JP2570914B2 - Cooling system - Google Patents

Cooling system

Info

Publication number
JP2570914B2
JP2570914B2 JP3074821A JP7482191A JP2570914B2 JP 2570914 B2 JP2570914 B2 JP 2570914B2 JP 3074821 A JP3074821 A JP 3074821A JP 7482191 A JP7482191 A JP 7482191A JP 2570914 B2 JP2570914 B2 JP 2570914B2
Authority
JP
Japan
Prior art keywords
evaporator
refrigeration cycle
fluid
cooled
passed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3074821A
Other languages
Japanese (ja)
Other versions
JPH04222335A (en
Inventor
仁 丹生
修司 福島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP3074821A priority Critical patent/JP2570914B2/en
Publication of JPH04222335A publication Critical patent/JPH04222335A/en
Application granted granted Critical
Publication of JP2570914B2 publication Critical patent/JP2570914B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】この発明は冷却装置に関し、特に
冷却塔と複数台の冷凍サイクルとを有する冷却装置に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a cooling device, and more particularly to a cooling device having a cooling tower and a plurality of refrigeration cycles.

【0002】[0002]

【従来の技術】冷却塔と冷凍サイクルとを有する冷却装
置としては、例えば実開昭61−84480号公報に開
示されているが、これは冷凍サイクルが1台の場合の技
術である。しかるに冷却装置の負荷変動が大きいときに
は、冷凍サイクルが1台では対処できなくなり、複数台
の冷凍サイクルを用いる必要が生じる。冷却塔と複数台
の冷凍サイクルとを有する冷却装置を開示した文献は見
当たらないが、例えば冷凍サイクルを単に並列に又は単
に直列に並べた構成が容易に考えられる。
2. Description of the Related Art A cooling apparatus having a cooling tower and a refrigeration cycle is disclosed, for example, in Japanese Utility Model Laid-Open Publication No. 61-84480, which is a technique for a single refrigeration cycle. However, when the load fluctuation of the cooling device is large, a single refrigeration cycle cannot cope with it, and it becomes necessary to use a plurality of refrigeration cycles. Although there is no document that discloses a cooling device having a cooling tower and a plurality of refrigeration cycles, a configuration in which, for example, refrigeration cycles are simply arranged in parallel or simply in series can be easily considered.

【0003】[0003]

【発明が解決しようとする課題】先ず複数台の、例えば
4台の冷凍サイクルA,B,C及びDを単に並列に並べ
たときの概略の問題点について述べると、いま被冷却流
体の流量をQ(m3/min)一定とし、この被冷却流
体を4分割して4台の冷凍サイクルA,B,C及びDに
よって冷却するとし、各冷凍サイクルはQ/4(m3
min)の被冷却流体を8℃だけ冷却できる能力を持つ
とし、この冷凍サイクルによって被冷却流体の出口温度
を24℃一定に冷却する場合を考える。
First, a general problem when a plurality of, for example, four refrigeration cycles A, B, C and D are simply arranged in parallel will be described. Assuming that Q (m 3 / min) is constant and the fluid to be cooled is divided into four and cooled by four refrigeration cycles A, B, C and D, each refrigeration cycle is Q / 4 (m 3 / min).
min), the fluid to be cooled is cooled by 8 ° C., and the refrigeration cycle cools the outlet temperature of the fluid to be cooled at 24 ° C.

【0004】冷凍サイクルに入る被冷却流体Wの温度が
32℃のときには、図10に示すように全4台の冷凍サ
イクルを運転すれば必要な冷却能力が得られ、このとき
各冷凍サイクルに入る被冷却流体と出る被冷却流体の温
度は、それぞれ32℃と24℃であり、すなわち被冷却
流体の入口側と出口側の平均温度は28℃である。次に
図11に示すよう冷凍サイクルに入る被冷却流体Wの温
度が28℃に低下したときには、2台、例えば冷凍サイ
クルC及びDを運転すれば必要な冷却能力が得られ、こ
のとき冷凍サイクルC及びDに入る被冷却流体と出る被
冷却流体の温度は、それぞれ28℃と20℃となる。す
なわち被冷却流体の入口温度が4℃低下すると、運転中
の冷凍サイクルC及びDにおける被冷却流体の平均温度
もまた4℃低下して24℃となる。他方停止している冷
凍サイクルA及びBに入る被冷却流体と出る被冷却流体
の温度は28℃のままであり、その被冷却流体と冷凍サ
イクルC及びDから出る20℃の被冷却流体とが混合し
て、24℃の被冷却流体を得るものである。
When the temperature of the fluid W to be cooled entering the refrigeration cycle is 32 ° C., the necessary cooling capacity can be obtained by operating all four refrigeration cycles as shown in FIG. The temperatures of the fluid to be cooled and the fluid to be cooled are 32 ° C. and 24 ° C., respectively, that is, the average temperature on the inlet side and the outlet side of the fluid to be cooled is 28 ° C. Next, when the temperature of the fluid to be cooled W entering the refrigeration cycle is reduced to 28 ° C. as shown in FIG. 11, the required cooling capacity can be obtained by operating two units, for example, refrigeration cycles C and D. The temperatures of the cooled fluid entering and exiting C and D are 28 ° C. and 20 ° C., respectively. That is, when the inlet temperature of the fluid to be cooled decreases by 4 ° C., the average temperature of the fluid to be cooled in the refrigeration cycles C and D during operation also decreases by 4 ° C. to 24 ° C. On the other hand, the temperatures of the cooled fluid entering and leaving the refrigeration cycles A and B remain at 28 ° C., and the cooled fluid and the cooled fluid at 20 ° C. exiting from the refrigeration cycles C and D remain. By mixing, a fluid to be cooled at 24 ° C. is obtained.

【0005】しかるに被冷却流体の平均温度が低下する
につれて冷却能力は低下するのであり、すなわち低負荷
時に運転している冷凍サイクルC及びDでは、必要な出
口温度24℃よりも低く被冷却流体を冷却しているか
ら、当然に冷却効率は悪化する。したがって冷凍サイク
ルを単に並列に並べた構成では、運転している冷凍サイ
クル相互間の負荷は均一ではあるが、個々の冷凍サイク
ルについてみると、低負荷時の冷却効率が悪化するとい
う問題点がある。
However, as the average temperature of the fluid to be cooled decreases, the cooling capacity decreases. That is, in the refrigeration cycles C and D operating at a low load, the cooling fluid is cooled to a temperature lower than the required outlet temperature of 24 ° C. Since cooling is performed, the cooling efficiency naturally deteriorates. Therefore, in a configuration in which the refrigeration cycles are simply arranged in parallel, the load between the operating refrigeration cycles is uniform, but the individual refrigeration cycles have a problem that the cooling efficiency at low load deteriorates. .

【0006】そこで図12に示すように、Q(m3/m
in)の被冷却流体を2℃だけ冷却できる4台の冷凍サ
イクルA,B,C及びDを直列に並べた構成を考える
と、冷凍サイクルに入る被冷却流体Wの温度が32℃の
ときには、全4台の冷凍サイクルを運転すれば必要な冷
却能力が得られ、すなわち冷凍サイクルA,B,C及び
Dの被冷却流体の平均温度は、それぞれ31℃、29
℃、27℃及び25℃となる。次に図13に示すように
冷凍サイクルに入る被冷却流体Wの温度が28℃に低下
したときには、冷凍サイクルC及びDを運転すれば必要
な冷却能力が得られ、冷凍サイクルC及びDの被冷却流
体の平均温度は、27℃及び25℃のままである。すな
わち冷凍サイクルを単に直列に並べた構成では、個々の
冷凍サイクルについてみると低負荷時にも冷却効率は悪
化しないが、運転している冷凍サイクルの被冷却流体の
平均温度が異なり、すなわち冷凍サイクル相互間の負荷
が均一にならないという問題点がある。
Therefore, as shown in FIG. 12, Q (m 3 / m
In), considering a configuration in which four refrigeration cycles A, B, C, and D capable of cooling the fluid to be cooled by 2 ° C. are arranged in series, when the temperature of the fluid to be cooled W entering the refrigeration cycle is 32 ° C. The required cooling capacity can be obtained by operating all four refrigeration cycles, that is, the average temperatures of the fluids to be cooled in the refrigeration cycles A, B, C and D are 31 ° C. and 29 ° C., respectively.
° C, 27 ° C and 25 ° C. Next, as shown in FIG. 13, when the temperature of the fluid W to be cooled entering the refrigeration cycle has dropped to 28 ° C., the required cooling capacity can be obtained by operating the refrigeration cycles C and D. The average temperature of the cooling fluid remains at 27 ° C and 25 ° C. That is, in the configuration in which the refrigeration cycles are simply arranged in series, the cooling efficiency does not deteriorate even at a low load when looking at the individual refrigeration cycles. There is a problem that the load between them is not uniform.

【0007】したがって本発明は、運転している冷凍サ
イクル相互間の負荷を均一とし、しかも個々の冷凍サイ
クルについて見ても低負荷時の冷却効率の悪化が最小限
にとどめられる冷却装置を提供することを目的とする。
Accordingly, the present invention provides a cooling device that makes the load between operating refrigeration cycles uniform and that minimizes the deterioration of the cooling efficiency when the load is low even for each refrigeration cycle. The purpose is to:

【0008】[0008]

【課題を解決するための手段】本発明は、それぞれ圧縮
機、凝縮器、膨張弁及び蒸発器の順に冷媒を通過させた
後に前記圧縮機に戻してなる冷凍サイクルを複数台設
け、放熱パイプと、該放熱パイプと前記各凝縮器とに散
水する散水装置と、前記放熱パイプと前記各凝縮器とに
送風するファンとを有する冷却塔を設け、各冷凍サイク
ル毎に蒸発器を複数台設け、あるいは各蒸発器の被冷却
流体が通過する通路を複数の部屋に分割し、被冷却流体
を、前記冷却塔の放熱パイプを通過させた後に、各冷凍
サイクルの各蒸発器の複数台の一部を通過させ、あるい
は各蒸発器の複数の部屋の一部を通過させ、この通過さ
せた冷凍サイクルの順序とは逆の順序で、各冷凍サイク
ルの各蒸発器の複数台の他部を通過させ、あるいは複数
の部屋の他部を通過させることによって、上記目的を達
成したものである。
According to the present invention, there are provided a plurality of refrigeration cycles each of which passes a refrigerant in the order of a compressor, a condenser, an expansion valve and an evaporator, and then returns to the compressor. A water spray device for spraying water to the heat radiation pipe and each condenser, and a cooling tower having a fan for blowing air to the heat radiation pipe and each condenser, a plurality of evaporators are provided for each refrigeration cycle, Alternatively, the passage through which the fluid to be cooled of each evaporator passes is divided into a plurality of rooms, and after the fluid to be cooled is passed through the radiating pipe of the cooling tower, a part of the plurality of evaporators of each refrigeration cycle is provided. Or passing a part of the plurality of rooms of each evaporator, and passing the other parts of the plurality of evaporators of each refrigeration cycle in the reverse order of the refrigeration cycle passed. Or through other parts of multiple rooms By, in which to achieve the above objects.

【0009】[0009]

【作用】各冷凍サイクルはいずれも、比較的高温の被冷
却流体を冷却する蒸発器あるいは部屋と、比較的低温の
被冷却流体を冷却する蒸発器あるいは部屋との組を有す
るから、各冷凍サイクル相互間の被冷却流体の平均温度
が均衡し、したがって負荷はほぼ均衡する。またいかな
る負荷状態においても、各冷凍サイクルの各蒸発器は、
冷却装置出口の被冷却流体の温度よりも低く被冷却流体
を冷却しはしないから、低負荷時の冷却効率の低下は最
小限にとどめられる。
Each refrigeration cycle has a set of an evaporator or a room for cooling a relatively high temperature fluid to be cooled and an evaporator or a room for cooling a relatively low temperature fluid to be cooled. The average temperature of the fluid to be cooled between each other is balanced, so that the load is substantially balanced. In any load condition, each evaporator of each refrigeration cycle
Since the cooling target fluid is not cooled below the temperature of the cooling target fluid at the cooling device outlet, the decrease in the cooling efficiency at a low load is minimized.

【0010】[0010]

【第1実施例】本発明を図面によって説明する。図1は
本発明の第1実施例を示す系統図であり、この冷却装置
は4台の冷凍サイクルA,B,C及びDと、1台の冷却
塔50とからなる。
[First Embodiment] The present invention will be described with reference to the drawings. FIG. 1 is a system diagram showing a first embodiment of the present invention. This cooling device comprises four refrigeration cycles A, B, C and D and one cooling tower 50.

【0011】冷凍サイクルAは、圧縮機11、凝縮器1
2、高温側膨張弁13、低温側膨張弁14、高温側蒸発
器A1及び低温側蒸発器A2とからなり、本実施例では
高温側膨張弁13及び低温側膨張弁14は、図2に示す
ようにそれぞれ高温側キャピラリーチューブ及び低温側
キャピラリーチューブによって構成されている。また配
管構成は、冷媒を圧縮機11及び凝縮器12の順に通過
させた後に分流し、一方は高温側膨張弁13及び高温側
蒸発器A1チューブ側の順に通過させ、他方を低温側膨
張弁14及び低温側蒸発器A2チューブ側の順に通過さ
せ、しかる後両冷媒を合流させて圧縮機11に戻すよう
に構成されている。
The refrigerating cycle A includes a compressor 11 and a condenser 1
2, the high temperature side expansion valve 13, the low temperature side expansion valve 14, the high temperature side evaporator A1 and the low temperature side evaporator A2. In this embodiment, the high temperature side expansion valve 13 and the low temperature side expansion valve 14 are shown in FIG. As described above, each is constituted by a high-temperature side capillary tube and a low-temperature side capillary tube. The piping configuration is such that the refrigerant passes through the compressor 11 and the condenser 12 in this order and then branches, one passes through the high temperature side expansion valve 13 and the high temperature side evaporator A1 tube side, and the other passes through the low temperature side expansion valve 14. Then, the refrigerant is passed in the order of the low-temperature side evaporator A2 tube side, and then the two refrigerants are combined and returned to the compressor 11.

【0012】冷凍サイクルB,C及びDは、冷凍サイク
ルAと同様に構成されているが、膨張弁を構成するキャ
ピラリーチューブの本数については各々若干異なってお
り、それについては後記する。
The refrigerating cycles B, C and D are constructed in the same manner as the refrigerating cycle A, but differ slightly in the number of capillary tubes constituting the expansion valve, which will be described later.

【0013】冷却塔50は、放熱パイプ51と、この放
熱パイプ51と各冷凍サイクルの各凝縮器12,22,
32及び42に散水する散水装置と、放熱パイプ51と
各冷凍サイクルの各凝縮器12,22,32及び42に
送風するファン55とからなり、ファン55はモータ5
6によって回転駆動されている。また散水装置は、放熱
パイプ51の上方に設けた散水部60と、放熱パイプ5
1の下方に設けた水溜61と、水溜61の水を集める受
水槽62と、受水槽62内の水を散水部60に送水する
ポンプ63及び配管64とからなっている。
The cooling tower 50 includes a radiating pipe 51, and the radiating pipe 51 and the condensers 12, 22, and
A water sprinkling device for spraying water to the cooling water 32 and 42, a fan 55 for blowing air to the condensers 12, 22, 32 and 42 of each refrigeration cycle, and a fan 55
6 is rotationally driven. The water sprinkling device includes a water sprinkling section 60 provided above the heat radiating pipe 51 and a heat radiating pipe 5.
1 includes a water reservoir 61 provided below the water reservoir 61, a water receiving tank 62 for collecting water in the water reservoir 61, a pump 63 and a pipe 64 for supplying water in the water receiving tank 62 to the water sprinkling section 60.

【0014】他方被冷却流体は、入口配管1より本冷却
装置に流入し、ブースターポンプ2によって加圧された
後、放熱パイプ51、冷凍サイクルAの高温側蒸発器A
1シェル側、冷凍サイクルBの高温側蒸発器B1シェル
側、冷凍サイクルCの高温側蒸発器C1シェル側、冷凍
サイクルDの高温側蒸発器D1シェル側、冷凍サイクル
Dの低温側蒸発器D2シェル側、冷凍サイクルCの低温
側蒸発器C2シェル側、冷凍サイクルBの低温側蒸発器
B2シェル側、冷凍サイクルAの低温側蒸発器A2シェ
ル側の順に通過し、最後に循環ポンプ3によって再度加
圧されて出口配管4から流出する。
On the other hand, the fluid to be cooled flows into the present cooling device from the inlet pipe 1 and is pressurized by the booster pump 2, after which the heat radiation pipe 51 and the high-temperature side evaporator A of the refrigeration cycle A are used.
1 shell side, high temperature side evaporator B1 shell side of refrigeration cycle B, high temperature side evaporator C1 shell side of refrigeration cycle C, high temperature side evaporator D1 shell side of refrigeration cycle D, low temperature side evaporator D2 shell of refrigeration cycle D Side, the low-temperature side evaporator C2 shell side of the refrigeration cycle C, the refrigeration cycle B low-temperature evaporator B2 shell side, and the refrigeration cycle A low-temperature evaporator A2 shell side. It is pressurized and flows out of the outlet pipe 4.

【0015】本実施例は以上のように構成されており、
いま被冷却流体の流量をQ(m3/min)一定とし、
各冷凍サイクルの各蒸発器はQ(m3/min)の被冷
却流体を1℃だけ冷却できる能力を持つとし、この冷凍
サイクルによって被冷却流体の出口温度を24℃一定に
冷却する場合を見る。
This embodiment is configured as described above.
Now, assuming that the flow rate of the fluid to be cooled is constant at Q (m 3 / min),
It is assumed that each evaporator of each refrigeration cycle has a capability of cooling the fluid to be cooled of Q (m 3 / min) by 1 ° C., and the case where the refrigeration cycle cools the outlet temperature of the fluid to be cooled to 24 ° C. .

【0016】先ず放熱パイプ51を出た被冷却流体Wの
温度が32℃のときには、図3に示すように全4台の冷
凍サイクルを運転すれば必要な冷却能力が得られ、この
とき各冷凍サイクルの各蒸発器に入る被冷却流体と出る
被冷却流体の温度は、図3のようになるから、その平均
温度は表1に示すようになる。なお表1には、前記した
冷凍サイクルを単に並列に並べたときと単に直列に並べ
たときの平均温度も示した。
First, when the temperature of the fluid W to be cooled exiting the heat radiating pipe 51 is 32 ° C., the necessary cooling capacity can be obtained by operating all four refrigeration cycles as shown in FIG. The temperatures of the cooled fluid entering and leaving the evaporators in the cycle are as shown in FIG. 3, and the average temperatures are as shown in Table 1. Table 1 also shows average temperatures when the refrigeration cycles were simply arranged in parallel and when simply arranged in series.

【0017】[0017]

【表1】 [Table 1]

【0018】次に放熱パイプ51を出た被冷却流体Wの
温度が28℃に低下したときには、図4に示すように2
台、例えば冷凍サイクルC及びDを運転すれば必要な冷
却能力が得られ、このとき冷凍サイクルC及びDの各蒸
発器に入る被冷却流体と出る被冷却流体の温度は、図4
のようになるから、その平均温度は表2に示すようにな
る。
Next, when the temperature of the fluid to be cooled W that has exited the heat radiating pipe 51 has dropped to 28 ° C., as shown in FIG.
The required cooling capacity can be obtained by operating the stage, for example, the refrigeration cycles C and D. At this time, the temperature of the fluid to be cooled and the temperature of the fluid to be cooled entering each evaporator of the refrigeration cycles C and D are as shown in FIG.
Therefore, the average temperature is as shown in Table 2.

【0019】[0019]

【表2】 [Table 2]

【0020】表1及び表2より明らかなように、本実施
例では運転中の冷凍サイクルの被冷却流体の平均温度
は、各冷凍サイクル相互間で均等であり、すなわち単に
直列に並べたときに比べて負荷の均一化が図られている
と同時に、個々の冷凍サイクルについては、低負荷時で
の平均温度が各冷凍サイクルを並列に並べたときよりも
高温であるため、並列に並べたときに比べて低負荷時の
冷却効率の悪化は最小限にとどめられ、冷却効率が高
い。
As is clear from Tables 1 and 2, in this embodiment, the average temperature of the fluid to be cooled in the refrigeration cycle during operation is equal among the refrigeration cycles, that is, when the refrigeration cycle is simply arranged in series. At the same time, the load is made more uniform, and at the same time, when the individual refrigeration cycles are arranged in parallel because the average temperature at low load is higher than when each refrigeration cycle is arranged in parallel The deterioration of the cooling efficiency at a low load is minimized and the cooling efficiency is high.

【0021】次に本実施例ではキャピラリーチューブと
蒸発器とを冷媒が分流しており、その分岐点すなわち高
温側キャピラリーチューブ入口と低温側キャピラリーチ
ューブ入口とでは、両者の圧力は当然に等しい。その合
流点すなわち高温側蒸発器出口と低温側蒸発器出口とで
も、両者の圧力は当然に等しいことが必要である。他
方、高温側と低温側とで、キャピラリーチューブと蒸発
器の構成を同一とすると、高温側蒸発器では冷媒はより
多く蒸発するから流路抵抗がより大きく、したがって流
量がより小さくなって冷却能力もより小さくなり、低温
側蒸発器では冷媒はより少なく蒸発するから流路抵抗が
より小さく、したがって流量がより大きくなって冷却能
力もより大きくなる。しかも高温側の流路抵抗と低温側
の流路抵抗との差は、冷凍サイクルAほど大きく、冷凍
サイクルDでは余り大きくはない。この結果被冷却流体
は、冷凍サイクルAの高温側蒸発器A1より順次冷凍サ
イクルDの高温側蒸発器D1に至り、冷凍サイクルDの
低温側蒸発器D2より順次冷凍サイクルAの低温側蒸発
器A2に戻る過程において、最初のうちは余り冷却され
ず、だんだん冷却され、最後は大きく冷却されることと
なり、すなわち表1に示すように完全に線形には冷却さ
れない。したがって冷凍サイクルAの平均温度はより低
くなり、冷凍サイクルDの平均温度はより高くなって、
各冷凍サイクル毎の負荷の均等化が若干とはいえ悪化す
る。
Next, in this embodiment, the refrigerant is diverted between the capillary tube and the evaporator. At the branch point, that is, at the inlet of the high-temperature capillary tube and the inlet of the low-temperature capillary tube, the pressures of both are naturally equal. At the junction, that is, at the outlet of the high-temperature side evaporator and the outlet of the low-temperature side evaporator, it is necessary that the pressures of both are naturally equal. On the other hand, if the configuration of the capillary tube and the evaporator are the same on the high-temperature side and the low-temperature side, the refrigerant will evaporate more in the high-temperature side evaporator, so the flow path resistance will be larger, so the flow rate will be smaller and the cooling capacity will be lower. In the low-temperature side evaporator, the refrigerant evaporates less, so that the flow path resistance is smaller, so that the flow rate is larger and the cooling capacity is larger. Moreover, the difference between the flow path resistance on the high temperature side and the flow path resistance on the low temperature side is as large as in the refrigeration cycle A, and not so large in the refrigeration cycle D. As a result, the fluid to be cooled sequentially reaches the high-temperature side evaporator D1 of the refrigeration cycle D from the high-temperature side evaporator A1 of the refrigeration cycle A, and sequentially starts from the low-temperature side evaporator D2 of the refrigeration cycle D. In the process of returning to the above, the cooling is not so much at first, gradually cooled, and finally cooled greatly, that is, it is not completely linearly cooled as shown in Table 1. Therefore, the average temperature of the refrigeration cycle A is lower, the average temperature of the refrigeration cycle D is higher,
The equalization of the load for each refrigeration cycle is slightly degraded.

【0022】そこで各冷凍サイクル毎の負荷の均等化を
一層達成しようとするには、高温側の流路抵抗を低温側
の流路抵抗よりも小さくし、且つ冷凍サイクルAほど両
者の差を大きくする必要がある。この場合、例えば全8
台の蒸発器を異なって形成するのは困難であり、全8個
のキャピラリーチューブを異なって形成する方が簡単で
ある。すなわち第X(X=A〜D)冷凍サイクルの高温
側キャピラリーチューブの本数と低温側キャピラリーチ
ューブの本数を、それぞれIX1とIX2としたとき、 IA1>IB1>IC1>ID1>ID2>IC2>IB2>IA2 となるように、あるいは少なくとも, IA1≧IB1≧IC1≧ID1≧ID2≧IC2≧IB2≧IA2 となるように形成することが好ましい。そこで本実施例
ではキャピラリーチューブの本数を表3に示すように構
成している。
Therefore, in order to further equalize the load for each refrigeration cycle, the flow path resistance on the high temperature side is made smaller than the flow path resistance on the low temperature side, and the difference between the two is larger in the refrigeration cycle A. There is a need to. In this case, for example, all 8
It is difficult to make the stage evaporators differently, and it is easier to make all eight capillary tubes differently. That the number of number and the low temperature side capillary tube of the X (X = A~D) high temperature side capillary tube of the refrigeration cycle, when the I X1 and I X2 respectively, I A1> I B1> I C1> I D1> It can be formed so that I D2 > I C2 > I B2 > I A2 or at least I A1 ≧ I B1 ≧ I C1 ≧ I D1 ≧ I D2 ≧ I C2 ≧ I B2 ≧ I A2. preferable. Therefore, in this embodiment, the number of the capillary tubes is configured as shown in Table 3.

【0023】[0023]

【表3】 [Table 3]

【0024】なお表3に示すように、冷凍サイクルDで
は高温側キャピラリーチューブの本数と低温側キャピラ
リーチューブの本数とが等しいが、これはキャピラリー
チューブの本数はディスクリートにしか変えられないか
らである。高温側の流路抵抗を低温側の流路抵抗よりも
小さくし、且つ冷凍サイクルAほど両者の差を大きくす
るためには、キャピラリーチューブの長さを変えても良
い。すなわち第X(X=A〜D)冷凍サイクルの高温側
キャピラリーチューブの長さと低温側キャピラリーチュ
ーブの長さを、それぞれLX1とLX2としたとき、 LA1>LB1>LC1>LD1>LD2>LC2>LB2>LA2 となるように、あるいは少なくとも, LA1≧LB1≧LC1≧LD1≧LD2≧LC2≧LB2≧LA2 となるように形成することが好ましい。このときには流
路抵抗を連続的に変えられるという利点がある。
As shown in Table 3, in the refrigerating cycle D, the number of the high-temperature side capillary tubes is equal to the number of the low-temperature side capillary tubes, because the number of the capillary tubes can be changed only to discrete. In order to make the flow path resistance on the high-temperature side smaller than the flow path resistance on the low-temperature side, and to increase the difference between the two in the refrigeration cycle A, the length of the capillary tube may be changed. That is, assuming that the length of the high-temperature side capillary tube and the length of the low-temperature side capillary tube of the Xth (X = A to D) refrigeration cycle are L X1 and L X2 respectively, L A1 > L B1 > L C1 > L D1 > L D2 > L C2 > L B2 > L A2 , or at least, L A1 ≧ L B1 ≧ L C1 ≧ L D1 ≧ L D2 ≧ L C2 ≧ L B2 ≧ L A2 Is preferred. At this time, there is an advantage that the flow path resistance can be continuously changed.

【0025】[0025]

【第2実施例】上記第1実施例では各冷凍サイクルの膨
張弁と蒸発器の個数Mは、M=2であったが、次に第2
実施例としてM=4のときについて述べる。但し冷凍サ
イクルの台数については上記実施例と同様に4台とす
る。このときには図5に示すように、冷却塔の放熱パイ
プを出た被冷却流体Wを、各冷凍サイクルの第1蒸発器
を通過させ、該第1蒸発器を通過させた冷凍サイクルの
順序とは逆の順序で各冷凍サイクルの第2蒸発器を通過
させ、各冷凍サイクルの第3蒸発器を通過させ、該第3
蒸発器を通過させた冷凍サイクルの順序とは逆の順序で
各冷凍サイクルの第4蒸発器を通過させる。すなわち被
冷却流体は表4中の数字の順番に従って当該蒸発器を通
過する。なお第3蒸発器を通過させる順序は、第1蒸発
器を通過させた順序とは全く無関係に新たに順序付ける
ことができ、したがって表5のように被冷却流体を通過
させることも不可能ではない。
Second Embodiment In the first embodiment, the number M of expansion valves and evaporators in each refrigeration cycle is M = 2.
A case where M = 4 will be described as an embodiment. However, the number of refrigeration cycles is four as in the above embodiment. At this time, as shown in FIG. 5, the fluid to be cooled W that has exited the heat radiating pipe of the cooling tower is passed through the first evaporator of each refrigeration cycle, and the order of the refrigeration cycle passed through the first evaporator is as follows. Pass through the second evaporator of each refrigeration cycle in reverse order, pass through the third evaporator of each refrigeration cycle,
Pass through the fourth evaporator of each refrigeration cycle in the reverse order of the refrigeration cycle passed through the evaporator. That is, the fluid to be cooled passes through the evaporator according to the numerical order in Table 4. Note that the order of passing through the third evaporator can be newly set completely independently of the order of passing through the first evaporator. Therefore, as shown in Table 5, it is not possible to pass the fluid to be cooled. Absent.

【0026】[0026]

【表4】 [Table 4]

【0027】[0027]

【表5】 [Table 5]

【0028】しかして全16台の蒸発器のうち、1番目
の蒸発器の被冷却流体の入口温度は先の実施例と同様に
32℃であり、16番目の蒸発器の出口温度は24℃で
あり、したがって各蒸発器では、 (32−24)/16=0.5(℃) だけ冷却されるから、m番目の蒸発器の入口温度は、 32−0.5×(m−1)(℃) であり、出口温度は、 32−0.5×m(℃) である。したがってm番目の蒸発器の平均温度は、 32−0.5×(m−1/2) =32.25−0.5×m(℃) である。したがって各冷凍サイクルの被冷却流体の平均
温度Tは、Σを当該冷凍サイクルの4個の蒸発器につい
ての総和として、 T=[Σ(32.25−0.5×m)]/4 =32.25−0.5×(Σm)/4(℃) となるが、Σmはいずれの冷凍サイクルについてもΣm
=34であるから、いずれの冷凍サイクルについてもそ
の平均温度Tは、T=28℃となって前記第1実施例と
同じになる。
Thus, of the 16 evaporators, the inlet temperature of the fluid to be cooled in the first evaporator is 32 ° C. as in the previous embodiment, and the outlet temperature of the 16th evaporator is 24 ° C. Therefore, since each evaporator is cooled by (32−24) /16=0.5 (° C.), the inlet temperature of the m-th evaporator is 32−0.5 × (m−1) (° C.) and the outlet temperature is 32-0.5 × m (° C.). Therefore, the average temperature of the m-th evaporator is 32-0.5 x (m-1 / 2) = 32.25-0.5 x m (° C). Therefore, the average temperature T of the fluid to be cooled in each refrigeration cycle is expressed as follows: T = [Σ (32.25−0.5 × m)] / 4 = 32 where と し て is the sum of the four evaporators of the refrigeration cycle. .25−0.5 × (Δm) / 4 (° C.), where Δm is Δm for any refrigeration cycle.
= 34, the average temperature T of any of the refrigeration cycles is T = 28 ° C., which is the same as in the first embodiment.

【0029】次いで1番目の蒸発器の被冷却流体の入口
温度が28℃に低下したときには、2台の冷凍サイクル
を停止し、運転している2台の冷凍サイクルの8台の蒸
発器のみについて、被冷却流体が通過する順番すなわち
冷却順序mをつけ直すと、表6のようになる。
Next, when the inlet temperature of the fluid to be cooled in the first evaporator drops to 28 ° C., the two refrigerating cycles are stopped, and only the eight evaporators of the two refrigerating cycles in operation are operated. Table 6 shows the order in which the fluid to be cooled passes, that is, the cooling order m.

【0030】[0030]

【表6】 [Table 6]

【0031】しかしてm番目の蒸発器の平均温度は、上
記と同様にして 28−0.5×(m−1/2) =28.25−0.5×m(℃) であり、各冷凍サイクルの被冷却流体の平均温度Tは、 T=[Σ(28.25−0.5×m)]/4 =28.25−0.5×(Σm)/4(℃) となるが、Σmはいずれの冷凍サイクルについてもΣm
=18であるから、いずれの冷凍サイクルについてもそ
の平均温度Tは、T=26℃となってこれも前記第1実
施例と同じとなる。すなわちM=2,4,8,……とし
ても結果はすべて前記第1実施例すなわちM=2のとき
と同じになる。
The average temperature of the m-th evaporator is 28-0.5.times. (M-1 / 2) = 28.25-0.5.times.m (.degree. C.) in the same manner as described above. The average temperature T of the fluid to be cooled in the refrigeration cycle is as follows: T = [Σ (28.25−0.5 × m)] / 4 = 28.25−0.5 × (Σm) / 4 (° C.) , Δm is Δm for any refrigeration cycle
= 18, the average temperature T of any of the refrigeration cycles is T = 26 ° C., which is the same as in the first embodiment. That is, even when M = 2, 4, 8,..., The results are all the same as in the first embodiment, that is, when M = 2.

【0032】[0032]

【第3実施例】次に第3実施例として、各冷凍サイクル
の膨張弁と蒸発器の個数Mを、M=3としたときには、
冷却塔の放熱パイプを出た被冷却流体を、表7に示すよ
うに各冷凍サイクルの第1蒸発器を通過させ、該第1蒸
発器を通過させた冷凍サイクルの順序とは逆の順序で各
冷凍サイクルの第2蒸発器を通過させ、各冷凍サイクル
の第3蒸発器を通過させる。各冷凍サイクルの第3蒸発
器を通過させる順序は、第1蒸発器を通過させた順序と
は無関係でよい。
Third Embodiment Next, as a third embodiment, when the number M of expansion valves and evaporators in each refrigeration cycle is M = 3,
The fluid to be cooled, which has passed through the cooling pipe of the cooling tower, is passed through the first evaporator of each refrigeration cycle as shown in Table 7, and the order of the refrigeration cycle passed through the first evaporator is reverse to the order of the refrigeration cycle. Pass through the second evaporator of each refrigeration cycle and pass through the third evaporator of each refrigeration cycle. The order of passing through the third evaporator of each refrigeration cycle may be independent of the order of passing through the first evaporator.

【0033】[0033]

【表7】 [Table 7]

【0034】しかして全12台の蒸発器の各々におい
て、被冷却流体は、 (32−24)/12=2/3(℃) だけ冷却され、m番目の蒸発器の入口温度は、 32−2/3×(m−1)(℃) であり、出口温度は、 32−2/3×m(℃) である。したがってm番目の蒸発器の平均温度は、 32−2/3×(m−1/2) =32+1/3−2/3×m(℃) である。したがって各冷凍サイクルの被冷却流体の平均
温度Tは、Σを当該冷凍サイクルの3個の蒸発器につい
ての総和として、 T=[Σ(32+1/3−2/3×m)]/3 =32+1/3−2/3×(Σm)(℃) となるが、Σmは各冷凍サイクルについて異なってお
り、冷凍サイクルX(X=A〜D)の平均温度TXは、 TA=28.3℃、 TB=28.1℃ TC=27.9℃、 TD=27.7℃ となって、冷凍サイクル相互間の負荷は均等とはならな
い。1番目の蒸発器の被冷却流体の入口温度が28℃に
低下したときも同様である。
Thus, in each of the twelve evaporators, the fluid to be cooled is cooled by (32-24) / 12 = 2/3 (° C.), and the inlet temperature of the m-th evaporator becomes 32- 2/3 × (m−1) (° C.), and the outlet temperature is 32−2 / 3 × m (° C.). Therefore, the average temperature of the m-th evaporator is 32−2 / 3 × (m−1 / 2) = 32 +/− 2/3 × m (° C.). Therefore, the average temperature T of the fluid to be cooled in each refrigeration cycle is represented by the following equation: Σ is the sum of the three evaporators of the refrigeration cycle, and T = [Σ (32 + 1 / 3-2 / 3 × m)] / 3 = 32 + 1 / 3-2 / 3 × (Σm) (℃) and becomes, .SIGMA.m is different for each refrigeration cycle, the average temperature T X of the refrigeration cycle X (X = A~D) is, T a = 28.3 ℃, T B = 28.1 ℃ T C = 27.9 ℃, becomes T D = 27.7 ℃, load between the refrigeration cycle cross is not a uniform. The same applies when the inlet temperature of the fluid to be cooled in the first evaporator is reduced to 28 ° C.

【0035】すなわちMが奇数のときには、各冷凍サイ
クル毎の被冷却流体が通過する蒸発器の順番の総和Σm
を、互いに等しくすることができないから、冷凍サイク
ル相互間の負荷は均等とはならないが、その不均等の程
度は、冷凍サイクルを単に直列に並べたときと比較すれ
ば低減される。その理由はM=3のときには、第1蒸発
器と第2蒸発器については均等となっており、第3蒸発
器のみが不均等をもたらしているからである。したがっ
てMをM=3,5,7,……と奇数で大きくするに従っ
て不均衡の程度は低下し、ついにはMが偶数のとき、す
なわちM=2のときと同じになる。
That is, when M is an odd number, the sum of the order of the evaporators through which the fluid to be cooled passes in each refrigerating cycle, Δm
Are not equal to each other, the load between the refrigeration cycles is not equal, but the degree of the unevenness is reduced as compared with when the refrigeration cycles are simply arranged in series. The reason is that when M = 3, the first and second evaporators are equal, and only the third evaporator causes unevenness. Therefore, the degree of imbalance decreases as M is increased as M = 3, 5, 7,..., Oddly, and finally becomes the same as when M is even, that is, when M = 2.

【0036】以上のようにM=1のとき、すなわち単に
直列に並べたときには冷凍サイクル相互間の負荷は不均
衡であり、M=2のときは均等となり、M=3のときに
は不均等の部分は第3蒸発器の部分だけに減り、M=4
のときにはM=2と同じであり、M=5のときには不均
等の部分は第5蒸発器の部分だけに減り、M=6のとき
にはM=2と同じこととなる。
As described above, when M = 1, that is, when the refrigeration cycles are simply arranged in series, the loads between the refrigeration cycles are unbalanced. When M = 2, the loads are equal. Is reduced only to the third evaporator, and M = 4
In the case of M = 2, it is the same as M = 2. When M = 5, the unequal portion is reduced to only the fifth evaporator, and when M = 6, it becomes the same as M = 2.

【0037】[0037]

【第4実施例】次に以上の各実施例では、被冷却流体の
全流量Qがすべての蒸発器を順次通過していた。そこで
表4及び図5に示した前記第2実施例について、被冷却
流体を半分に分けて全16個の蒸発器に順次通過させた
第4実施例を、図6に示す。このように形成すると被冷
却流体の流路抵抗が減って好ましい。
Fourth Embodiment Next, in each of the above embodiments, the entire flow rate Q of the fluid to be cooled sequentially passed through all the evaporators. FIG. 6 shows a fourth embodiment of the second embodiment shown in Table 4 and FIG. 5 in which the fluid to be cooled is divided in half and sequentially passed through all 16 evaporators. Such a configuration is preferable because the flow path resistance of the fluid to be cooled is reduced.

【0038】[0038]

【第5実施例】次に以上の第1〜第4実施例では、各蒸
発器の被冷却流体を通過させる通路は1室であったが、
各蒸発器を複数台ないしは偶数台設ける代わりに、各蒸
発器のの被冷却流体が通過する通路を複数個ないしは偶
数個の部屋に分割して、上記各実施例と同様の効果を得
ることができる。先ず図7に示す第5実施例では、4台
の冷凍サイクルA,B,C及びDは、それぞれ1台の蒸
発器A1,B1,C1及びD1を持つが、各蒸発器の被
冷却流体が通過するシェル側は2個の部屋に分割されて
おり、被冷却流体Wは先ず冷凍サイクルAの蒸発器A1
シェル側の一方の部屋A1aを通過し、冷凍サイクルB
の蒸発器B1シェル側の一方の部屋B1aを通過し、同
様にして最後に冷凍サイクルDの蒸発器D1シェル側の
一方の部屋D1aを通過し、しかる後冷凍サイクルDの
蒸発器D1シェル側の他方の部屋D1bを通過し、同様
にして最後に冷凍サイクルAの蒸発器A1シェル側の他
方の部屋A1bを通過する。このように形成しても前記
各実施例と同様の効果を得ることができる。
Fifth Embodiment In the first to fourth embodiments, the passage for passing the fluid to be cooled in each evaporator is one chamber.
Instead of providing a plurality of or even number of evaporators, the passage through which the fluid to be cooled of each evaporator passes may be divided into a plurality of or even number of rooms to obtain the same effects as those of the above embodiments. it can. First, in the fifth embodiment shown in FIG. 7, each of the four refrigeration cycles A, B, C and D has one evaporator A1, B1, C1 and D1, but the fluid to be cooled in each evaporator is The shell side that passes is divided into two rooms, and the fluid W to be cooled is first supplied to the evaporator A1 of the refrigeration cycle A.
After passing through one room A1a on the shell side, the refrigeration cycle B
Pass through one room B1a on the evaporator B1 shell side, and finally pass through one room D1a on the evaporator D1 shell side of the refrigeration cycle D. It passes through the other room D1b, and finally passes through the other room A1b on the evaporator A1 shell side of the refrigeration cycle A in the same manner. Even when formed in this way, the same effects as in the above embodiments can be obtained.

【0039】[0039]

【第6実施例】次に図8は第6実施例を示し、この実施
例では3台の冷凍サイクルA,B及びCを有し、各冷凍
サイクルはそれぞれ2台の蒸発器A1,A2;B1,B
2;C1,C2を有し、各々の蒸発器の被冷却流体が通
過するシェル側は4個の部屋(蒸発器A1についてはA
1a,A1b,A1c及びA1d)に分割されており、
それぞれの部屋は高温側の2個の部屋(a,b)と低温
側の2個の部屋(c,d)とに選択されている。そして
被冷却流体Wは2分割されて高温側の2個の部屋(a,
b)を並列に通過し、その後ヘッダーで一度合流した後
再度2分割され、高温側の2個の部屋(a,b)を通過
した冷凍サイクルとは逆の順序で、低温側の2個の部屋
(c,d)を並列に通過する。本実施例では各冷凍サイ
クルにおける蒸発器の個数は2台であったが、1台であ
ってもまた3台であっても良い。また各蒸発器の被冷却
流体が通過する通路は4個の部屋に分割されていたが、
2個に分割されていても良いし、各冷凍サイクルの負荷
の均等化の達成度合いが若干低くはなるが、3個の部屋
に分割されていても良い。
Sixth Embodiment Next, FIG. 8 shows a sixth embodiment, which has three refrigeration cycles A, B and C, each refrigeration cycle having two evaporators A1, A2; B1, B
2; C1, C2, and four shells (the evaporator A1 has A
1a, A1b, A1c and A1d),
Each room is selected as two rooms (a, b) on the high temperature side and two rooms (c, d) on the low temperature side. The fluid to be cooled W is divided into two and the two high-temperature rooms (a,
b) in parallel, then merged once at the header, then split again into two, and in the reverse order of the refrigeration cycle that passed through the two high-temperature rooms (a, b), the two on the low-temperature side Pass through the rooms (c, d) in parallel. In the present embodiment, the number of evaporators in each refrigeration cycle is two, but may be one or three. Also, the passage through which the fluid to be cooled of each evaporator passed was divided into four rooms,
The refrigeration cycle may be divided into two, or the degree of achievement of equalizing the load of each refrigeration cycle may be slightly lower, but may be divided into three rooms.

【0040】[0040]

【第7実施例】最後に第7実施例を図9に示す。前記第
3実施例では各冷凍サイクル毎の蒸発器の個数が奇数の
ときには、各冷凍サイクル毎の負荷を完全には均一にで
きなかったが、蒸発器の個数が奇数のときでも、各冷凍
サイクル毎の1台の蒸発器について、被冷却流体が通過
する通路を偶数個の部屋に分割すれば、各冷凍サイクル
毎の負荷を均一にすることができる。すなわち図9にお
いて各冷凍サイクルA,B,C及びDは5台の蒸発器
(冷凍サイクルAについてはA1,A2,A3,A4及
びA5)を有し、そのうち第3蒸発器A3,B3,C3
及びD3の被冷却流体が通過する通路は2個の部屋(蒸
発器A3についてはA3aとA3b)に分割されてい
る。但し図9では、第3蒸発器以外のすべての蒸発器も
同一の構成とするために、被冷却流体が通過する通路を
2個の部屋に分割している。被冷却流体Wは先ず5分割
されて、各冷凍サイクルの第1及び第2蒸発器の2個の
部屋(a,b)と第3蒸発器の1個の部屋(a)とを並
列に通過し、その後ヘッダーで一度合流した後再度5分
割され、各冷凍サイクルを通過した順序とは逆の順序
で、各冷凍サイクルの第3蒸発器の残りの1個の部屋
(b)と第4及び第5蒸発器の2個の部屋(a,b)と
を並列に通過する。このように形成しても前記各実施例
と同様の効果を得ることができる。
Seventh Embodiment Finally, FIG. 9 shows a seventh embodiment. In the third embodiment, when the number of evaporators for each refrigeration cycle was odd, the load for each refrigeration cycle could not be completely uniform. However, even when the number of evaporators was odd, each refrigeration cycle If the passage through which the fluid to be cooled passes is divided into an even number of rooms for each one evaporator, the load for each refrigeration cycle can be made uniform. That is, in FIG. 9, each refrigeration cycle A, B, C and D has five evaporators (A1, A2, A3, A4 and A5 for the refrigeration cycle A), of which the third evaporators A3, B3 and C3 are provided.
The passage through which the fluid to be cooled passes is divided into two rooms (A3a and A3b for the evaporator A3). However, in FIG. 9, the passage through which the fluid to be cooled passes is divided into two rooms so that all the evaporators other than the third evaporator have the same configuration. The fluid to be cooled W is first divided into five, and passes in parallel through two rooms (a, b) of the first and second evaporators and one room (a) of the third evaporator of each refrigeration cycle. Then, they are merged once at the header and then divided again into five, and in the reverse order to the order of passing through each refrigeration cycle, the remaining one room (b) of the third evaporator of each refrigeration cycle and the fourth and fourth chambers It passes through two rooms (a, b) of the fifth evaporator in parallel. Even when formed in this way, the same effects as in the above embodiments can be obtained.

【0041】[0041]

【発明の効果】以上述べたように本発明は、各冷凍サイ
クルに蒸発器を偶数台設け、あるいは各蒸発器の被冷却
流体が通過する通路を偶数個の部屋に分割し、且つ被冷
却流体を、各冷凍サイクルの各蒸発器の偶数台の半分を
通過させ、あるいは各蒸発器の偶数個の部屋の半分を通
過させ、この通過させた冷凍サイクルの順序とは逆の順
序で、各冷凍サイクルの各蒸発器の偶数台の残りの半分
を通過させ、あるいは各蒸発器の偶数個の部屋の残りの
半分を通過させることを特徴とするから、各冷凍サイク
ルの負荷の均一化を図ることができる。また各冷凍サイ
クルの蒸発器の台数と各蒸発器の被冷却流体が通過する
通路の個数とが共に奇数のときであっても、各冷凍サイ
クルの負荷の均一化を一定限度図ることができる。
As described above, according to the present invention, an even number of evaporators are provided in each refrigeration cycle, or the passage through which the fluid to be cooled of each evaporator passes is divided into an even number of chambers, and the fluid to be cooled is provided. Through each half of each evaporator of each refrigeration cycle, or through half of the even number of rooms of each evaporator, and reverse each refrigeration cycle in the reverse order of the refrigeration cycle. Equalize the load of each refrigeration cycle because it is characterized by passing the other half of the even number of each evaporator in the cycle or the other half of the even number of rooms of each evaporator. Can be. Further, even when the number of evaporators in each refrigeration cycle and the number of passages through which the fluid to be cooled in each evaporator is an odd number, the load of each refrigeration cycle can be made uniform to a certain extent.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1実施例を示す系統図FIG. 1 is a system diagram showing a first embodiment of the present invention.

【図2】該実施例の膨張弁を示す正面図FIG. 2 is a front view showing the expansion valve of the embodiment.

【図3】該実施例の全負荷運転時の要部の温度分布図FIG. 3 is a temperature distribution diagram of main parts during full load operation of the embodiment.

【図4】該実施例の半負荷運転時の要部の温度分布図FIG. 4 is a temperature distribution diagram of main parts during half-load operation of the embodiment.

【図5】第2実施例を示す要部系統図FIG. 5 is a main part system diagram showing a second embodiment.

【図6】第4実施例を示す要部系統図FIG. 6 is a main part system diagram showing a fourth embodiment.

【図7】第5実施例を示す要部系統図FIG. 7 is a main part system diagram showing a fifth embodiment.

【図8】第6実施例を示す要部系統図FIG. 8 is a main part system diagram showing a sixth embodiment.

【図9】第7実施例を示す要部系統図FIG. 9 is a main part system diagram showing a seventh embodiment.

【図10】従来例より容易に考えられる冷却装置の全負
荷運転時の要部の温度分布図
FIG. 10 is a temperature distribution diagram of a main part during full load operation of the cooling device which can be considered more easily than the conventional example.

【図11】該冷却装置の半負荷運転時の要部の温度分布
FIG. 11 is a temperature distribution diagram of a main part of the cooling device during a half-load operation.

【図12】従来例より容易に考えられる別の冷却装置の
全負荷運転時の要部の温度分布図
FIG. 12 is a temperature distribution diagram of a main part of another cooling device during full load operation, which can be considered more easily than the conventional example.

【図13】該冷却装置の半負荷運転時の要部の温度分布
FIG. 13 is a temperature distribution diagram of a main part of the cooling device during a half-load operation.

【符号の説明】[Explanation of symbols]

A,B,C,D:冷凍サイクル A1,A2,…,
D1,D2,…:蒸発器 A1a,A1b,……:部屋 W:被冷却流体 1:入口配管 2:ブースターポンプ 3:循環ポ
ンプ 4:出口配管 11,21,31,41:圧縮機 12,22,
32,42:凝縮器 13,14,15,16,…,43,44,…:膨張弁 50:冷却塔 51:放熱パイプ 55:ファン
56:モータ 60:散水部 61:水溜 62:受水槽 6
3:ポンプ 64:配管
A, B, C, D: refrigeration cycle A1, A2, ...,
D1, D2, ...: Evaporators A1a, A1b, ...: Room W: Cooled fluid 1: Inlet piping 2: Booster pump 3: Circulation pump 4: Outlet piping 11, 21, 31, 41: Compressors 12, 22 ,
32, 42: condensers 13, 14, 15, 16, ..., 43, 44, ...: expansion valves 50: cooling towers 51: radiating pipes 55: fans
56: motor 60: water sprinkling part 61: water reservoir 62: water receiving tank 6
3: Pump 64: Piping

Claims (9)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】それぞれ圧縮機、凝縮器、2N(Nは自然
数)台の膨張弁、及び2N台の蒸発器を有し、前記圧縮
機及び凝縮器の順に冷媒を通過させた後に該冷媒を前記
2N個の流れに分流し、各冷媒を各々の膨張弁及び蒸発
器の順に通過させ、しかる後各冷媒を合流させて前記圧
縮機に戻してなる冷凍サイクルを複数台設け、放熱パイ
プと、該放熱パイプと前記各凝縮器とに散水する散水装
置と、前記放熱パイプと前記各凝縮器とに送風するファ
ンとを有する冷却塔を設け、被冷却流体を、前記冷却塔
の放熱パイプを通過させた後に、第i蒸発器(i=1〜
2N)毎に各冷凍サイクルの当該蒸発器を通過させ、且
つ各冷凍サイクルの第2n−1蒸発器(n=1〜N)を
通過させた冷凍サイクルの順序とは逆の順序で、各冷凍
サイクルの第2n蒸発器を通過させた冷却装置。
1. A compressor, a condenser, 2N (N is a natural number) expansion valves, and 2N evaporators, respectively. After passing the refrigerant in the order of the compressor and the condenser, the refrigerant is cooled. Dividing into the 2N flows, passing each refrigerant in the order of each expansion valve and the evaporator, and thereafter providing a plurality of refrigeration cycles for returning each refrigerant to the compressor by merging each refrigerant, A cooling tower having a water spray device for spraying water to the heat radiating pipe and each condenser, and a fan for blowing air to the heat radiating pipe and each condenser is provided, and a fluid to be cooled passes through the heat radiating pipe of the cooling tower. After that, the ith evaporator (i = 1 to 1)
2N), the refrigeration cycle is passed through the evaporator of each refrigeration cycle and passed through the 2n-1 evaporator (n = 1 to N) of each refrigeration cycle in the reverse order of the refrigeration cycle. Cooling device passed through the second n evaporator of the cycle.
【請求項2】前記被冷却流体を、前記冷却塔の放熱パイ
プを通過させた後に、各冷凍サイクルの第1〜N蒸発器
を通過させ、この通過させた冷凍サイクルの順序とは逆
の順序で、各冷凍サイクルの第N+1〜2N蒸発器を通
過させた請求項1記載の冷却装置。
2. The cooling fluid is passed through a radiating pipe of the cooling tower, and then passed through the first to N evaporators of each refrigeration cycle, and the order of the refrigeration cycle is reversed. 2. The cooling device according to claim 1, wherein the cooling device is passed through N + 1 to 2N evaporators of each refrigeration cycle.
【請求項3】それぞれ圧縮機、凝縮器、2N+1(Nは
自然数)台の膨張弁、及び2N+1台の蒸発器を有し、
前記圧縮機及び凝縮器の順に冷媒を通過させた後に該冷
媒を前記2N+1個の流れに分流し、各冷媒を各々の膨
張弁及び蒸発器の順に通過させ、しかる後各冷媒を合流
させて前記圧縮機に戻してなる冷凍サイクルを複数台設
け、放熱パイプと、該放熱パイプと前記各凝縮器とに散
水する散水装置と、前記放熱パイプと前記各凝縮器とに
送風するファンとを有する冷却塔を設け、被冷却流体
を、前記冷却塔の放熱パイプを通過させた後に、第i蒸
発器(i=1〜2N+1)毎に各冷凍サイクルの当該蒸
発器を通過させ、且つ各冷凍サイクルの第2n−1蒸発
器(n=1〜N)を通過させた冷凍サイクルの順序とは
逆の順序で、各冷凍サイクルの第2n蒸発器を通過させ
た冷却装置。
3. A compressor, a condenser, 2N + 1 (N is a natural number) expansion valves, and 2N + 1 evaporators, respectively.
After passing the refrigerant in the order of the compressor and the condenser, the refrigerant is divided into the 2N + 1 streams, each refrigerant is passed in the order of each expansion valve and the evaporator, and then the respective refrigerants are merged. A cooling system including a plurality of refrigeration cycles returned to the compressor, a radiating pipe, a water spray device for spraying water to the radiating pipe and the condensers, and a fan for blowing air to the radiating pipes and the condensers. A tower is provided, and after the fluid to be cooled passes through the radiating pipe of the cooling tower, the cooling fluid is passed through the evaporator of each refrigeration cycle for each i-th evaporator (i = 1 to 2N + 1). A cooling device that has passed through the 2n-th evaporator of each refrigeration cycle in a reverse order to the order of the refrigeration cycles that have passed through the 2n-1 evaporators (n = 1 to N).
【請求項4】前記各冷凍サイクルの各蒸発器のうち、少
なくとも第N+1蒸発器の被冷却流体が通過する通路を
偶数個の部屋に分割し、前記被冷却流体を、前記冷却塔
の放熱パイプを通過させた後に、各冷凍サイクルの第1
〜N蒸発器と第N+1蒸発器の前記偶数個の部屋の半分
とを通過させ、この通過させた冷凍サイクルの順序とは
逆の順序で、各冷凍サイクルの第N+1蒸発器の偶数個
の部屋の残りの半分と第N+2〜2N+1蒸発器とを通
過させた請求項3記載の冷却装置。
4. A passage through which at least the fluid to be cooled of the (N + 1) th evaporator among the evaporators of each of the refrigeration cycles is divided into an even number of chambers, and the fluid to be cooled is dissipated to a radiating pipe of the cooling tower. After passing through the first cycle of each refrigeration cycle.
NN and half of said even number of chambers of the (N + 1) th evaporator are passed through, and the even numbered chambers of the (N + 1) th evaporator of each refrigeration cycle are reversed in the reverse order of the refrigeration cycle passed through. 4. The cooling device according to claim 3, wherein the remaining half of the cooling water passes through the (N + 2) to (2N + 1) th evaporators.
【請求項5】それぞれ圧縮機、凝縮器、及び1又は複数
台の膨張弁と蒸発器との順に冷媒を通過させた後に前記
圧縮機に戻してなる冷凍サイクルを複数台設け、該各冷
凍サイクルの各蒸発器の被冷却流体が通過する通路を複
数の部屋に分割し、放熱パイプと、該放熱パイプと前記
各凝縮器とに散水する散水装置と、前記放熱パイプと前
記各凝縮器とに送風するファンとを有する冷却塔を設
け、被冷却流体を、前記冷却塔の放熱パイプを通過させ
た後に、各冷凍サイクルの各蒸発器の前記複数の部屋の
一部を通過させ、この通過させた冷凍サイクルの順序と
は逆の順序で、各冷凍サイクルの各蒸発器の複数の部屋
の残部を通過させた冷却装置。
5. A plurality of refrigeration cycles each comprising a compressor, a condenser, and one or more expansion valves and an evaporator, the refrigerant being passed in that order and returning to the compressor. The passage through which the fluid to be cooled of each evaporator passes is divided into a plurality of rooms, and a heat radiating pipe, a water spray device for watering the heat radiating pipe and each of the condensers, the heat radiating pipe and each of the condensers A cooling tower having a fan for blowing air is provided, and after the fluid to be cooled is passed through the heat radiation pipe of the cooling tower, the cooling fluid is passed through a part of the plurality of rooms of each evaporator of each refrigeration cycle, and passed therethrough. A cooling device that passes the remainder of the plurality of rooms of each evaporator in each refrigeration cycle in the reverse order of the refrigeration cycle.
【請求項6】前記各冷凍サイクルの各蒸発器の出口にお
ける冷媒の圧力が実質的に同じになる膨張弁とした請求
項1〜5のいずれか1項に記載の冷却装置。
6. The cooling device according to claim 1, wherein the expansion valve has a refrigerant pressure substantially equal at an outlet of each evaporator of each of the refrigeration cycles.
【請求項7】前記各冷凍サイクルの各膨張弁を、キャピ
ラリーチューブによって構成した請求項1〜6のいずれ
か1項に記載の冷却装置。
7. The cooling device according to claim 1, wherein each expansion valve of each refrigeration cycle is constituted by a capillary tube.
【請求項8】前記被冷却流体が各キャピラリーチューブ
を通過する順番における上位の順番のキャピラリーチュ
ーブの長さを、下位の順番のキャピラリーチューブの長
さよりも短く又は同じに形成した請求項7記載の冷却装
置。
8. The capillary tube according to claim 7, wherein the length of the upper-order capillary tube in the order in which the fluid to be cooled passes through each capillary tube is shorter than or equal to the length of the lower-order capillary tube. Cooling system.
【請求項9】前記被冷却流体が各キャピラリーチューブ
を通過する順番における上位の順番のキャピラリーチュ
ーブの本数を、下位の順番のキャピラリーチューブの本
数よりも多く又は同じに形成した請求項7記載の冷却装
置。
9. The cooling system according to claim 7, wherein the number of capillary tubes in the upper order in the order in which the fluid to be cooled passes through each capillary tube is larger than or equal to the number of capillary tubes in the lower order. apparatus.
JP3074821A 1990-03-29 1991-03-14 Cooling system Expired - Fee Related JP2570914B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3074821A JP2570914B2 (en) 1990-03-29 1991-03-14 Cooling system

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP8204390 1990-03-29
JP2-82043 1990-03-29
JP3074821A JP2570914B2 (en) 1990-03-29 1991-03-14 Cooling system

Publications (2)

Publication Number Publication Date
JPH04222335A JPH04222335A (en) 1992-08-12
JP2570914B2 true JP2570914B2 (en) 1997-01-16

Family

ID=26416001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3074821A Expired - Fee Related JP2570914B2 (en) 1990-03-29 1991-03-14 Cooling system

Country Status (1)

Country Link
JP (1) JP2570914B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007198693A (en) * 2006-01-27 2007-08-09 Mayekawa Mfg Co Ltd Cascade type heat pump system

Also Published As

Publication number Publication date
JPH04222335A (en) 1992-08-12

Similar Documents

Publication Publication Date Title
US3866439A (en) Evaporator with intertwined circuits
US6672082B1 (en) Heat pump and dehumidifying device
US20150285539A1 (en) Heat pump system with multiple operating modes
US7805961B2 (en) Supercooling apparatus of simultaneous cooling and heating type multiple air conditioner
EP2147265B8 (en) Refrigerating device and method for circulating a refrigerating fluid associated with it
WO2014199501A1 (en) Air-conditioning device
JP2004020187A (en) Multi-air conditioner and its operation method
CN214581751U (en) Heat exchanger and air conditioner
JP2000249479A (en) Heat exchanger
JP3087745B2 (en) Refrigeration equipment
WO2014185525A1 (en) Energy conversion system
JP3576486B2 (en) Evaporators and refrigerators
JP2570914B2 (en) Cooling system
KR20170062160A (en) refrigerator
JPH09145076A (en) Heat exchanger
US7254959B1 (en) Joule-Thomson effect air conditioner using air as the refrigerant
US6497115B1 (en) Evaporator and refrigerator
JPH04332356A (en) Air conditioner
JPH07208831A (en) Distributor for refrigerator
JPH06194003A (en) Air conditioner
JP3894222B2 (en) Refrigeration equipment
KR19980066167A (en) Refrigerant Distribution Structure of Multi-type Air Conditioner
CN114593466B (en) air conditioner
JP7374321B2 (en) Outdoor unit of air conditioner
US20210285663A1 (en) Hydronic refrigeration system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081024

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091024

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101024

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees