
を大幅に改善し得るものと考えられる。この場合、共存する炭化物とチタンまた はチタン合金とが熱力学的平衡状態にある複合組織であれば、前述の様な粒子分
散型複合合金に見られる熱力学的不安定性に起因する変態等の問題も起こらない
はずである。 こうした観点に立ってTi−Cよりなる2元合金平衡状態図を基に検討すると
、熱力学的に安定に共存し得る硬質の炭化物はTiCであり、該TiC粒子の分
散による耐摩耗性改善効果は、チタンマトリックスのみならず、チタンと共に種
々の合金元素を含むα合金、α+β合金あるいはβ合金よりなるマトリックスと
の共存系においても同様に発揮される。 今、純チタンにa重量%の炭素を添加した液相共存系より、TiC平衡状態図
に基づいてTiCが晶出する場合を考えると、添加した炭素のすべてがチタンと
反応してTiCに変化すると仮定すると、凝固した複合組織中に占めるTiCの
体積率(Vf)は、下記の概算式によって表わすことができる。 この関係を図示すると第1図の通りであって、TiC体積率(Vf)は炭素の
添加量と直線関係にあり、炭素の添加量によってTiCの体積率を任意に調整し
得ることが分かる。こうした傾向は、様々のチタン合金に炭素を添加してTiC
を生成させる場合にも基本的には変わらない。 この様にしてチタンまたはチタン合金マトリックス中にTiCを生成・分散さ
せると、TiCが超高硬度(Hv:3000程度)粒子であるため複合則によって複
合材全体が著しく硬質化し、耐摩耗性の卓越したものとなる。但し実験によれば
TiCの体積率が約10%未満では硬質粒子の絶対量が不足するため満足のいく
耐摩耗性向上効果が得られず、一方TiCの体積率が約90%を超えると複合材
の靭性が劣悪となって割れ等の欠損を生じ易くなる。 この様なところから、TiCの体積率は約10〜90%となる様に炭素の添加
量を調整すべきであり、第1図に示したTiC体積率と炭素量の関係から、目的
にかなう耐摩耗性を確保するために必要な炭素量は1.8〜18重量%という範囲
が導かれる。 [実施例] 実施例1 C:0〜18.5重量%を含み残部がTiおよび不可避不純物からなる200gの
鋳塊(幅40×長さ80×厚さ15mm)をタングステンアーク溶解法によって溶
製した。この鋳塊を使用し、(I)鋳塊のまま、および(II)1150℃に加熱
した後50%の熱間圧延を与え更に750℃で焼鈍したもの、について、光学顕
微鏡によるTiC体積率の測定(画像解析装置使用)、ビッカース硬度測定及び
SUS304を相手材とする摩耗試験(大越式摩耗試験機を使用し、距離300
m移動させたときの単位面積当たりの摩耗量で評価)を行なった。 結果は第1表に示す通りであり、炭素の添加量が増加するにつれてTiC体積
率はほぼ比例的に増大し、それに伴なって複合材の硬度は高まると共に耐摩耗性
は向上している。但し炭素量が18重量%を超えると、TiC体積率が90%を
超えて耐衝撃強度に悪影響が表われてくる。 実施例2 純チタンに代えてTi−6A1−4V合金を使用した他は実施例1と同様にし
て炭素量の異なる数種のチタン合金鋳塊を製造し、鋳造まま材および熱延・焼鈍
材について同様の試験を行なった。 結果は第2表に示す通りであり、第1表に示した純チタンを対象とする実験結
果とほぼ同様の傾向が得られている。尚第2図は、6重量%の炭素を加えたTi
−6A1−4V合金(鋳造まま材)の金属組織を示す図面代用光学顕微鏡写真で
あり、粒状のTiCが均一に分散した複合組織となっていることが分かる。 [発明の効果] 本発明は以上の様に構成されており、その効果を要約すると次の通りである。 (1) チタンまたはチタン合金の有する軽量性、高耐食性、高強度特性を維持し
つつ耐摩耗性を著しく高めることができ、軽量で運動機構への負担の少ない回転
もしくは往復運動部材として有利に活用することができる。 (2) 耐摩耗性向上の為のTiC粒子は、溶融状態のチタンまたはチタン合金中
に含まれる炭素と結合してマトリックス中に晶出したものであり、TiCとマト
リックスは共存状態で熱力学的に安定であるから、従来の粒子分散型合金の様に
高温使用時に固溶、再析出、拡散、変態等を起こして変質する様な恐れがない。
に、更に耐摩耗性および耐熱性を与え、耐熱・耐摩耗性材料としても適用できる
様にしたTiC粒子分散強化型鋳造チタン基合金に関するものである。 [従来の技術] 耐摩耗性の要求される金属材料としては従来より主に軸受鋼(SUJ−2)等
の鋼材が汎用されていたが、耐摩耗性に対する要求度合いが厳しくなってくるに
つれて高速度鋼・超硬合金、サーメット等が使用される様になり、最近ではセラ
ミックスの利用も検討されている。しかしながらこれらの耐摩耗性材料には夫々
次の様な欠点がある。 即ち鋼材は比重が大きいため、回転もしくは往復運動をする耐摩耗性部品とし
て使用した場合は運動機構への負担が大きく、エネルギーロスが増大するという
難点があり、たとえばエンジン部品(インテークバルブ、バルブロッカー、コン
ロッド、バルブリテーナー、ロッカーアーム等)等に使用すると燃費がかさむ。
また高速度鋼や超硬合金は更に比重が大きいため、上記の欠点は一段とクローズ
アップされてくる。これに対しセラミックスは軽量であり、鋼材等に見られる上
記の様な問題は生じないが、製法が複雑であるばかりでなく延性や靭性が極端に
低いので衝撃破壊等に対する信頼性が乏しく、機械部品としての総合的品質を満
たすものとは言い難い。 この様な欠点を解消するための新しい耐摩耗性素材として、様々の粒子分散型
合金が開発され注目を集めている。即ち粒子分散型合金とは、耐熱・耐摩耗性に 富む炭化物、ほう化物、珪化物、窒化物、酸化物等の化合物と高靭性の金属とを
複合したものであり、複合方法としては粉末同士を混合し、プレス成形後焼結す
る粉末冶金法が最も一般的であり、その他溶湯混合法、内部酸化法、表面酸化法
等が知られている。 [発明が解決しようとする問題点] ところが上記の様な粒子分散型合金にはその製法を含めて次の様な欠点がある
。 分散粒子とマトリックス金属との均一混合が難しく、均質性に問題がある。 焼結乃至熱間押出加工と複合工程を組合わさなければ分散粒子による強化効
果は得られ難く、生産性が低い。 分散粒子とマトリックスは共存状態で熱力学的に不安定な状態にあることが
多く、後工程の加熱処理あるいは高温条件での使用時に分散粒子(化合物)やマ
トリックス(金属)が熱力学的に安定な方向に変化(固溶、再結晶化、拡散、変
態等)することがあり、複合材自体の変質を招き易い。 他方チタンおよびチタン合金は軽量で耐食性に優れ且つ高強度であるといった
特徴を有しているところから、航空機等の飛翔体用構造材料等として活用されて
いるが、耐摩耗性に劣るためそのままでは摩擦を受ける摺動部に適用することは
できない。従って摩擦を受ける部分に適用する場合は窒化、溶射等の表面硬化処
理を施す方法が採用されているが、これらの表面硬化処理法では満足のいく様な
耐摩耗性を得ることはできない。 本発明はこの様な事情に着目してなされたものであって、その目的は、チタン
およびチタン合金の有する軽量性、高耐食性、高強度を維持しつつ、その欠点で
ある耐摩耗性と耐熱性を、前記粒子分散型合金に対して指摘した様な問題を生じ
ることなく分散粒子との複合化によって改善し、軽量性、耐食性、強度、耐熱性
、耐摩耗性等を満足し得る様な材料を提供しようとするものである。 [問題点を解決するための手段] 上記の目的を達成することのできた本発明に係る粒子分散強化型鋳造チタン基
合金の構成は、1.8〜18重量%のCを含み、チタンまたはチタン合金マトリッ
クス中にTiC粒子が均一に分散晶出したものであるところに要旨を有するもの である。 [作用] 従来の粒子分散型金属もしくは合金に見られる欠点は、前述の如く分散粒子(
化合物)とマトリックスが共存状態で熱力学的に不安定な状態にあり、後工程で
の加熱あるいは高温条件下での使用等に際し、化合物またはマトリックスが熱力
学的に安定な方向に変化し、複合素材としての性質が変わることである。従って
この様な欠点を改善するためには、金属もしくは合金からなるマトリックスと化
合物を共存状態で安定な状態、即ち熱力学的平衡状態に維持する必要がある。 そのための1つの考え方として、たとえば合金の平衡状態図において液相と化
合物(炭化物、窒化物、酸化物、金属間化合物)が共存し得る組成のものを対象
とし、マトリックスと共に化合物が完全に液相となる温度域に加熱保持した後、
この溶融物を冷却して固体にする鋳造法が考えられる。即ち溶融混合物を冷却凝
固していく過程で、液相と化合物固相との共存域における液相が凝固して固相に
なると、このとき変態が起こり、合金の固体単相もしくはこれと化合物(この化
合物は液相と共存していた化合物とは異なることもある)との混合固相になる場
合もあるが、いずれにせよ、この固相は合金マトリックスに化合物が分散した粒
子分散型鋳造合金となり、化合物としての含有量を適正に調整すれば、従来の粒
子分散型合金と同様の組成のものが得られるはずである。しかもこの方法を採用
すれば、鋳造工程で液相から徐々に固相が晶出して最終的に全体が凝固するもの
であるから、マトリックスと晶出粒子(化合物)とは熱力学的に安定な状態にあ
り、界面での変態等は起こり難いと考えられる。 他方、チタンやチタン合金にみられる耐摩耗性不足の改善策としては、硬質粒
状物の分散強化が考えられる。これは鋼材における耐摩耗性向上のメカニズムか
ら導かれるものであり、鋼はマトリックス(フェライトやマルテンサイト)中に
硬質の炭化物(セメンタイトや合金炭化物)が分散した複合組織であり、炭化物
の共存によって耐摩耗性は著しく高められている。 従ってチタンやチタン合金についても、耐摩耗性鋼材の場合と同様マトリック
ス中に超硬質の炭化物粒子が分散した複合組織とすることができれば、耐摩耗性
を大幅に改善し得るものと考えられる。この場合、共存する炭化物とチタンまた はチタン合金とが熱力学的平衡状態にある複合組織であれば、前述の様な粒子分
散型複合合金に見られる熱力学的不安定性に起因する変態等の問題も起こらない
はずである。 こうした観点に立ってTi−Cよりなる2元合金平衡状態図を基に検討すると
、熱力学的に安定に共存し得る硬質の炭化物はTiCであり、該TiC粒子の分
散による耐摩耗性改善効果は、チタンマトリックスのみならず、チタンと共に種
々の合金元素を含むα合金、α+β合金あるいはβ合金よりなるマトリックスと
の共存系においても同様に発揮される。 今、純チタンにa重量%の炭素を添加した液相共存系より、TiC平衡状態図
に基づいてTiCが晶出する場合を考えると、添加した炭素のすべてがチタンと
反応してTiCに変化すると仮定すると、凝固した複合組織中に占めるTiCの
体積率(Vf)は、下記の概算式によって表わすことができる。 この関係を図示すると第1図の通りであって、TiC体積率(Vf)は炭素の
添加量と直線関係にあり、炭素の添加量によってTiCの体積率を任意に調整し
得ることが分かる。こうした傾向は、様々のチタン合金に炭素を添加してTiC
を生成させる場合にも基本的には変わらない。 この様にしてチタンまたはチタン合金マトリックス中にTiCを生成・分散さ
せると、TiCが超高硬度(Hv:3000程度)粒子であるため複合則によって複
合材全体が著しく硬質化し、耐摩耗性の卓越したものとなる。但し実験によれば
TiCの体積率が約10%未満では硬質粒子の絶対量が不足するため満足のいく
耐摩耗性向上効果が得られず、一方TiCの体積率が約90%を超えると複合材
の靭性が劣悪となって割れ等の欠損を生じ易くなる。 この様なところから、TiCの体積率は約10〜90%となる様に炭素の添加
量を調整すべきであり、第1図に示したTiC体積率と炭素量の関係から、目的
にかなう耐摩耗性を確保するために必要な炭素量は1.8〜18重量%という範囲
が導かれる。 [実施例] 実施例1 C:0〜18.5重量%を含み残部がTiおよび不可避不純物からなる200gの
鋳塊(幅40×長さ80×厚さ15mm)をタングステンアーク溶解法によって溶
製した。この鋳塊を使用し、(I)鋳塊のまま、および(II)1150℃に加熱
した後50%の熱間圧延を与え更に750℃で焼鈍したもの、について、光学顕
微鏡によるTiC体積率の測定(画像解析装置使用)、ビッカース硬度測定及び
SUS304を相手材とする摩耗試験(大越式摩耗試験機を使用し、距離300
m移動させたときの単位面積当たりの摩耗量で評価)を行なった。 結果は第1表に示す通りであり、炭素の添加量が増加するにつれてTiC体積
率はほぼ比例的に増大し、それに伴なって複合材の硬度は高まると共に耐摩耗性
は向上している。但し炭素量が18重量%を超えると、TiC体積率が90%を
超えて耐衝撃強度に悪影響が表われてくる。 実施例2 純チタンに代えてTi−6A1−4V合金を使用した他は実施例1と同様にし
て炭素量の異なる数種のチタン合金鋳塊を製造し、鋳造まま材および熱延・焼鈍
材について同様の試験を行なった。 結果は第2表に示す通りであり、第1表に示した純チタンを対象とする実験結
果とほぼ同様の傾向が得られている。尚第2図は、6重量%の炭素を加えたTi
−6A1−4V合金(鋳造まま材)の金属組織を示す図面代用光学顕微鏡写真で
あり、粒状のTiCが均一に分散した複合組織となっていることが分かる。 [発明の効果] 本発明は以上の様に構成されており、その効果を要約すると次の通りである。 (1) チタンまたはチタン合金の有する軽量性、高耐食性、高強度特性を維持し
つつ耐摩耗性を著しく高めることができ、軽量で運動機構への負担の少ない回転
もしくは往復運動部材として有利に活用することができる。 (2) 耐摩耗性向上の為のTiC粒子は、溶融状態のチタンまたはチタン合金中
に含まれる炭素と結合してマトリックス中に晶出したものであり、TiCとマト
リックスは共存状態で熱力学的に安定であるから、従来の粒子分散型合金の様に
高温使用時に固溶、再析出、拡散、変態等を起こして変質する様な恐れがない。
【図面の簡単な説明】
第1図はチタン中の炭素の添加量とTiC体積率の関係を示すグラフ、第2図
は本発明に係るTiC粒子分散強化型チタン基合金の金属組織を示す図面代用光
学顕微鏡写真である。
は本発明に係るTiC粒子分散強化型チタン基合金の金属組織を示す図面代用光
学顕微鏡写真である。
Claims (1)
- 【特許請求の範囲】 1.8〜18重量%のCを含み、チタンまたはチタン合金マトリックス中にTi
C粒子が均一に分散晶出したものであることを特徴とするTiC粒子分散強化型
鋳造チタン基合金。
Family
ID=
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2653578B1 (en) | Aluminum die casting alloy | |
Kumar et al. | Synthesis and characterization of TiB 2 reinforced aluminium matrix composites: a review | |
US5976214A (en) | Slide member of sintered aluminum alloy and method of manufacturing the same | |
EP2467506B1 (en) | Silicon-rich alloys | |
JP2651975B2 (ja) | ガンマ・チタン・アルミナイド及びその製法 | |
JPH06256872A (ja) | チタニウム基質複合物およびその製造方法 | |
EP4083244A1 (en) | Heat-resistant powdered aluminium material | |
Poddar et al. | The microstructure and mechanical properties of SiC reinforced magnesium based composites by rheocasting process | |
JP3173452B2 (ja) | 耐摩耗性被覆部材及びその製造方法 | |
JP3229339B2 (ja) | 添加された鉄アルミニドFe3Alをベースにした中間温度領域で使用する部材に対する耐酸化性で耐腐食性の合金 | |
Daneshifar et al. | Fabrication of Al-Si/Mg2Si in-situ composite by friction stir processing | |
JP3410303B2 (ja) | 耐溶融金属溶損性および耐摩耗性に優れたFe−Ni−Cr−Al系フェライト合金およびその製造方法 | |
JP2572777B2 (ja) | TiC粒子分散強化型チタン基合金 | |
JP2572777C (ja) | ||
Bram et al. | Kinetics of the phase transformation and wear resistance of in-situ processed titanium matrix composites based on Ti–Fe–B | |
Kanyane et al. | Evolution of microstructure, mechanical properties, electrochemical behaviour and thermal stability of Ti 0.25-Al 0.2-Mo 0.2-Si 0.25 W 0.1 high entropy alloy fabricated by spark plasma sintering technique | |
JPH06299276A (ja) | Ti−Al合金製部品 | |
Novák et al. | Effect of alloying elements on microstructure and properties of Fe-Al and Fe-Al-Si alloys produced by reactive sintering | |
Baron et al. | Mechanical properties of aluminum matrix composites reinforced with sintered ferrous compacts | |
JPH10298684A (ja) | 強度、耐摩耗性及び耐熱性に優れたアルミニウム基合金−硬質粒子複合材料 | |
Szajnar et al. | Description of alloy layer formation on a cast steel substrate | |
JP6841441B2 (ja) | Mo−Si−B系合金、Mo−Si−B系合金の製造方法および摩擦撹拌接合用ツール | |
JP3087377B2 (ja) | TiまたはTi合金製の部材のための表面硬化材、表面硬化方法および表面硬化部材 | |
JP3245338B2 (ja) | 低アルミニウム亜鉛基合金用ホットチャンバーダイカストマシン | |
Nithesh et al. | Experimental investigation of the mechanical properties of Al6061-TiB2-fly ash reinforced monolithic and hybrid composites |