JP2562061B2 - Low loss oxide magnetic material - Google Patents

Low loss oxide magnetic material

Info

Publication number
JP2562061B2
JP2562061B2 JP1303673A JP30367389A JP2562061B2 JP 2562061 B2 JP2562061 B2 JP 2562061B2 JP 1303673 A JP1303673 A JP 1303673A JP 30367389 A JP30367389 A JP 30367389A JP 2562061 B2 JP2562061 B2 JP 2562061B2
Authority
JP
Japan
Prior art keywords
magnetic material
loss
oxide
oxide magnetic
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1303673A
Other languages
Japanese (ja)
Other versions
JPH03163804A (en
Inventor
淳 米倉
潔 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP1303673A priority Critical patent/JP2562061B2/en
Publication of JPH03163804A publication Critical patent/JPH03163804A/en
Application granted granted Critical
Publication of JP2562061B2 publication Critical patent/JP2562061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Description

【発明の詳細な説明】 イ.発明の目的 〔産業上の利用分野〕 本発明は、電子機器用スイッチング電源等に高周波で
用いる、主としてトランス用のコア材料である低損失酸
化物磁性材料に関し、特に主成分として30〜40モル%の
一酸化マンガン(MnO)、5〜15モル%の酸化亜鉛(Zn
O)、及び残分として酸化第2鉄(Fe2O3)を含み、副成
分として0.02〜0.15重量%の酸化カルシウム(CaO)、
及び0.005〜0.100重量%の酸化ケイ素(SiO2)を含む低
損失酸化物磁性材料の改良に関するものである。
DETAILED DESCRIPTION OF THE INVENTION OBJECT OF THE INVENTION [Industrial field of application] The present invention relates to a low loss oxide magnetic material which is a core material mainly for transformers, which is used at a high frequency for a switching power supply for electronic devices and the like, and particularly 30 to 40 mol% as a main component. Manganese monoxide (MnO), 5-15 mol% zinc oxide (Zn
O), and ferric oxide (Fe 2 O 3 ) as the balance, and 0.02 to 0.15% by weight of calcium oxide (CaO) as a secondary component,
And a low loss oxide magnetic material containing 0.005 to 0.100% by weight of silicon oxide (SiO 2 ).

〔従来の技術〕[Conventional technology]

酸化物磁性材料であるマンガン−亜鉛系フェライト
は、各種通信機器、民生用機器などのトランス及びコイ
ル用のコア材料として多用されているが、従来スイッチ
ング電源用のトランスにおいては、スイッチング周波数
として専ら10〜100kHz程度のものが使用されており、こ
れに対応すべき低損失酸化物磁性材料として主成分が30
〜40モル%のMnO、5〜15モル%のZnO、残分がFe2O3
含み、副成分として0.02〜0.15重量%のCaO、0.005〜0.
100重量%のSiO2を含むものがすでに開発されている。
Manganese-zinc-based ferrite, which is an oxide magnetic material, is widely used as a core material for transformers and coils of various communication devices, consumer devices, etc. A low loss oxide magnetic material with a main component of 30 to 100 kHz is used.
40 mol% of MnO, 5 to 15 mol% of ZnO, residue comprises Fe 2 O 3, 0.02 to 0.15 wt% of CaO as an auxiliary component, 0.005 to 0.
Those containing 100% by weight of SiO 2 have already been developed.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

しかし、近年、スイッチング電源を小型、軽量化する
ために、スイッチング周波数を100kHz以上の高周波で使
用する傾向が強まりつつあり、その目的にあう性能のト
ランス用コア材料としての低損失酸化物磁性材料が要求
されている。
However, in recent years, in order to reduce the size and weight of switching power supplies, there is an increasing tendency to use switching frequencies at high frequencies of 100 kHz or higher, and low-loss oxide magnetic materials as core materials for transformers with performance that meets the purpose are being used. Is required.

一方、上述の如き従来の成分を有する低損失酸化物磁
性材料を、スイッチング周波数が100kHz以上のスイッチ
ング電源用の変圧器のコア材料として使用すると、その
鉄損による電力損失(PB[kW/m3])が大きく、これに
よる発熱のため許容温度以上に温度が上昇し、トランス
自体やその周辺の部品を損ない使用に耐えないという欠
点があった。
On the other hand, when a low-loss oxide magnetic material having the above-mentioned conventional components is used as the core material of a transformer for a switching power supply with a switching frequency of 100 kHz or more, the power loss (P B [kW / m 3 ]) is large and the temperature rises above the permissible temperature due to the heat generated by this, and there is a drawback that the transformer itself and surrounding parts are damaged and cannot be used.

そこで、本発明の課題は、周波数が100kHz以上の高い
周波数において使用しても、鉄損が小さく、従って電力
損失が小さく、発熱を許容温度以下に抑えて実用に供し
得る低損失酸化物磁性材料を提供することにある。
Therefore, the object of the present invention is to use a low-loss oxide magnetic material that can be put to practical use by suppressing the heat generation to a temperature below the allowable temperature even if the frequency is used at a high frequency of 100 kHz or more and the iron loss is small and therefore the power loss is small. To provide.

ロ.発明の構成 〔課題を解決するための手段〕 本発明は、既に開発された主成分及び副成分を含む従
来の低損失酸化物磁性材料に、さらに他の成分の酸化物
を添加せしめることにより、100kHz以上の鉄損を従来よ
り一層低減した低損失酸化物磁性材料を得るものであ
る。
B. Structure of the Invention [Means for Solving the Problems] The present invention provides a conventional low-loss oxide magnetic material containing a main component and a sub-component already developed by adding an oxide of another component, It is intended to obtain a low-loss oxide magnetic material in which iron loss of 100 kHz or more is further reduced than before.

即ち本発明は、酸化物粉末を混合・成形・焼成してな
る酸化物磁性材料の主成分として、30〜40モル%の一酸
化マンガン(MnO)、5〜15モル%の酸化亜鉛(ZnO)、
及び残分として酸化第2鉄(Fe2O3)を含み、副成分と
して0.02〜0.15重量%の酸化カルシウム(CaO)、及び
0.005〜0.100重量%の酸化ケイ素(SiO2)を含む低損失
酸化物磁性材料において、さらに0.05〜0.30重量%未満
(0.05%を含まず)の二酸化ジルコニウム(ZrO2)、0.
50重量%未満(0%を含まず)の三酸化アルミニウム
(Al2O3)、及び0.30重量%未満(0%を含まず)の二
酸化チタン(TiO2)を添加したことを特徴とする低損失
酸化物磁性材料である。
That is, the present invention is, as the main component of the oxide magnetic material obtained by mixing, molding and firing oxide powder, 30-40 mol% manganese monoxide (MnO), 5-15 mol% zinc oxide (ZnO) ,
And ferric oxide (Fe 2 O 3 ) as a residue, and 0.02 to 0.15% by weight of calcium oxide (CaO) as a secondary component, and
In a low-loss oxide magnetic material containing 0.005-0.100 wt% silicon oxide (SiO 2 ), further 0.05-0.30 wt% (not including 0.05%) zirconium dioxide (ZrO 2 ), 0.
Low, characterized by the addition of less than 50% by weight (not including 0%) aluminum trioxide (Al 2 O 3 ) and less than 0.30% by weight (not including 0%) titanium dioxide (TiO 2 ). It is a lossy oxide magnetic material.

〔作用〕[Action]

本発明は、従来の低損失酸化物磁性材料に、二酸化ジ
ルコニウム(ZrO2)、三酸化アルミニウム(Al2O3)、
及び二酸化チタン(TiO2)を種々の割合で添加した一連
の実験を詳しく行なった結果、上記成分範囲に添加した
材料に於て、100kHz以上の鉄損を減じて電力損失を低減
した低損失酸化物磁性材料が得られたものである。
The present invention provides conventional low-loss oxide magnetic materials with zirconium dioxide (ZrO 2 ), aluminum trioxide (Al 2 O 3 ),
As a result of conducting a series of experiments in which titanium dioxide (TiO 2 ) and titanium dioxide (TiO 2 ) were added in various proportions, it was found that in the materials added in the above component range, low loss oxidation that reduced iron loss of 100 kHz or more and reduced power loss. A magnetic material is obtained.

添加物ZrO2は、低損失酸化物磁性材料組織の粒界に折
出し、粒界の固有抵抗を増加させ、又添加物Al2O3及びT
iO2は結晶内に固溶し、結晶内部の固有抵抗を増加させ
る働きがあると考えられ、さらに添加物Al2O3は結晶組
織を均一にする作用があると考えられる。
The additive ZrO 2 is extruded at the grain boundary of the low loss oxide magnetic material structure to increase the specific resistance of the grain boundary, and the additive Al 2 O 3 and T
It is considered that iO 2 has a function of forming a solid solution in the crystal and increasing the specific resistance inside the crystal, and that the additive Al 2 O 3 has a function of making the crystal structure uniform.

これらの複合作用によって、これらを添加した低損失
酸化物磁性材料は、その組織内部の電磁気特性が均一化
すると共に組織全体の比抵抗ρが一層増大し、これによ
って鉄損に関係する渦電流損が減少し電力損失が減少し
たものと考えられる。電力損失の減少により高周波にお
ける発熱が抑えられる。
Due to these combined effects, the low-loss oxide magnetic material containing them is made uniform in the electromagnetic characteristics inside the tissue and the specific resistance ρ of the entire tissue is further increased, which causes eddy current loss related to iron loss. Is considered to have decreased and the power loss has decreased. Due to the reduction of power loss, heat generation at high frequencies is suppressed.

実際に上記本発明の添加成分範囲内外近傍の低損失酸
化物磁性材料について詳細に実験を行い、試料について
評価したところ、従来の前記成分の低損失酸化物磁性材
料に比べ、例えばZrO2 0.10重量%、Al2O3 0.05重量
%、TiO2 0.05重量%を添加した低損失酸化物磁性材料
は、比抵抗ρが10倍以上あり、200kHzにおける電力損失
が半分以下であることが確認された。
Actually, a detailed experiment was performed on the low loss oxide magnetic material in the vicinity of the addition component range of the present invention, and when the sample was evaluated, as compared with the conventional low loss oxide magnetic material of the above component, for example, ZrO 2 0.10 wt. %, Al 2 O 3 0.05% by weight, and TiO 2 0.05% by weight, it was confirmed that the low-loss oxide magnetic material has a specific resistance ρ of 10 times or more and a power loss of 200 kHz or less.

〔実施例〕〔Example〕

以下に本発明の実施例及び比較例について、実験した
内容を詳しく説明する。
The contents of the experiment for the examples and comparative examples of the present invention will be described in detail below.

酸化物粉末を混合・成形・焼成してなる酸化物磁性材
料の主成分として、53.0モル%の酸化第2鉄(Fe
2O3)、36.0モル%の一酸化マンガン(MnO)、及び11.0
モル%の酸化亜鉛(ZnO)の標準成分を含有し、副成分
として二酸化ケイ素(SiO2)、酸化カルシウム(CaO)
を従来の低損失酸化物磁性材料の成分範囲で含有し、さ
らに二酸化ジルコニウム(ZrO2)、三酸化アルミニウム
(Al2O3)、及び二酸化チタン(TiO2)を複合添加した
複数の本実施例の低損失酸化物磁性材料の試料を各種試
作した。さらに後者の3つの酸化物を添加しない従来の
比較例、及び後者の3つの酸化物を単独又は複合添加し
た複数の他の比較例の低損失酸化物磁性材料の試料を試
作した。それぞれの酸化物原料を所定成分量添加混合
し、造粒し、成形プレスした後、窒素ガス雰囲気中にお
いて酸素分圧5.0at%以下、1300〜1400℃の温度で焼結
して本実施例及び比較例の試料を得た。
As the main component of the oxide magnetic material formed by mixing, molding and firing oxide powder, 53.0 mol% ferric oxide (Fe
2 O 3 ), 36.0 mol% manganese monoxide (MnO), and 11.0
Contains standard components of mol% zinc oxide (ZnO), with secondary components silicon dioxide (SiO 2 ) and calcium oxide (CaO)
In the composition range of the conventional low-loss oxide magnetic material, and a plurality of present examples in which zirconium dioxide (ZrO 2 ), aluminum trioxide (Al 2 O 3 ), and titanium dioxide (TiO 2 ) were added in combination. Various samples of the low-loss oxide magnetic material were manufactured. Further, samples of low-loss oxide magnetic materials of the conventional comparative example in which the latter three oxides were not added and a plurality of other comparative examples in which the latter three oxides were added alone or in combination were manufactured. Each oxide raw material was added and mixed with a predetermined amount of components, granulated, molded and pressed, then oxygen partial pressure of 5.0 at% or less in a nitrogen gas atmosphere, and sintered at a temperature of 1300 to 1400 ° C. in this example and A sample of the comparative example was obtained.

第1表は試作した本実施例の試料及び比較例につい
て、それぞれの副成分及び添加成分の含有量と、周波数
200kHz、最大磁束密度Bmが1000Gの場合の電力損失PB
試料温度に対する最小値を示したものである。
Table 1 shows the contents of sub-components and additive components and the
It shows the minimum value of the power loss P B with respect to the sample temperature when the maximum magnetic flux density Bm is 1000 G at 200 kHz.

第1表によれば、二酸化ジルコニウム(ZrO2)、三酸
化アルミニウム(Al2O3)、及び二酸化チタン(TiO2
の複合添加によって、従来の比較例の試料No.1より電力
損失が減少していることがわかる。これは、これらの添
加物が低損失酸化物磁性材料組織内部において、ZrO2
組織の粒界に折出して粒界の固有抵抗を増大させ、Al2O
3及びTiO2が結晶内に固溶してその固有抵抗を増大さ
せ、さらにAl2O3が結晶組織を均一にする効果があった
と考えられ、これらの複合作用によって、組織内部の電
磁気特性の均一化と組織全体の比抵抗を増大せしめ、こ
れによって鉄損を減少せしめ電力損を減少せしめたもの
と考えられる。
According to Table 1, zirconium dioxide (ZrO 2 ), aluminum trioxide (Al 2 O 3 ), and titanium dioxide (TiO 2 ).
It can be seen that the power addition loss is reduced compared to the conventional comparative sample No. 1 by the combined addition of. This is because these additives cause ZrO 2 to break out into the grain boundaries of the structure inside the structure of the low-loss oxide magnetic material, increasing the resistivity of the grain boundaries, and Al 2 O 3
It is considered that 3 and TiO 2 had a solid solution in the crystal to increase their specific resistance, and Al 2 O 3 had the effect of making the crystal structure uniform. It is considered that the homogenization and the specific resistance of the entire structure were increased, which reduced the iron loss and the power loss.

二酸化ジルコニウム(ZrO2)を0.40重量%添加した試
料No.11、三酸化アルミニウム(Al2O3)を0.60重量%添
加した試料No.15、及び二酸化チタン(TiO2)を0.040重
量%添加した試料No.19については、異常粒の成長が認
められ、そのため電力損失が大きくなったと考えられ、
それぞれの添加成分含有量はこの値以下の量が良好であ
ることが判る。
Sample No. 11 containing 0.40 wt% zirconium dioxide (ZrO 2 ), Sample No. 15 containing 0.60 wt% aluminum trioxide (Al 2 O 3 ) and 0.040 wt% titanium dioxide (TiO 2 ). For sample No. 19, abnormal grain growth was observed, and it is considered that the power loss was increased,
It is understood that the content of each additive component is preferably less than this value.

又これらの添加成分の中の少なくとも1つが0%であ
る比較試料No.2〜7においても電力損失が比較的大き
く、効果が少ないことが判る。
Also, it is understood that the comparative sample Nos. 2 to 7 in which at least one of these added components is 0% has a relatively large power loss and a small effect.

第2表は、本実施例の試料No.8と、従来の比較例の試
料No.1との低損失酸化物磁性材料について、初透磁率
μ、飽和磁束密度B15、残留磁束密度Br、及び比抵抗ρ
の各電磁気特性についての比較を示したものである。
Table 2 shows the initial magnetic permeability μ, the saturation magnetic flux density B 15 , the residual magnetic flux density Br, and the low loss oxide magnetic materials of the sample No. 8 of this example and the sample No. 1 of the conventional comparative example. And specific resistance ρ
3 shows a comparison of the respective electromagnetic characteristics.

第2表の実施例の試料No.8と、比較例の試料No.1とに
ついての各電磁気特性の比較を見ると、試料No.8は比抵
抗が約10倍以上となっており、これにより渦電流損によ
る鉄損が減少し、電力損失を減少していることが理解さ
れる。又、磁気特性はそれぞれほぼ同一であり、この種
のトランス用コア材料として優れていることが判る。
When comparing the electromagnetic characteristics of the sample No. 8 of the example in Table 2 and the sample No. 1 of the comparative example, the specific resistance of the sample No. 8 is about 10 times or more. As a result, it is understood that the iron loss due to the eddy current loss is reduced and the power loss is reduced. Further, the magnetic properties are almost the same, which shows that they are excellent as the core material for this type of transformer.

以上のことから、本発明の実施例によれば、200kHzに
於ける電力損失が大幅に低減されて、100kHz以上に於け
るスイッチング電源用トランスのコア材料として極めて
優れた低損失酸化物磁性材料が得られることが確認され
た。
From the above, according to the embodiment of the present invention, the power loss at 200 kHz is significantly reduced, and a very excellent low loss oxide magnetic material is used as the core material of the switching power supply transformer at 100 kHz or more. It was confirmed that it was obtained.

ハ.発明の効果 〔発明の効果〕 以上に説明した如く、本発明によれば、スイッチング
電源用のトランス用コア材料として求められる諸特性を
十分に満足するとともに、100kHz以上の周波数において
電力損失を大幅に低減できる低損失酸化物磁性材料を提
供することが出来る。
C. EFFECTS OF THE INVENTION [Effects of the Invention] As described above, according to the present invention, various characteristics required as a core material for a transformer for a switching power supply are sufficiently satisfied, and power loss is significantly increased at a frequency of 100 kHz or more. A low loss oxide magnetic material that can be reduced can be provided.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主成分として、30〜40モル%の一酸化マン
ガン(MnO)、5〜15モル%の酸化亜鉛(ZnO)、及び残
分として酸化第2鉄(Fe2O3)を含み、副成分として0.0
2〜0.15重量%の酸化カルシウム(CaO)、及び0.005〜
0.100重量%の酸化ケイ素(SiO2)を含む低損失酸化物
磁性材料において、さらに0.05〜0.30重量%未満(0.05
%を含まず)の二酸化ジルコニウム(ZrO2)、0.50重量
%未満(0%を含まず)の三酸化アルミニウム(Al
2O3)、及び0.30重量%未満(0%を含まず)の二酸化
チタン(TiO2)を添加したことを特徴とする低損失酸化
物磁性材料。
1. A main component containing 30 to 40 mol% of manganese monoxide (MnO), 5 to 15 mol% of zinc oxide (ZnO), and the balance of ferric oxide (Fe 2 O 3 ). , 0.0 as an accessory ingredient
2 to 0.15 wt% calcium oxide (CaO), and 0.005 to
In a low loss oxide magnetic material containing 0.100% by weight of silicon oxide (SiO 2 ), further 0.05 to less than 0.30% by weight (0.05
% Of zirconium dioxide (ZrO 2 ), less than 0.50% by weight (not including 0%) of aluminum trioxide (Al)
2 O 3 ) and less than 0.30% by weight (not including 0%) of titanium dioxide (TiO 2 ), a low loss oxide magnetic material.
JP1303673A 1989-11-22 1989-11-22 Low loss oxide magnetic material Expired - Lifetime JP2562061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303673A JP2562061B2 (en) 1989-11-22 1989-11-22 Low loss oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303673A JP2562061B2 (en) 1989-11-22 1989-11-22 Low loss oxide magnetic material

Publications (2)

Publication Number Publication Date
JPH03163804A JPH03163804A (en) 1991-07-15
JP2562061B2 true JP2562061B2 (en) 1996-12-11

Family

ID=17923853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303673A Expired - Lifetime JP2562061B2 (en) 1989-11-22 1989-11-22 Low loss oxide magnetic material

Country Status (1)

Country Link
JP (1) JP2562061B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3607203B2 (en) 2000-03-31 2005-01-05 Tdk株式会社 Manufacturing method of MnZn ferrite, MnZn ferrite, and ferrite core for power supply
CN104045337B (en) * 2014-06-24 2015-09-30 铜陵三佳变压器有限责任公司 A kind of vanadium based ferrite core material for transformer
CN105023691A (en) * 2015-07-23 2015-11-04 南通保来利轴承有限公司 Iron oxide based anti-electromagnetic interference magnet material and preparation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115027A (en) * 1981-12-28 1983-07-08 Tadayoshi Karasawa Oxide magnetic material and preparation thereof
JPS63158811A (en) * 1987-12-11 1988-07-01 Tadayoshi Karasawa Manufacture of oxide ferromagnetic material

Also Published As

Publication number Publication date
JPH03163804A (en) 1991-07-15

Similar Documents

Publication Publication Date Title
JP2000286119A (en) Ferrite
JP2562061B2 (en) Low loss oxide magnetic material
EP0445965B1 (en) Low power loss Mn-Zn ferrites
JP2006347848A (en) Low loss ferrite material for power source
JPH06290925A (en) High frequency low loss ferrite for power supply
JPH05198416A (en) Mn-zn based ferrite
JPH11238617A (en) Manganese-zinc based ferrite
JPH07142222A (en) Low-loss mn-zn soft ferrite
KR100332845B1 (en) transformer or inductor core of NiZn ferrite material
JPH07130527A (en) Oxide magnetic material
JP2627639B2 (en) Low loss oxide magnetic material
JP2551491B2 (en) Low loss oxide magnetic material
JP2855275B2 (en) Low loss oxide magnetic material
JP3044666B2 (en) Low loss ferrite for power supply
JPH05267040A (en) Low-loss mn-zn ferrite
JPH0124746B2 (en)
JP3238735B2 (en) Manganese-zinc ferrite
JP3554983B2 (en) Low-loss oxide magnetic material
JPH0666178B2 (en) Low loss oxide magnetic material
EP0460215A1 (en) Low-loss oxide magnetic material
JP3157525B2 (en) Low loss Mn-Zn ferrite
JP2640479B2 (en) Low loss oxide magnetic material
JPH03145704A (en) Low loss oxide magnetic material
JP2627654B2 (en) Low loss oxide magnetic material
JPH0457628B2 (en)

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14