JPH03163804A - Low loss oxide magnetic substance - Google Patents

Low loss oxide magnetic substance

Info

Publication number
JPH03163804A
JPH03163804A JP1303673A JP30367389A JPH03163804A JP H03163804 A JPH03163804 A JP H03163804A JP 1303673 A JP1303673 A JP 1303673A JP 30367389 A JP30367389 A JP 30367389A JP H03163804 A JPH03163804 A JP H03163804A
Authority
JP
Japan
Prior art keywords
oxide
loss
less
oxide magnetic
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1303673A
Other languages
Japanese (ja)
Other versions
JP2562061B2 (en
Inventor
Atsushi Yonekura
淳 米倉
Kiyoshi Shoji
潔 庄司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokin Corp
Original Assignee
Tokin Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokin Corp filed Critical Tokin Corp
Priority to JP1303673A priority Critical patent/JP2562061B2/en
Publication of JPH03163804A publication Critical patent/JPH03163804A/en
Application granted granted Critical
Publication of JP2562061B2 publication Critical patent/JP2562061B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compounds Of Iron (AREA)
  • Magnetic Ceramics (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To reduce iron loss at a frequency higher than or equal to 100kHz by adding oxide of other component to low loss oxide magnetic substance containing main component and subcomponent. CONSTITUTION:The main component of oxide magnetic substance obtained by mixing, molding and baking oxide power is as follows; manganese oxide (MnO) of 30-40mol%, zinc oxide (ZnO) of 5-15mol%, and ferric oxide (Fe2O3) of residual part. The subcomponent is composed of calcium oxide (CaO) of 0.02-0.15wt.% and silicon oxide (SiO2) of 0.005-0.100wt.%. Further the following are added; zirconium dioxide (ZrO2) of 0.30wt.% or less (0% is not contained), aluminum trioxide (Al2O3) of 0.50wt.% or less (0% is not included) and titanium dioxide (TiO2) of 0.30wt.% or less (0% is not included). The admixture ZrO2 is deposited on the grain boundary of low loss oxide magnetic substance texture, and increases the specific resistance of the grain boundary. The admixtures Al2O3 and TiO2 turn to solid solution in crystal, and increase the specific resistance of the inside of crystal. Thereby power loss can be reduced at a frequency of 100kHz or higher.

Description

【発明の詳細な説明】 イ.発明の目的 〔産業上の利川分野〕 本允明は、電子機器川スイッチング電源等に高周波で用
いる、主としてl・ランス用のコア相料である低損失酸
化物磁性材料に関し、特に主成分として30〜40モル
%の−酸化マンカン(MnO)、5〜15モル%の酸化
亜鉛(ZnO)、及び残分として酸化第2鉄(Fe20
3)を含み、副成分として02O2〜0、15重量%の
酸化カルシウム(CaO)、及び0. 005〜0. 
100重量%の酸化ケイ素(SiO2)を含む低損失酸
化物磁性相料の改良に関するものである。
[Detailed description of the invention] a. Purpose of the invention [Industrial field] Masaaki Motomoto relates to a low-loss oxide magnetic material that is used at high frequencies in switching power supplies for electronic devices, etc., and is mainly used as a core phase material for lances. ~40 mol% -mancan oxide (MnO), 5-15 mol% zinc oxide (ZnO), and the balance ferric oxide (Fe20).
3) and 02O2~0, 15% by weight of calcium oxide (CaO) as accessory components, and 0.3% by weight of calcium oxide (CaO). 005~0.
The present invention relates to an improvement in a low-loss oxide magnetic phase material containing 100% by weight of silicon oxide (SiO2).

〔従来の技術〕[Conventional technology]

酸化物磁性拐料であるマンガンー亜鉛系フェライ1・は
、各種通信機器、民生用機器などの1・ランス及びコイ
ル用のコア材料として多用されているが、従来スイッチ
ング電源用の1・ランスにおいては、スイッチング周波
数として丸11ら10〜100kHz程度のものが使用
されており、これにヌ・]応すべき低指失酸化物磁性材
料として主成分が30〜40モル%のMnO、2 5〜15モル%のZnO、残分がFe203を含み、副
成分として02O2 〜0.15重量%のCaO、02
O05〜0.100重量%のSin2を含むものがすで
に開発されている。
Manganese-zinc-based ferrite 1, which is an oxide magnetic material, is often used as a core material for lances and coils in various communications equipment and consumer equipment, but it has not been used in conventional lances for switching power supplies. , a switching frequency of about 10 to 100 kHz is used, and as a low-finger-loss oxide magnetic material that is suitable for this, MnO, whose main component is 30 to 40 mol %, 25 to 15 mol% ZnO, the balance contains Fe203, 02O2 to 0.15 wt% CaO as subcomponents, 02
Those containing 005 to 0.100% by weight of Sin2 have already been developed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかし、近年、スイッチング電源を小型、軽量化するた
めに、スイッチング周波数を100kHz以.4一の高
周波で使用する傾向が強まりつつあり、その[]的にあ
う性能の1・ランス用コア拐料としての低損失酸化物磁
性材料が要求されている,,一方、上述の如き従来の成
分を有する低]{1失酸化物磁性材料を、スイッチング
周波数が100kHz以上のスイッチング電源用の変圧
器のコア椙料として使用すると、その鉄損による電力損
失(Pn[kW/m3])が大きく、これによる発熱の
ため許容温境以上に温度が上昇し、1〜ランス自体やそ
の周辺の部品を損ない使用に耐えないという欠点があっ
た。
However, in recent years, in order to make switching power supplies smaller and lighter, the switching frequency has been increased to 100kHz or higher. There is a growing trend for high-frequency use of 4-1 lances, and there is a demand for low-loss oxide magnetic materials as core fillers for 1-lance lances with performance that meets this trend.On the other hand, the conventional When a magnetic material with a low [low] {1 lost oxide component is used as a core material for a transformer for a switching power supply with a switching frequency of 100 kHz or more, the power loss (Pn [kW/m3]) due to iron loss is large. Due to the heat generated by this, the temperature rises above the allowable temperature range, which causes damage to the lance itself and its surrounding parts, making it unusable.

そこで、本発明の課題は、周波数が100kHZ以]−
.の高い周波数において使用しても、鉄損が小さく、従
って電力損失が小さく、発熱を許容温度以−ドに抑え得
て実用に供し得るを低損失酸化物磁性材料を提供するこ
とにある。
Therefore, the problem of the present invention is to
.. It is an object of the present invention to provide a low-loss oxide magnetic material which has a small core loss, therefore a small power loss, and can suppress heat generation to a permissible temperature or lower even when used at high frequencies, and which can be put to practical use.

口.発明の構成 〔課題を解決するための千段〕 本発明は、既に開允された主成分及び副成分を含む従来
の低損失酸化物磁性材料に、さらに他の成分の酸化物を
添加せしめることにより、100kHz以1二の鉄損を
従来より−層低減した低損失酸化物磁性材料を得るもの
である。
mouth. Structure of the Invention [A Thousand Steps to Solve the Problem] The present invention involves adding an oxide of another component to a conventional low-loss oxide magnetic material containing a main component and a subcomponent that have already been developed. As a result, a low-loss oxide magnetic material with iron loss below 100 kHz that is 12 times lower than that of the conventional material is obtained.

即ち本発明はき酸化物粉末を混合・成形・焼成してなる
酸化物磁性材料の主成分として、30〜40モル%の一
化マンガン(MnO)、5〜15モル%の酸化亜鉛(Z
nO)、及び残分として酸化第2鉄(Fe,O→を含み
、副成分として02O2〜0.15重量%の酸化カルシ
ウム(CaO)、及び0. 005 〜0. 100重
量%の酸化ケイ素(SiO2)を含む低損失酸化物磁性
材料において、さらに0.30重量%以1ク《0%を含
まず)の二酸化ジルコニウム(ZrO,)、0.50重
量%以下(O%を含まず)の一ミ1唆化アルミニウム(
A1.O.)、及び0、30.’R−!i’;%以下(
O%を含まず)の二酸化チタン(TiO2)を添加した
ことを特徴とする低損失酸化物磁性材料である。
That is, the main components of the oxide magnetic material prepared by mixing, molding, and firing the oxide powder of the present invention include 30 to 40 mol% manganese monide (MnO) and 5 to 15 mol% zinc oxide (Z).
nO), and ferric oxide (Fe, O→) as the remainder, calcium oxide (CaO) in the amount of 02O2 to 0.15% by weight as subcomponents, and silicon oxide (0.005 to 0.100% by weight) In the low-loss oxide magnetic material containing 0.30% by weight or more (excluding 0%) of zirconium dioxide (ZrO,), and 0.50% by weight or less (not including 0%) of zirconium dioxide (ZrO,), Aluminum
A1. O. ), and 0, 30. 'R-! i'; % or less (
This is a low-loss oxide magnetic material characterized by the addition of titanium dioxide (TiO2) (not containing 0%).

〔作用〕[Effect]

本発明は、従来の低損失酸化物磁性相料に、二酸化ジル
コニウム(ZrO2)、三酸化アルミニウlえ(Ah,
03).及び二酸化チタン(TiO2)を種々の割合で
添加した一連の実験を詳しく行なった結果、−ヒ記成分
範囲に添加した材料に於て、100kHZ以1−.の鉄
損を減じて電力損失を低減した低損失酸化物磁性材料が
得られたものである。
The present invention adds zirconium dioxide (ZrO2), aluminum trioxide (Ah,
03). As a result of a detailed series of experiments in which titanium dioxide (TiO2) and titanium dioxide (TiO2) were added in various proportions, it was found that -1-. The result is a low-loss oxide magnetic material that reduces iron loss and power loss.

添加物zr02は、低損失酸化物磁性材料組織の粒界に
析出し、粒界の固有抵抗を増加させ、又添加物A120
3及びTl02は結晶内に固溶し、結晶内部の固右抵抗
を増加させる働きがあると考えられ、さらに添加物Al
203は結晶組織を均一にする作用があると考えられる
The additive zr02 precipitates at the grain boundaries of the low-loss oxide magnetic material structure, increases the specific resistance of the grain boundaries, and also increases the resistivity of the grain boundaries.
It is thought that 3 and Tl02 are dissolved in the crystal and have the function of increasing the solid resistance inside the crystal.
It is thought that 203 has the effect of making the crystal structure uniform.

これらの複合作用によって、これらを添加した低損失酸
化物磁性材料は、その組織内部の電磁気特性が均一化す
ると共に組織全体の比抵抗ρが一屑増大し、これによー
〕て鉄損に関係する渦電流損が減少し電力損失が減少し
たものと考えられる。
Due to these combined effects, the electromagnetic properties inside the structure of the low-loss oxide magnetic material to which they are added become uniform, and the resistivity ρ of the entire structure increases by a small amount, thereby reducing the iron loss. This is thought to be due to the reduction in eddy current loss and the reduction in power loss.

電力損失の減少により高周波における発熱が抑え5 られる.. 実際に−L記本発明の添加成分範囲内外近傍の低損失酸
化物磁性材料について詳細に実験を行い、試料について
評価したところ、従来の前記成分の低損失酸化物磁性材
料に比べ、例えばZr(h 0.10重量%、Al20
3 02O5重量%、TiO202O5重量%を添加し
た低損失酸化物磁性材料は、比抵抗ρが10倍以上あり
、200kHzにおける車力損失が゛]′−分以ドであ
ることが確認された,, 〔実施例〕 以下に本発明の実施例及び比較例について、実験した内
容を詳しく説明する。
By reducing power loss, heat generation at high frequencies is suppressed5. .. In fact, detailed experiments were conducted on low-loss oxide magnetic materials with additive components within and near the range of the additive components of the present invention described in -L, and samples were evaluated. h 0.10% by weight, Al20
3 It was confirmed that the low-loss oxide magnetic material containing 5% by weight of O2O and 5% by weight of TiO202O has a specific resistance ρ of 10 times or more, and a vehicle power loss at 200kHz of less than ゛]'-min. [Example] Below, details of experiments conducted in Examples and Comparative Examples of the present invention will be described in detail.

酸化物粉末を混合・成形・焼成してなる酸化物磁性材料
の主成分として、532Oモル%の酸化第2鉄(Fe2
0:+)、362O−Eル%の一化マンガン(MnO)
、及び112Oモル%の酸化亜鉛(ZnO)の標準威分
を含有し、副成分として二酸化ケイ素(SiO, )、
酸化カルシウム(CaO)を従来の低損失酸化物磁性相
料の成分範囲で含有し、さらに二酸化ジルコニウム(Z
rO2)、二酸化アルミニウム(Al,,2O→、及び
L酸化チタン6 (TiO.=)を複合添加した複数の本実施例の低損失
酸化物磁性拐料の試料を各種試作した。さらに後者の3
つの酸化物を添加しない従来の比較例、及び後者の3つ
の酸化物を単独又は複合添加した複数の他の比較例の低
損失酸化物磁性材料の試料を試作した。それぞれの酸化
物原料を所定成分量添加混合し、造粒し、成形プレスし
た後、窒素ガス雰囲気中において酸素分)3E 5. 
0at%以下、1300〜1400゜Cの温度で焼結し
て本実施例及び比較例の試料を得た。
Ferric oxide (Fe2
0:+), 362O-Ele% manganese monoxide (MnO)
, and a standard content of zinc oxide (ZnO) of 1120 mol %, and silicon dioxide (SiO, ) as an accessory component.
Contains calcium oxide (CaO) within the range of conventional low-loss oxide magnetic phase materials, and further contains zirconium dioxide (Z
Various samples of the low-loss oxide magnetic particles of this example were prepared in which multiple amounts of aluminum dioxide (Al, 2O→, and L titanium oxide 6 (TiO.=) were added.
Samples of low-loss oxide magnetic materials were prototyped, including a conventional comparative example in which the three oxides were not added, and a plurality of other comparative examples in which the latter three oxides were added singly or in combination. After adding and mixing each oxide raw material in a predetermined amount, granulating it, and pressing it, the oxygen content (oxygen content) 3E 5.
Samples of this example and comparative example were obtained by sintering at a temperature of 1,300 to 1,400°C at a temperature of 0 at% or less.

第1表は試作した本実施例の試料No. 5〜10、N
o.12〜14、No.16 〜18、No.20 〜
21と、従来の比較例の試料No. 1、及びその他の
比較例の試料No.2〜4,11, 15. 19につ
いて、それぞれの副成分及び添加成分の含有量と、周波
数200kHz、最大磁束密度Bmが1000Gの場合
の電力損失PHの試料温度に対する埴小値を示したもの
である。
Table 1 shows the sample No. of the prototype of this example. 5-10, N
o. 12-14, No. 16 to 18, No. 20 ~
21, and sample No. 21 of the conventional comparative example. 1, and other comparative example sample No. 2-4, 11, 15. For No. 19, the content of each subcomponent and additive component, and the small value of the power loss PH with respect to the sample temperature when the frequency is 200 kHz and the maximum magnetic flux density Bm is 1000 G are shown.

以下余白 第 1 表 第1表によれば、二酸化ジルコニウム(ZrO2),二
酸化アルミニウム(Al20.,)、及び二酸化チタン
(TiO2)の複合添加によって、従来の比較例の試料
No.1より電力損失が減少していることがわかる。
Table 1 below: Margin 1 According to Table 1, by the combined addition of zirconium dioxide (ZrO2), aluminum dioxide (Al20.), and titanium dioxide (TiO2), sample No. It can be seen that the power loss is reduced compared to 1.

これは、これらの添加物が低損失酸化物磁=l’l: 
4Z料組織内部において、ZrO2が組織の粒界に折出
して粒界の固有抵抗を増大させ、Al20:.及びTi
02が結品内に固溶してその固有抵抗を増大させ、さ1
゛,にA1203が結晶組織を均−にする効果があった
と考えられ、これらの複合作用によって、組織内部の電
磁気特性の均一化と組織全体の比抵抗を増大せしめ、こ
れによって鉄損を減少せしめ電力損を減少せしめたもの
と考えられる。
This means that these additives create a low-loss oxide magnet = l'l:
Inside the 4Z material structure, ZrO2 is precipitated to the grain boundaries of the structure, increasing the specific resistance of the grain boundaries, and Al20:. and Ti
02 solidly dissolves in the crystal, increasing its resistivity, and
It is thought that A1203 had the effect of leveling the crystal structure, and the combined effect of these effects made the electromagnetic properties inside the structure uniform and increased the resistivity of the entire structure, thereby reducing iron loss. This is thought to have reduced power loss.

二酸化ジルコニウム(ZrO2)を0.40重量%添加
した試料No. 11.二酸化アルミニウム(Al.,
03)を0.60重量%添加した試料No.15、及び
二酸化チタン(TiO2)を02O40重量%添加した
試料No. 19にツイては、異常粒の成長が認められ
、そのため電力損失が大きくなったと考えられ、それぞ
れの添加成分含有量はこの値以下の量が良好であること
が判る。
Sample No. 0.40% by weight of zirconium dioxide (ZrO2) was added. 11. Aluminum dioxide (Al.,
Sample No. 03) was added in an amount of 0.60% by weight. Sample No. 15, and Sample No. 1 to which 40% by weight of titanium dioxide (TiO2) was added. In No. 19, abnormal grain growth was observed, which is thought to have increased the power loss, and it can be seen that the content of each additive component below this value is good.

9 又これらの添加成分の中の2つがO%である試料No.
2、No. 3、及びNo.4においても電力損失が比
較的大きく、効果が少ないことが判る,1第2表は、本
実施例の試料No. 8と、従来の比較例の試料No.
 1との低損失酸化物磁性材料について、初透磁率μ、
飽和磁束密度Bl,、残留磁束密度Br、及び比抵抗ρ
の各電磁気特性についての比較を示したものである。
9 Sample No. 9 in which two of these additive components were 0%.
2.No. 3, and no. It can be seen that the power loss is relatively large in Sample No. 4, and the effect is small. 8, and sample No. 8 of the conventional comparative example.
For low-loss oxide magnetic materials with 1, the initial permeability μ,
Saturation magnetic flux density Bl, residual magnetic flux density Br, and specific resistance ρ
This shows a comparison of each electromagnetic characteristic.

第2表 第2表の実施例の試料No. 8と、比較例の試料No
.1とについての各電磁気特性の比鮫を見ると、試料N
o.8は比抵抗が約10倍以上となっており、これによ
り渦電流損による鉄損が減少し、電力損失を減少してい
ることが理解される。又、磁気特性はそれぞれほぼ同一
であり、この種の1・ランス川コア10 材料として優れていることが判る。
Table 2 Sample No. of Examples in Table 2 8 and Comparative Example Sample No.
.. Looking at the comparison of each electromagnetic characteristic for sample N
o. No. 8 has a specific resistance of about 10 times or more, and it is understood that this reduces iron loss due to eddy current loss and reduces power loss. Moreover, the magnetic properties are almost the same, and it can be seen that these materials are excellent as this type of material.

以上のことから、本発明の実施例によれば、200kH
zに於ける電力損失が大幅に低減されて、100kHz
以上に於けるスイッチング電源用トランスのコア材料ど
して極めて優れた低損失酸化物磁性相料が得られること
が確認された。
From the above, according to the embodiment of the present invention, 200kHz
100kHz with significantly reduced power loss at
It has been confirmed that an extremely excellent low-loss oxide magnetic phase material can be obtained as a core material for a transformer for a switching power supply.

ハ.允明の効果 〔発明の効果〕 以上に説19Jシた如く、本発明によれば、スイッチン
グ電源用の1・ランス用コア拐料として求められる諸特
性を十分に満足するとともに、100kHz以上の周波
数において電力損失を大幅に低減できる低損失酸化物磁
性材料を提供することが出来る。
C. Effects of the Invention [Effects of the Invention] As described above in Theory 19J, the present invention satisfies the various characteristics required as a core material for a lance for a switching power supply, and also provides a material with a frequency of 100 kHz or more. It is possible to provide a low-loss oxide magnetic material that can significantly reduce power loss.

Claims (1)

【特許請求の範囲】[Claims] 1.酸化物粉末を混合・成形・焼成してなる酸化物磁性
材料の主成分として、30〜40モル%の一化マンガン
(MnO)、5〜15モル%の酸化亜鉛(ZnO)、及
び残分として酸化第2鉄(Fe_2O_3)を含み、副
成分として0.02〜0.15重量%の酸化カルシウム
(CaO)、及び0.005〜0.100重量%の酸化
ケイ素(SiO_2)を含む低損失酸化物磁性材料にお
いて、さらに0.30重量%以下(0%を含まず)の二
酸化ジルコニウム(ZrO_2)、0.50重量%以下
(0%を含まず)の三酸化アルミニウム(Al_2O_
3)、及び0.30重量%以下(0%を含まず)の二酸
化チタン(TiO_2)を添加したことを特徴とする低
損失酸化物磁性材料。
1. The main components of the oxide magnetic material obtained by mixing, molding, and firing oxide powders are 30 to 40 mol% manganese monide (MnO), 5 to 15 mol% zinc oxide (ZnO), and the remainder. Low-loss oxidation containing ferric oxide (Fe_2O_3) and 0.02-0.15% by weight of calcium oxide (CaO) and 0.005-0.100% by weight of silicon oxide (SiO_2) as secondary components. In the magnetic material, 0.30% by weight or less (excluding 0%) of zirconium dioxide (ZrO_2) and 0.50% by weight or less (not including 0%) of aluminum trioxide (Al_2O_
3), and a low-loss oxide magnetic material characterized by adding 0.30% by weight or less (excluding 0%) of titanium dioxide (TiO_2).
JP1303673A 1989-11-22 1989-11-22 Low loss oxide magnetic material Expired - Lifetime JP2562061B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1303673A JP2562061B2 (en) 1989-11-22 1989-11-22 Low loss oxide magnetic material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1303673A JP2562061B2 (en) 1989-11-22 1989-11-22 Low loss oxide magnetic material

Publications (2)

Publication Number Publication Date
JPH03163804A true JPH03163804A (en) 1991-07-15
JP2562061B2 JP2562061B2 (en) 1996-12-11

Family

ID=17923853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1303673A Expired - Lifetime JP2562061B2 (en) 1989-11-22 1989-11-22 Low loss oxide magnetic material

Country Status (1)

Country Link
JP (1) JP2562061B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627103B2 (en) 2000-03-31 2003-09-30 Tdk Corporation Mn-Zn ferrite production process, Mn-Zn ferrite, and ferrite core for power supplies
CN104045337A (en) * 2014-06-24 2014-09-17 铜陵三佳变压器有限责任公司 Vanadium-based ferrite core material for transformer
CN105023691A (en) * 2015-07-23 2015-11-04 南通保来利轴承有限公司 Iron oxide based anti-electromagnetic interference magnet material and preparation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115027A (en) * 1981-12-28 1983-07-08 Tadayoshi Karasawa Oxide magnetic material and preparation thereof
JPS63158811A (en) * 1987-12-11 1988-07-01 Tadayoshi Karasawa Manufacture of oxide ferromagnetic material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58115027A (en) * 1981-12-28 1983-07-08 Tadayoshi Karasawa Oxide magnetic material and preparation thereof
JPS63158811A (en) * 1987-12-11 1988-07-01 Tadayoshi Karasawa Manufacture of oxide ferromagnetic material

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6627103B2 (en) 2000-03-31 2003-09-30 Tdk Corporation Mn-Zn ferrite production process, Mn-Zn ferrite, and ferrite core for power supplies
CN104045337A (en) * 2014-06-24 2014-09-17 铜陵三佳变压器有限责任公司 Vanadium-based ferrite core material for transformer
CN105023691A (en) * 2015-07-23 2015-11-04 南通保来利轴承有限公司 Iron oxide based anti-electromagnetic interference magnet material and preparation method

Also Published As

Publication number Publication date
JP2562061B2 (en) 1996-12-11

Similar Documents

Publication Publication Date Title
JP2009173483A (en) MnZn BASED FERRITE AND MAGNETIC CORE FOR TRANSFORMER
JP2000286119A (en) Ferrite
JP3597673B2 (en) Ferrite material
JPH06290925A (en) High frequency low loss ferrite for power supply
JPH03163804A (en) Low loss oxide magnetic substance
JPH09180925A (en) Mn-zn soft ferrite
JP3597666B2 (en) Mn-Ni ferrite material
JPH06349622A (en) Core for transformer or inductor
JP2727579B2 (en) Low loss ferrite
JPH03145704A (en) Low loss oxide magnetic material
JP2627639B2 (en) Low loss oxide magnetic material
JPH10177912A (en) Low-loss oxide magnetic material and manufacture thereof
JPH03184307A (en) High-frequency low-loss ferrite for power supply
JPH092866A (en) Ferrite with minor electric power loss for liquid crystal backlight
JPH0457628B2 (en)
JP3023799B2 (en) Method for producing low-loss oxide magnetic material
JP3499283B2 (en) High permeability oxide magnetic material
JPS63151620A (en) Oxide magnetic material having low loss
JP2551491B2 (en) Low loss oxide magnetic material
JP2627654B2 (en) Low loss oxide magnetic material
JPS61252609A (en) Magnetic material of low-loss oxide
JP2640479B2 (en) Low loss oxide magnetic material
JP2001155915A (en) Mn-Zn BASED FERRITE MATERIAL
JPH01259509A (en) Low loss oxide magnetic material
JPH07169614A (en) Low-loss oxide magnetic material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090919

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100919

Year of fee payment: 14