JP2566079B2 - Ice heat storage device - Google Patents

Ice heat storage device

Info

Publication number
JP2566079B2
JP2566079B2 JP3284535A JP28453591A JP2566079B2 JP 2566079 B2 JP2566079 B2 JP 2566079B2 JP 3284535 A JP3284535 A JP 3284535A JP 28453591 A JP28453591 A JP 28453591A JP 2566079 B2 JP2566079 B2 JP 2566079B2
Authority
JP
Japan
Prior art keywords
ice
evaporator
heat storage
water
aqueous solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP3284535A
Other languages
Japanese (ja)
Other versions
JPH05118591A (en
Inventor
隆司 志賀
和弘 上田
嘉裕 隅田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP3284535A priority Critical patent/JP2566079B2/en
Publication of JPH05118591A publication Critical patent/JPH05118591A/en
Application granted granted Critical
Publication of JP2566079B2 publication Critical patent/JP2566079B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Other Air-Conditioning Systems (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はビルなどの空調や氷温
にて冷却、貯蔵される食品生産、加工に用いられる氷蓄
熱装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an ice heat storage device used for air-conditioning a building or the like, and for producing and processing foods that are cooled and stored at ice temperatures.

【0002】[0002]

【従来の技術】図2は従来の氷蓄熱装置を示す系統図で
ある。1は冷凍装置であり、圧縮機2、凝縮器3、減圧
装置4、蒸発器5、を主要構成機器として備えている。
蒸発器5は複数個の伝熱管からなり、それぞれ複数の冷
媒回路と水回路を有する。6は氷と水を備える蓄熱槽、
7は過冷却を安定化させるためにある種の塩類を加えた
水溶液、8は生成した氷、9は過冷却した水溶液から氷
を生成させるための過冷却解除装置、10は蒸発器へ送
水する氷から氷を除去する氷除去装置11はその送水用
ポンプである。また、蓄熱槽6内の冷水は別のポンプ1
3により、負荷熱交換器へ送られる。なお、氷の過冷却
を安定化させるために添加するある種の塩類については
発明者らの先願があり、ここには何種類の薬剤が開示さ
れているが、腐食性その他、多くの観点から見て、最も
実用的な添加物は燐酸水素ニカリウム(K2HPO4)
であり、また、その最適添加濃度は、用いる水道水の水
質に大きく依存するとはいえ、およそ0.1〜0.3%
の範囲である。また、過冷却解除装置9に関しては、発
明者の先願があり、これは空気中にコールドフィンガー
を設けて、そこから氷微結晶を蓄熱槽6の液表面に供給
することができるもので、非接触を特徴とするものであ
る。過冷却水溶液とコールドフィンガーとが非接触であ
る為、接触タイプの過冷却解除装置9に比べて、多くの
不都合、たとえば生成した氷が過冷却解除装置9上に積
層することなどを避けることができる上、その効用は変
わらない。
2. Description of the Related Art FIG. 2 is a system diagram showing a conventional ice heat storage device. Reference numeral 1 denotes a refrigerating apparatus, which includes a compressor 2, a condenser 3, a pressure reducing device 4, and an evaporator 5 as main components.
The evaporator 5 is composed of a plurality of heat transfer tubes, each having a plurality of refrigerant circuits and water circuits. 6 is a heat storage tank equipped with ice and water,
7 is an aqueous solution to which a certain salt is added to stabilize supercooling, 8 is ice produced, 9 is a subcooling releasing device for producing ice from the supercooled aqueous solution, and 10 is water to the evaporator. The ice removing device 11 that removes ice from the ice is a water supply pump. In addition, the cold water in the heat storage tank 6 is supplied by another pump 1
3 is sent to the load heat exchanger. Note that there is a prior application of the inventors for certain salts to be added to stabilize the supercooling of ice, and several types of chemicals are disclosed here. From the viewpoint, the most practical additive is dipotassium hydrogen phosphate (K2HPO4).
The optimum addition concentration depends on the quality of tap water used, but is about 0.1 to 0.3%.
Range. Further, regarding the supercooling releasing device 9, there is a prior application of the inventor, in which a cold finger is provided in the air and ice fine crystals can be supplied to the liquid surface of the heat storage tank 6 from there. It is characterized by non-contact. Since the supercooled aqueous solution and the cold finger are not in contact with each other, it is possible to avoid many inconveniences as compared with the contact type supercooling canceling device 9, for example, generated ice is not stacked on the supercooling canceling device 9. You can do it, but its utility remains the same.

【0003】次に上記氷蓄熱装置の動作について説明す
る。冷凍装置1の圧縮機2より吐き出された高温高圧の
ガス冷媒は凝縮器3によって熱交換し、高圧の液冷媒と
なる。次に減圧装置4で断熱膨し低温低圧の飽和蒸気と
なる。蒸発器5で熱交換し氷点以下数度C(マイナス2
℃程度)まで過冷却された水溶液7は、配管12によっ
て導かれ、蓄熱槽6上部で配管12の出口近傍に設けた
過冷却解除装置9、つまり小容量のマイナス5℃程度の
低温発生装置により、過冷却状態が破られ、過冷却熱量
分に相当する小片の氷8を生成し、残りの水溶液7と共
に蓄熱槽6の中に流入する。氷8は、蓄熱槽6内で氷点
温度の水溶液7の上部に浮遊する。蓄熱槽6下部の水溶
液7は、氷除去装置10を通り、ポンプ11によって冷
凍装置1に送水され、冷凍サイクルを構成する。このよ
うにして蓄熱槽6内に連続的に氷片が生成し、氷の占有
率が高まる。この蓄熱運転では、安価な深夜電力を利用
して行い、昼間の冷房時にこの冷熱を利用するため、氷
点温度の水溶液をポンプ13により、熱交換器14へ送
り、昇温した水溶液を蓄熱槽6に戻し、氷8を融解する
ことでその潜熱を利用する。
Next, the operation of the ice heat storage device will be described. The high-temperature and high-pressure gas refrigerant discharged from the compressor 2 of the refrigeration system 1 exchanges heat with the condenser 3 to become a high-pressure liquid refrigerant. Next, it is adiabatically expanded by the decompression device 4 to become low temperature and low pressure saturated steam. Heat is exchanged in the evaporator 5, and the temperature is several degrees C below the freezing point (minus 2
The aqueous solution 7 supercooled to about (° C.) is guided by a pipe 12 and is provided by a supercooling releasing device 9 provided in the upper part of the heat storage tank 6 in the vicinity of the outlet of the pipe 12, that is, a low-temperature generating device with a small capacity of about −5 ° C. The supercooled state is broken, and a small piece of ice 8 corresponding to the amount of heat of supercooling is generated, and flows into the heat storage tank 6 together with the remaining aqueous solution 7. The ice 8 floats above the aqueous solution 7 having a freezing point temperature in the heat storage tank 6. The aqueous solution 7 in the lower part of the heat storage tank 6 passes through the ice removing device 10 and is sent to the refrigerating device 1 by the pump 11 to form a refrigerating cycle. In this way, ice pieces are continuously generated in the heat storage tank 6, and the occupancy rate of ice increases. In this heat storage operation, inexpensive midnight power is used, and this cold heat is used during cooling in the daytime. Therefore, an aqueous solution having a freezing point temperature is sent to the heat exchanger 14 by the pump 13, and the heated aqueous solution is stored in the heat storage tank 6 Then, the latent heat is utilized by melting the ice 8.

【0004】[0004]

【発明が解決しようとする課題】従来の氷蓄熱装置は以
上のように構成されており、氷の連続した生成を得るに
は蒸発器5内の凍結を防止することにあった。すなわ
ち、過冷却現象は非常に不安定状態であって、安定剤を
混合した場合でも一定領域が存在し(マイナス15℃程
度)、氷点以下数度であっても蒸発器5は複数の伝熱管
から構成される関係上、冷媒回路、水回路のばらつきに
影響されやすかった。また、ある伝熱管の温度がばらつ
きで低下し、過冷却が破壊されて凍結すると他の伝熱管
も一気に凍結を始め、蒸発器全体が凍結に至る恐れがあ
った。特に水回路は複数になると水配管部の分岐部など
があるため、流れによる衝突が発生し過冷却が破れて凍
結に至る恐れがあり、部分的にしろ凍結が発生すると伝
熱管の熱伝達率が低下し、さらに冷凍装置の蒸発器5の
性能が低下し、蒸発温度が低下して一気に凍結が拡大す
るという恐れがあった。また、循環回路内に鉄錆が発生
して混入したり、蓄熱槽5内の氷の核結晶が氷除去装置
10を通過して混入したりすると、内管の凹凸部に堆積
し、さらに表面粗さが増え、一気に蒸発器5内が凍結す
る恐れがあった。更に蒸発器5の凍結を無くすには流入
する水溶液の温度を高く維持する必要がある。また、吸
い込み温度が氷点温度に近付けば、氷の結晶核を多く吸
い込みやすくなり、吸い込み温度を高く、出口温度は低
く設計することが必要でもあった。こうした理由から、
循環する水溶液の過冷却安定性が日増に低下する傾向を
避けることがむづかしかった。そのため、循環回路内の
鉄錆・ごみ・氷の結晶核の除去と同時に、冷凍装置側に
おいても、蒸発器5内で過冷却が破れないように蒸発器
5の複数の伝熱管の構造について、冷媒回路と水回路の
改良が必要であった。また蒸発器5内で安定して水溶液
が過冷却し、破れない蒸発器が必要であった。そのため
にも、過冷却による氷生成については冷凍装置の安定性
の維持と、マイナス数度でも過冷却が破壊せず、循環回
路内のごみ・氷の結晶核の影響を少なくした優れた蒸発
器が是非とも必要であった。
The conventional ice heat storage device is constructed as described above, and it is to prevent freezing in the evaporator 5 in order to obtain continuous production of ice. That is, the supercooling phenomenon is very unstable, and even if a stabilizer is mixed, there is a certain region (about -15 ° C), and even if the temperature is below the freezing point, the evaporator 5 has a plurality of heat transfer tubes. Since it was composed of, it was easily affected by variations in the refrigerant circuit and water circuit. Further, if the temperature of a certain heat transfer tube is lowered due to variations and the supercooling is destroyed and freezes, the other heat transfer tubes also start freezing at once, and the entire evaporator may be frozen. In particular, when there are multiple water circuits, there is a branch of the water piping, etc., so there is a risk of collision due to the flow and breakage of subcooling leading to freezing.If partial freezing occurs, the heat transfer coefficient of the heat transfer tube And the performance of the evaporator 5 of the refrigerating apparatus is lowered, the evaporation temperature is lowered, and the freezing is rapidly expanded. Further, if iron rust is generated and mixed in the circulation circuit, or if ice nuclei crystals in the heat storage tank 5 pass through the ice removing device 10 and are mixed, they are deposited on the uneven portion of the inner pipe and further surface There was a risk that the roughness would increase and the inside of the evaporator 5 would freeze at once. Further, in order to eliminate the freezing of the evaporator 5, it is necessary to keep the temperature of the inflowing aqueous solution high. Further, if the suction temperature approaches the freezing point temperature, it becomes easier to suck more ice crystal nuclei, and it is necessary to design the suction temperature to be higher and the outlet temperature to be lower. For this reason
It was difficult to avoid the tendency of the supercooling stability of the circulating aqueous solution to decrease daily. Therefore, at the same time as removing iron rust, dust, and ice crystal nuclei in the circulation circuit, the structure of the plurality of heat transfer tubes of the evaporator 5 is also set on the refrigeration unit side so that the subcooling is not broken in the evaporator 5. The refrigerant circuit and the water circuit needed to be improved. Further, an evaporator which requires stable supercooling of the aqueous solution in the evaporator 5 and does not break is required. For this reason, as for ice generation due to supercooling, it is an excellent evaporator that maintains the stability of the refrigeration system and does not destroy supercooling even at minus several degrees, reducing the effects of dust and ice crystal nuclei in the circulation circuit. Was absolutely necessary.

【0005】この発明は上記のような問題点を解消する
ためになされたもので、冷凍装置の安定性を図ること
で、連続して氷生成を可能とすると共に、長期に渡って
安定に動作する氷蓄熱装置を得ることを目的とする。
The present invention has been made to solve the above-mentioned problems, and by making the refrigerating device stable, it is possible to continuously generate ice and to operate stably for a long period of time. The purpose is to obtain an ice heat storage device.

【0006】[0006]

【課題を解決するための手段】この発明は、上記のよう
な目的を有効に達成するために、次のような構成にして
ある。すなわち、圧縮機、凝縮器、減圧装置、蒸発器な
どで構成された冷凍装置と、この冷凍装置により過冷却
されるある種の塩類水溶液の循環回路内に設けられた過
冷却解除装置と、生成した氷と過冷却水を蓄える蓄熱槽
と、この蓄熱槽と前記冷凍装置内の蒸発器とを循環する
回路を有した氷蓄熱装置において、前記蒸発器を二重管
式構造とした複数個の伝熱管からなり、内管内を水ある
いは過冷却水が流れ、内管/外管内を冷媒を流通させ、
内管の水流通路は複数個直列接続し、内管/外管の冷媒
流通路は並列接続するようにした構成である。
In order to effectively achieve the above-mentioned object, the present invention has the following structure. That is, a refrigerating device including a compressor, a condenser, a decompressor, an evaporator, and the like, and a subcooling releasing device provided in a circulation circuit of a kind of salt aqueous solution supercooled by the refrigerating device, A heat storage tank for storing the ice and the supercooled water, and an ice heat storage apparatus having a circuit for circulating the heat storage tank and the evaporator in the refrigerating apparatus, wherein the evaporator has a plurality of double-tube structures. It consists of heat transfer tubes, water or supercooled water flows in the inner tube, and refrigerant flows in the inner tube / outer tube.
A plurality of water flow passages of the inner pipe are connected in series, and refrigerant flow passages of the inner pipe / outer pipe are connected in parallel.

【0007】[0007]

【作用】上記のように、蒸発器の内管の水流通路は複数
個直列接続し、内管/外管の冷媒流通路は並列接続する
ため、水溶液出口温度のバラツキがなくなり、冷媒回路
側の圧力低下が少なくなるので、氷生成での蒸発器内の
凍結を防ぎ、過冷却の安定性が向上すると共に冷凍装置
の信頼性も向上する。
As described above, since the water flow passages of the inner pipe of the evaporator are connected in series and the refrigerant flow passages of the inner pipe / outer pipe are connected in parallel, the variation in the temperature of the outlet of the aqueous solution is eliminated and the refrigerant circuit side Since the pressure drop is reduced, freezing in the evaporator due to ice formation is prevented, stability of supercooling is improved, and reliability of the refrigeration system is also improved.

【0008】[0008]

【実施例】【Example】

実施例1.以下、この発明の一実施例を図にしたがって
説明する。図1、図3、図4において、図3はこの発明
の一実施例による蒸発器5の縦断面図、図4は図3に示
した蒸発器5のY−Y横断面図である。蒸発器5は以下
の要素から構成されている。16は外管であって、一端
側に冷媒入口部16aと他端側に冷媒出口部16bとが
設けられ、かつ冷媒入口部16aと冷媒出口部16bと
の間に管内壁から中心に向けて放射状に突出した複数の
伝熱フィン16cを有する。17は外管16に挿通され
た内管で、その外表面が外管17の伝熱フィン部16c
の内方端部に密着している。かかる構成により伝熱フィ
ン部16cより分離された冷媒流通路16dは、例えば
12室形成されている。図3に示した伝熱管15を少な
くとも1つ以上用いることにより図1に示した蒸発器5
を構成する。本実施例では伝熱管を3個使用する。18
aは水溶液の入口接続口、18bは水溶液の出口接続
口、18c、18d、18eは水配管A、B、Cであ
り、水配管Aは下段の伝熱管15の出口側と中段の入り
口側、水配管Bは中段の伝熱管15の出口側と上段の伝
熱管15の入り口側、水配管Cは上段の伝熱管15の出
口側と出口接続口とに直列に接続される。水配管A、
B、Cは伝熱管15の内管と同一径・同一粗さで構成さ
れる。また、水配管A、B、Cは、流通する水溶液が乱
流や衝突で過冷却が破壊されるのを防ぐため、内管径の
4倍以上のR曲げで構成される。このことにより循環回
路内に鉄錆や蓄熱槽5内の氷の核結晶が氷除去装置を通
過して混入しても凹凸部がなく内管に堆積しにく、蒸発
器5内で凍結する恐れを防止することができる。また、
冷媒入口部16aと他端側の冷媒出口部16bについて
は各々並列に接続され、冷媒は分配される。従って、循
環する水溶液は、入り口接続口16aから入って内管1
7部で冷媒と熱交換し冷却して過冷却される。なお、そ
の他の構成については従来と同様につき説明を省略す
る。
Example 1. An embodiment of the present invention will be described below with reference to the drawings. 1, 3 and 4, FIG. 3 is a vertical cross-sectional view of the evaporator 5 according to one embodiment of the present invention, and FIG. 4 is a Y-Y horizontal cross-sectional view of the evaporator 5 shown in FIG. The evaporator 5 is composed of the following elements. Reference numeral 16 denotes an outer pipe, which is provided with a refrigerant inlet portion 16a at one end side and a refrigerant outlet portion 16b at the other end side, and is directed from the inner wall of the pipe toward the center between the refrigerant inlet portion 16a and the refrigerant outlet portion 16b. It has a plurality of heat transfer fins 16c protruding radially. Reference numeral 17 denotes an inner tube inserted into the outer tube 16, the outer surface of which is a heat transfer fin portion 16c of the outer tube 17.
It adheres to the inner edge of the. The refrigerant flow passage 16d separated from the heat transfer fin portion 16c by such a structure has, for example, 12 chambers. By using at least one heat transfer tube 15 shown in FIG. 3, the evaporator 5 shown in FIG.
Is configured. In this embodiment, three heat transfer tubes are used. 18
a is an aqueous solution inlet connection port, 18b is an aqueous solution outlet connection port, and 18c, 18d, and 18e are water pipes A, B, and C, and the water pipe A is the outlet side of the lower heat transfer tube 15 and the middle stage inlet side, The water pipe B is connected in series to the outlet side of the middle heat transfer pipe 15 and the inlet side of the upper heat transfer pipe 15, and the water pipe C is connected to the outlet side of the upper heat transfer pipe 15 and the outlet connection port in series. Water pipe A,
B and C have the same diameter and the same roughness as the inner tube of the heat transfer tube 15. Further, the water pipes A, B, and C are configured with an R bend of 4 times or more the inner pipe diameter in order to prevent the supercooling from being destroyed by the turbulent flow or collision of the flowing aqueous solution. As a result, even if iron rust or ice nuclei in the heat storage tank 5 pass through the ice removing device and enter the circulation circuit, there is no uneven portion and it is hard to deposit on the inner pipe and freezes in the evaporator 5. Fear can be prevented. Also,
The refrigerant inlet portion 16a and the refrigerant outlet portion 16b on the other end side are connected in parallel and the refrigerant is distributed. Therefore, the circulating aqueous solution enters through the inlet connection port 16a and the inner pipe 1
In the 7th part, it exchanges heat with the refrigerant and is cooled to be supercooled. The other configurations are the same as the conventional ones and will not be described.

【0009】次に動作について説明する。蓄熱槽6内の
水溶液が循環して冷凍装置1の蒸発器5を通過して冷却
を開始して行くと、次第に蓄熱槽6の温度は下がってい
き、入口温度約1度、出口温度は蒸発器5内で氷点下数
度(マイナス2℃)の過冷却状態まで冷却される。冷凍
装置1の冷却能力は圧縮機2の特性から凝縮温度・蒸発
温度で決まるため、上記の温度差に合うようにポンプ1
1の流量を決定する。この過冷却水溶液は蓄熱槽6上部
で過冷却解除装置9により、過冷却状態が破られ過冷却
熱量分に相当する氷を生成する。氷にならなかった水溶
液は氷除去装置9あるいは氷炉過装置10を通ってポン
プ11により冷凍装置1の蒸発器5に供給される。蓄熱
槽6内には氷8が水溶液に浮遊しながら蓄積する。
Next, the operation will be described. When the aqueous solution in the heat storage tank 6 circulates and passes through the evaporator 5 of the refrigeration system 1 to start cooling, the temperature of the heat storage tank 6 gradually decreases, and the inlet temperature is about 1 degree and the outlet temperature evaporates. It is cooled in the vessel 5 to a supercooled state of several degrees below freezing (minus 2 ° C). Since the cooling capacity of the refrigerating apparatus 1 is determined by the condensation temperature and the evaporation temperature from the characteristics of the compressor 2, the pump 1 should be adjusted to meet the above temperature difference.
Determine the flow rate of 1. This supercooled aqueous solution breaks the supercooled state in the upper part of the heat storage tank 6 by the supercooling canceling device 9, and produces ice corresponding to the amount of supercooled heat. The aqueous solution that has not turned into ice is supplied to the evaporator 5 of the refrigerating apparatus 1 by the pump 11 through the ice removing apparatus 9 or the ice furnace passing apparatus 10. Ice 8 accumulates in the heat storage tank 6 while floating in the aqueous solution.

【0010】図5、図6は従来の蒸発器5と本実施例の
蒸発器5の冷却状態を示した図であり、図5は従来図、
図6は本実施例図を示す。水回路も複数分岐している従
来図は、冷媒の不均等と水溶液の分配バラツキの影響を
受けやすく、この結果、過冷却出口温度が図に示すよう
に平均温度マイナス2度に対してそれぞれマイナス1
度、マイナス2度、マイナス3度となる。このバラツキ
は過冷却温度に対しては影響が大きく、水配管部の分岐
部などがあるため、流れによる衝突が発生し過冷却が破
れて凍結に至るおそれがあった。本実施例の図6は3つ
の伝熱管の水配管は直列に接続してあり、それぞれの伝
熱管で順次温度を下げており、上記のような問題は発生
せず確実に過冷却温度のマイナス2度となる。冷媒側の
分流不均一の影響も少なく、圧力損失は小さく同一であ
る。また、水溶液の流通路は同一径であり、乱流や衝突
が発生しないよう緩やかな曲げRで構成されており、過
冷却が破れる恐れもない。このように凍結が防止される
と共に過冷却の安定運転が続行し氷を生成する。
FIGS. 5 and 6 are views showing the cooling states of the conventional evaporator 5 and the evaporator 5 of the present embodiment. FIG. 5 is a conventional diagram,
FIG. 6 shows this embodiment. The conventional diagram in which the water circuit also has multiple branches is easily affected by uneven distribution of the refrigerant and dispersion of the aqueous solution. As a result, the supercooling outlet temperature is minus the average temperature minus 2 degrees as shown in the figure. 1
It becomes minus 2 degrees and minus 3 degrees. This variation has a great influence on the supercooling temperature, and since there is a branch portion of the water pipe section, there is a risk of collision due to the flow, breaking the subcooling, and freezing. In FIG. 6 of the present embodiment, the water pipes of the three heat transfer tubes are connected in series, and the temperature of each heat transfer tube is lowered sequentially, so that the above-mentioned problems do not occur and the subcooling temperature is reliably reduced. It will be twice. The effect of non-uniform flow distribution on the refrigerant side is small, and the pressure loss is small and the same. In addition, the flow paths of the aqueous solution have the same diameter and are configured by gentle bending R so that turbulent flow and collision do not occur, and there is no risk of subcooling breaking. In this way, freezing is prevented and stable operation of supercooling continues to produce ice.

【0011】[0011]

【発明の効果】以上のように、この発明によれば水の過
冷却を不安定にさせる冷凍装置の蒸発器5内の凍結の恐
れを防止するため、蒸発器を複数個の伝熱管からなる二
重管式方式構造とし、内管内を水あるいは過冷却水が流
れ、内管/外管内に冷媒を流通させ、かつ、内管/外管
の冷媒流通路を複数室に分割し、内管の水流通路は複数
個直列接続し、内管/外管の冷媒流通路は並列接続した
ので、水溶液出口温度は冷媒の不均等と水溶液の分配バ
ラツキの影響を受けにくく、バラツキがなくなり、冷媒
回路側の圧力低下が少なくなるので、氷生成での蒸発器
内の凍結を防ぎ、過冷却の安定性が向上すると共に冷凍
装置の信頼性を向上させることができる。これにより、
過冷却安定性を高め、氷蓄熱装置の長期に渡る安定動作
が保証される効果がある。
As described above, according to the present invention, in order to prevent the possibility of freezing in the evaporator 5 of the refrigerating device which makes the supercooling of water unstable, the evaporator is composed of a plurality of heat transfer tubes. Double pipe type structure, water or supercooled water flows in the inner pipe, the refrigerant flows in the inner pipe / outer pipe, and the refrigerant flow passage of the inner pipe / outer pipe is divided into a plurality of chambers. Since a plurality of water flow passages are connected in series and the refrigerant flow passages of the inner pipe / outer pipe are connected in parallel, the aqueous solution outlet temperature is unlikely to be affected by the unevenness of the refrigerant and the variation in the distribution of the aqueous solution. Since the pressure drop on the side is reduced, it is possible to prevent freezing in the evaporator during ice formation, improve the stability of supercooling, and improve the reliability of the refrigeration system. This allows
This has the effect of improving the stability of supercooling and ensuring stable operation of the ice heat storage device for a long period of time.

【図面の簡単な説明】[Brief description of drawings]

【図1】この一実施例による冷凍装置を示す系統図であ
る。
FIG. 1 is a system diagram showing a refrigerating apparatus according to this embodiment.

【図2】従来の氷蓄熱装置の系統図である。FIG. 2 is a system diagram of a conventional ice heat storage device.

【図3】この発明の一実施例による蒸発器の伝熱管の縦
断面図である。
FIG. 3 is a vertical sectional view of a heat transfer tube of an evaporator according to an embodiment of the present invention.

【図4】図3の矢視Y−Yを示す横断面図である。FIG. 4 is a cross-sectional view taken along the line YY of FIG.

【図5】従来の蒸発器の冷媒温度と過冷却温度との関係
を示した説明図である。
FIG. 5 is an explanatory diagram showing a relationship between a refrigerant temperature and a supercooling temperature of a conventional evaporator.

【図6】この発明の一実施例による蒸発器の冷媒温度と
過冷却温度との関係を示した説明図である。
FIG. 6 is an explanatory diagram showing the relationship between the refrigerant temperature and the supercooling temperature of the evaporator according to the embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 冷凍装置 2 圧縮機 3 凝縮器 4 減圧装置 5 蒸発器 6 蓄熱槽 7 水溶液 8 氷 9 過冷却解除装置 10 氷除去装置 11 ポンプ 12 配管 13 ポンプ 14 負荷熱交換器 15 伝熱管 16 外管 17 内管 1 Refrigerator 2 Compressor 3 Condenser 4 Pressure reducer 5 Evaporator 6 Heat storage tank 7 Aqueous solution 8 Ice 9 Supercooling release device 10 Ice removing device 11 Pump 12 Piping 13 Pump 14 Load heat exchanger 15 Heat transfer pipe 16 Outer pipe 17 Inside tube

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 圧縮機、凝縮器、減圧装置、蒸発器など
で構成された冷凍装置と、この冷凍装置により過冷却さ
れるある種の塩類水溶液の循環回路内に設けられた過冷
却解除装置と、生成した氷と過冷却水を蓄える蓄熱槽
と、この蓄熱槽と前記冷凍装置内の蒸発器とを循環する
回路を有した氷蓄熱装置において、前記蒸発器を二重管
式構造とした複数個の伝熱管からなり、内管内を水ある
いは過冷却水が流れ、内管/外管内を冷媒を流通させ、
内管の水流通路は複数個直列接続し、内管/外管の冷媒
流通路は並列接続するようにしたことを特徴とする氷蓄
熱装置。
1. A refrigeration apparatus including a compressor, a condenser, a decompression device, an evaporator, and the like, and a supercooling releasing device provided in a circulation circuit of a kind of salt aqueous solution supercooled by the refrigeration apparatus. And a heat storage tank for storing the generated ice and supercooled water, and an ice heat storage apparatus having a circuit for circulating the heat storage tank and the evaporator in the refrigerating apparatus, wherein the evaporator has a double-tube structure. It consists of multiple heat transfer tubes, and water or supercooled water flows in the inner tube and refrigerant flows in the inner tube / outer tube.
An ice heat storage device, wherein a plurality of water flow passages of the inner pipe are connected in series, and refrigerant flow passages of the inner pipe / outer pipe are connected in parallel.
JP3284535A 1991-10-30 1991-10-30 Ice heat storage device Expired - Lifetime JP2566079B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3284535A JP2566079B2 (en) 1991-10-30 1991-10-30 Ice heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3284535A JP2566079B2 (en) 1991-10-30 1991-10-30 Ice heat storage device

Publications (2)

Publication Number Publication Date
JPH05118591A JPH05118591A (en) 1993-05-14
JP2566079B2 true JP2566079B2 (en) 1996-12-25

Family

ID=17679722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3284535A Expired - Lifetime JP2566079B2 (en) 1991-10-30 1991-10-30 Ice heat storage device

Country Status (1)

Country Link
JP (1) JP2566079B2 (en)

Also Published As

Publication number Publication date
JPH05118591A (en) 1993-05-14

Similar Documents

Publication Publication Date Title
EP0603182B1 (en) Liquid chiller
JPH09170832A (en) Refrigerating cycle device having two evaporation temperature
KR19990064122A (en) Air conditioner
JP2566079B2 (en) Ice heat storage device
JP2000356482A (en) Plate heat exchanger and ice thermal storage unit
JP2007278541A (en) Cooling system
JP3360637B2 (en) Refrigeration air conditioner
JPH05118592A (en) Ice heat accumulating device
WO2021014526A1 (en) Defrost system
JP2002364936A (en) Refrigeration unit
JP2566078B2 (en) Ice heat storage device
JPH05187672A (en) Ice heat accumulating device
JPH109714A (en) Freezer
JPH0252959A (en) Refrigerator
JP2000320908A (en) Refrigerating cycle circuit
JPS63217171A (en) Ice machine for accumulating heat
JPH0448174A (en) Ice making device
KR100562565B1 (en) flooded evaporator in chiller
JPH05340653A (en) Ice making device
JPH0650576A (en) Ice cold accumulator
PL240256B1 (en) One-piece, compact chiller with high energy efficiency
JP3102042B2 (en) Ice making equipment
JP3710982B2 (en) Brine showcase
JPH043867A (en) Ice making device
JPS647306B2 (en)