JP2560374Y2 - Three-phase batch vacuum circuit breaker - Google Patents

Three-phase batch vacuum circuit breaker

Info

Publication number
JP2560374Y2
JP2560374Y2 JP1991046512U JP4651291U JP2560374Y2 JP 2560374 Y2 JP2560374 Y2 JP 2560374Y2 JP 1991046512 U JP1991046512 U JP 1991046512U JP 4651291 U JP4651291 U JP 4651291U JP 2560374 Y2 JP2560374 Y2 JP 2560374Y2
Authority
JP
Japan
Prior art keywords
phase
closed container
circuit breaker
vacuum
bushing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1991046512U
Other languages
Japanese (ja)
Other versions
JPH04131835U (en
Inventor
忠義 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Electric Mfg Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP1991046512U priority Critical patent/JP2560374Y2/en
Publication of JPH04131835U publication Critical patent/JPH04131835U/en
Application granted granted Critical
Publication of JP2560374Y2 publication Critical patent/JP2560374Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、送、変電所などの電力
用回路に使用される三相一括形真空遮断器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-phase collective vacuum circuit breaker used for power circuits such as power transmission and substations.

【0002】[0002]

【従来の技術】真空遮断器は遮断性能が優れ、かつ信頼
性も高いことから、広く用いられている。又、電流遮断
点となる真空バルブを一相づつSF6 ガスなどの絶縁ガ
スを封入した円筒状の接地容器に収納し、電流遮断と真
空バルブ内の絶縁を真空に負担させるとともに、真空バ
ルブの外沿面の絶縁を絶縁ガスに分担させ、コンパクト
化を図ったタンク形真空遮断器が使用されている。図3
に従来構造の三相用タンク形真空遮断器の全体構造の一
例を、図4に図3の遮断器本体1の1相分の断面構造を
示す。図3、図4において、2は円筒断面を有する密閉
容器、3は真空バルブで、絶縁スペーサ4によって接地
電位である密閉容器2に対し、絶縁を保持した状態で固
定されている。5aは第1の貫通ブッシングで、密閉容
器2の一方の端部に植設された第1の枝管部6aに固定
されている。7aは外部電線8aと接続する端子台で、
第1の貫通ブッシング5aの上端部で、第1の貫通ブッ
シング5a及び密閉容器2内に封入された絶縁ガス9を
封止するとともに、第1の貫通ブッシング5a内を貫通
し真空バルブ3の一端と電気的に接続する第1の導体1
0aに接続されている。密閉容器2の前記の枝管部6a
の反対側の端部には、第2の枝管部6bがあって、第1
の枝管部6a側と同様に外部電線8bと接続する端子台
7b、第2の導体10b、第2の貫通ブッシング5bが
設置されている。前記の絶縁ガス9にはSF6 などの高
絶縁性能を有する媒体を用いるのが適当で、密閉容器2
及び第1と第2の貫通ブッシング5a、5b内に一括し
て充填されている。図4には遮断器本体1の1相分だけ
の構造を示したが、他の2相も略々同一構造である。1
1は三相の密閉容器2の絶縁ガス9を連通させるガス配
管である。すなわち絶縁ガス9を経済的に監視するた
め、三相の絶縁ガス9をガス配管11によって共通化し
ている。
2. Description of the Related Art Vacuum circuit breakers are widely used because of their excellent breaking performance and high reliability. In addition, the vacuum valves serving as current interrupting points are housed one by one in a cylindrical grounded container filled with insulating gas such as SF6 gas, so that the current interrupting and the insulation inside the vacuum valve are borne by vacuum, and the outside of the vacuum valve is A tank-type vacuum circuit breaker is used in which the insulation of the creepage is shared by the insulating gas and the size is reduced. FIG.
FIG. 4 shows an example of the entire structure of a conventional three-phase tank-type vacuum circuit breaker, and FIG. 4 shows a cross-sectional structure of one phase of the circuit breaker main body 1 in FIG. 3 and 4, reference numeral 2 denotes a closed container having a cylindrical cross section, and 3 denotes a vacuum valve, which is fixed by an insulating spacer 4 to the closed container 2 at a ground potential while maintaining insulation. Reference numeral 5a denotes a first through bushing, which is fixed to a first branch pipe portion 6a planted at one end of the closed casing 2. 7a is a terminal block connected to the external electric wire 8a,
At the upper end of the first through bushing 5a, the insulating gas 9 sealed in the first through bushing 5a and the sealed container 2 is sealed, and one end of the vacuum valve 3 penetrates through the first through bushing 5a. 1st conductor 1 electrically connected to
0a. The branch pipe portion 6a of the closed container 2
At the opposite end, there is a second branch 6b,
The terminal block 7b connected to the external electric wire 8b, the second conductor 10b, and the second through bushing 5b are installed similarly to the branch pipe portion 6a side. It is appropriate to use a medium having a high insulating performance such as SF6 for the insulating gas 9.
And the first and second through bushings 5a, 5b are collectively filled. FIG. 4 shows the structure of only one phase of the circuit breaker main body 1, but the other two phases have substantially the same structure. 1
Reference numeral 1 denotes a gas pipe for communicating the insulating gas 9 of the three-phase closed container 2. That is, in order to monitor the insulating gas 9 economically, the three-phase insulating gas 9 is shared by the gas pipe 11.

【0003】12は当該遮断器の開閉操作を行う操作装
置で、架台13に装着されている。14は駆動機構で、
操作装置12と遮断器本体1の第1相を連結する駆動ロ
ッド15、遮断器本体1の第一相と第二相、遮断器本体
1の第二相と第三相をそれぞれ連結するロッド16a、
16b、操作力の向き変換するレバー17等で構成され
ている。18は絶縁ロッドでレバー17と真空バルブ3
の間を絶縁するとともに、駆動ロッド15及びロッド1
6a、16bの操作力を真空バルブ3に伝達する。絶縁
ガス9はレバー17部に設けた密封装置19によって可
回転的に大気側と封止されている。20は駆動ロッド1
5やロッド16a、16bなどを風雨から遮蔽するカバ
ーである。この遮断器は、操作装置12によって三相の
遮断器本体1が一括して動作する三相用タンク形真空遮
断器となっている。
An operation device 12 for opening and closing the circuit breaker is mounted on a gantry 13. 14 is a drive mechanism,
A drive rod 15 for connecting the operating device 12 to the first phase of the circuit breaker body 1, a rod 16a for connecting the first and second phases of the circuit breaker body 1, and the second and third phases of the circuit breaker body 1, respectively. ,
16b, a lever 17 for changing the direction of the operation force, and the like. Reference numeral 18 denotes an insulating rod, which is a lever 17 and a vacuum valve 3.
Between the drive rod 15 and the rod 1
The operating forces of 6a and 16b are transmitted to the vacuum valve 3. The insulating gas 9 is rotatably sealed from the atmosphere by a sealing device 19 provided on the lever 17. 20 is the drive rod 1
5 is a cover for shielding the rods 5 and the rods 16a and 16b from wind and rain. This circuit breaker is a three-phase tank-type vacuum circuit breaker in which the three-phase circuit breaker body 1 is operated collectively by the operation device 12.

【0004】[0004]

【考案が解決しようとする課題】本考案は従来機器にお
けるつぎの問題点を解決する、三相一括形真空遮断器を
提供することを目的としている。 (1)従来のガス絶縁と組み合わせた三相用タンク形真
空遮断器は、三相のそれぞれが独立した円筒状の密閉容
器に収納されているので、部品点数が多く、かつ円筒状
の密閉容器に略々直交するように碍管を植設するための
枝管部が必要になるなど、構造が複雑であるため高価で
ある。 (2)部品点数及び、ガスシール箇所が多く信頼性を減
殺する要因が多い。 (3)各々の密閉容器間を接続するガス配管が強度上の
弱点になり易い。
SUMMARY OF THE INVENTION An object of the present invention is to provide a three-phase collective vacuum circuit breaker which solves the following problems in conventional equipment. (1) The conventional three-phase tank-type vacuum circuit breaker combined with gas insulation has a large number of parts and a cylindrical closed container because each of the three phases is housed in an independent cylindrical closed container. It is expensive because of its complicated structure, such as the necessity of a branch pipe portion for implanting an insulator pipe so as to be substantially perpendicular to the pipe. (2) The number of parts and the number of gas seal locations are large, and there are many factors that reduce reliability. (3) A gas pipe connecting between the closed containers tends to be a weak point in strength.

【0005】[0005]

【課題を解決するための手段】請求項1の考案において
は、直方体の上水平面と4つの垂直面で構成される4箇
所の直交部のうち、対向する2箇所を傾斜面に形成した
8面体の密閉容器と、該密閉容器に封入した絶縁ガス
と、前記密閉容器内に所定の間隔を離間して設置した三
相の真空バルブと、前記密閉容器の傾斜面の一方の、三
相の真空バルブとそれぞれ対応する位置に設置した、密
閉容器の内外を連通する第1の導体を備えた三相の第1
の貫通ブッシングと、第1の貫通ブッシングとは反対側
の密閉容器の傾斜面に設置した、密閉容器の内外を連通
する第2の導体を備えた三相の第2の貫通ブッシングを
備え、第1の貫通ブッシング側から真空バルブを介して
第2の貫通ブッシング側へ、三相それぞれに接続する構
造とする。請求項2の考案においては、請求項1の考案
において、絶縁ガスを、ほぼ90%のSF6 と、ほぼ1
0%の乾燥空気又は窒素の混合体で構成する。
According to the invention of claim 1, an octahedron in which two opposing portions are formed as inclined surfaces out of four orthogonal portions composed of an upper horizontal plane and four vertical surfaces of a rectangular parallelepiped. A closed container, an insulating gas sealed in the closed container, a three-phase vacuum valve installed at a predetermined distance in the closed container, and a three-phase vacuum on one of the inclined surfaces of the closed container. A three-phase first having a first conductor communicating between the inside and the outside of the closed container, which is provided at a position corresponding to each of the valves.
And a three-phase second through bushing provided with a second conductor communicating between the inside and the outside of the closed container, which is provided on the inclined surface of the closed container opposite to the first through bushing, The three through-phases are connected from one through-bushing side to a second through-bushing side via a vacuum valve. According to a second aspect of the present invention, in the first aspect, the insulating gas is substantially 90% SF6 and approximately 1%.
Consist of a mixture of 0% dry air or nitrogen.

【0006】[0006]

【作用】上記のように構成された請求項1の考案によれ
ば、密閉容器は三相の遮断器本体に対し1個で構成する
ことが出来る。又、貫通ブッシングを傾斜して密閉容器
に直接植設出来るので、三相の第1の貫通ブッシングと
第2の貫通ブッシングの間の気中側の絶縁間隔が大きく
なるとともに、部品数量、及びガスシール箇所が削減さ
れる。さらに三相間を連結するガス配管も不要となる。
又、請求項2の考案によれば、請求項1の考案の作用に
加えて、ほぼ90%のSF6 と、ほぼ10%の乾燥空気
又は窒素の混合体を適用することによって、純粋なSF
6 ガスよりも絶縁特性に優れた遮断器の提供が可能とな
る。
According to the first aspect of the present invention, the closed container can be constituted by one for the three-phase circuit breaker body. Also, since the through bushing can be implanted directly in the closed container by being inclined, the insulation interval on the air side between the three-phase first through bushing and the second through bushing is increased, and the number of parts and gas are reduced. The number of seal locations is reduced. Further, a gas pipe connecting the three phases is not required.
According to the invention of claim 2, in addition to the operation of the invention of claim 1, pure SF can be obtained by applying a mixture of approximately 90% of SF6 and approximately 10% of dry air or nitrogen.
It is possible to provide a circuit breaker with better insulation characteristics than 6 gases.

【0007】[0007]

【実施例】図1に本考案になる三相一括形真空遮断器の
全体構造を、図2に図1の遮断器本体21の1相分の断
面構造を示す。図3、図4に示す従来品と同一部分につ
いては照合の便宜上同一番号を付す。図1、図2におい
て、22は直方体の上水平面と4つの垂直面で構成され
る4箇所の直交部のうち、対向する2箇所を傾斜面に形
成した8面体の密閉容器、3は真空バルブで三相が所定
の間隔を離間され、密閉容器22の底面に平行に、絶縁
スペーサ23によって接地電位である密閉容器22に対
し、絶縁を保持した状態で固定されている。5aは第1
の貫通ブッシングで、密閉容器22の第1の傾斜面24
aの、真空バルブ3と対応する位置に固定されている。
7aは外部電線8aと接続する端子台で、第1の貫通ブ
ッシング5aの上端部で、第1の貫通ブッシング5a及
び密閉容器22内に封入された絶縁ガス9を封止すると
ともに、第1の貫通ブッシング5a内を貫通し真空バル
ブ3の一端と電気的に接続する第1の導体25aに接続
されている。密閉容器22の、第1の傾斜面24aの反
対側の第2の傾斜面24bには、第1の傾斜面24a側
と同様に、外部電線8bと接続する端子台7b、第2の
導体25b、第2の貫通ブッシング5bが設置されてい
る。当該構造においては、第1と第2の貫通ブッシング
5a、5bを植設する第1と第2の傾斜面24a、24
bは、第1と第2の貫通ブッシング5a、5bを固定す
るに際して使用するボルトなどの締結材26を装着して
も、密閉容器22の密封を損なわないだけの厚みさえあ
ればよいので、密閉容器22を厚めの部材で構成すると
か、第1と第2の傾斜面24a、24b部をフランジ2
7を付加した厚肉構造とするだけでよく、構造がきわめ
て簡単である。又、三相の第1と第2の貫通ブッシング
5a、5bを全て傾斜して装着することにより、三相の
第1と第2の貫通ブッシング5a、5b間の気中絶縁間
隔を大きくできるので、密閉容器22を小さくすること
が可能である。密閉容器22内には絶縁性能の優れた絶
縁ガス9が封入されているので、密閉容器22を小さく
しても絶縁設計上は差し支えない。図2には遮断器本体
21の1相分だけの構造を示したが、他の2相も略々同
一構造である。なお真空バルブ3を密閉容器22の底面
に平行に配置したことによって三相の構造が略々同一と
なるため、絶縁スペーサ23をはじめ、第1と第2の導
体25a、25bなどが統一され製作し易いという利点
がある。又、三相の遮断器本体21を一括操作するため
の連結も容易である。製作が容易ということは経済性、
信頼性の高い機器を提供するのに好都合である。
1 shows the overall structure of a three-phase vacuum circuit breaker according to the present invention, and FIG. 2 shows a cross-sectional structure of one phase of the circuit breaker main body 21 of FIG. 3 and 4 are assigned the same reference numerals for convenience of comparison. In FIGS. 1 and 2, reference numeral 22 denotes an octahedral closed container in which two opposing portions are formed on inclined surfaces, out of four orthogonal portions formed by a rectangular parallelepiped upper horizontal plane and four vertical surfaces, and 3 is a vacuum valve. The three phases are separated by a predetermined distance, and fixed in parallel with the bottom surface of the sealed container 22 to the sealed container 22 at the ground potential by an insulating spacer 23 while maintaining insulation. 5a is the first
, The first inclined surface 24 of the closed container 22
a, which is fixed at a position corresponding to the vacuum valve 3.
Reference numeral 7a denotes a terminal block connected to the external electric wire 8a. The upper end of the first through bushing 5a seals the first through bushing 5a and the insulating gas 9 sealed in the sealed container 22, and the first through bushing 5a. It is connected to a first conductor 25a that penetrates through the through bushing 5a and is electrically connected to one end of the vacuum valve 3. The second inclined surface 24b of the closed container 22 opposite to the first inclined surface 24a has a terminal block 7b connected to the external electric wire 8b and a second conductor 25b, similarly to the first inclined surface 24a. , A second through bushing 5b is provided. In this structure, the first and second inclined surfaces 24a, 24 for implanting the first and second through bushings 5a, 5b are provided.
b is sufficient as long as the fastening member 26 such as a bolt used for fixing the first and second through bushings 5a and 5b is only required to have a thickness that does not impair the sealing of the sealed container 22. The container 22 may be composed of a thicker member, or the first and second inclined surfaces 24a and 24b may be formed of a flange 2
It is only necessary to have a thick structure with the addition of 7, and the structure is extremely simple. Also, since the three-phase first and second through bushings 5a, 5b are all mounted at an angle, the air insulation interval between the three-phase first and second through bushings 5a, 5b can be increased. The size of the closed container 22 can be reduced. Since the insulating gas 9 having excellent insulation performance is sealed in the closed container 22, even if the closed container 22 is made small, there is no problem in insulating design. FIG. 2 shows the structure of only one phase of the breaker body 21, but the other two phases have substantially the same structure. Since the three-phase structure is substantially the same by arranging the vacuum valve 3 in parallel with the bottom surface of the sealed container 22, the insulating spacer 23 and the first and second conductors 25a and 25b are unified and manufactured. There is an advantage that it is easy to do. Further, connection for collectively operating the three-phase circuit breaker main body 21 is also easy. Ease of production means economy,
This is convenient for providing a highly reliable device.

【0008】12は当該遮断器の開閉操作を行う操作装
置で、架台13に装着されている。28は駆動機構で、
操作装置12と遮断器本体21の第1相を連結する駆動
ロッド29、遮断器本体21の第一相と第二相、遮断器
本体21の第二相と第三相をそれぞれ連結するロッド1
6a、16b、操作力の向き変換するレバー17等で構
成されている。18は絶縁ロッドでレバー17と真空バ
ルブ3の間を絶縁するとともに、駆動ロッド29及びロ
ッド16a、16bの操作力を真空バルブ3に伝達す
る。絶縁ガス9はレバー17部に設けた密封装置19に
よって可回転的に大気側と封止されている。 30は駆
動ロッド29やロッド16a、16bなどを風雨から遮
蔽するカバーである。この遮断器は、操作装置12によ
って三相の遮断器本体21が一括して動作する三相一括
形真空遮断器となっている。
Reference numeral 12 denotes an operating device for opening and closing the circuit breaker, which is mounted on a gantry 13. 28 is a drive mechanism,
A driving rod 29 for connecting the operating device 12 to the first phase of the circuit breaker body 21, a rod 1 for connecting the first and second phases of the circuit breaker body 21, and the second and third phases of the circuit breaker body 21, respectively.
6a and 16b, a lever 17 for changing the direction of the operation force, and the like. Reference numeral 18 denotes an insulating rod that insulates the lever 17 from the vacuum valve 3 and transmits the operating force of the drive rod 29 and the rods 16a and 16b to the vacuum valve 3. The insulating gas 9 is rotatably sealed from the atmosphere by a sealing device 19 provided on the lever 17. A cover 30 shields the drive rod 29 and the rods 16a and 16b from the weather. This circuit breaker is a three-phase collective vacuum circuit breaker in which the three-phase circuit breaker main body 21 is operated collectively by the operation device 12.

【0009】さて、密閉容器22及び、第1と第2の貫
通ブッシング5a、5bの内部を満たす絶縁ガス9は、
SF 6 などの高絶縁性能を有する気体が遮断器のコンパ
クト化に有効であるが、非平等電界構造の場合には、ほ
ぼ90%のSF6 とほぼ10%の乾燥空気又は窒素の混
合ガスが、純粋なSF6 ガスよりも絶縁特性が優れてい
ることが知られている。(例えば、電学誌・第107
巻、第2号、’87年)本考案の真空遮断器は、平面で
構成された密閉容器22の中に三相の真空バルブ3を一
括収納しており、同芯円構造で平等電界設計の容易な円
筒容器を使用した、例えば図3、図4の従来構造の真空
遮断器に比べ、平等電界構造とすることが困難であるの
で、前記の、ほぼ90%のSF6 とほぼ10%の乾燥空
気又は窒素の混合ガスを使用することによって一層、絶
縁性能の優れた三相一括形真空遮断器となる。
Now, the insulating gas 9 filling the inside of the sealed container 22 and the first and second through bushings 5a, 5b is as follows.
A gas having a high insulation performance such as SF 6 is effective for downsizing the circuit breaker. However, in the case of the non-uniform electric field structure, a mixed gas of approximately 90% SF 6 and approximately 10% dry air or nitrogen is used. It is known that insulating properties are superior to pure SF6 gas. (For example, Electro-Electronics Magazine No. 107
Vol. 2, No. 1987) The vacuum circuit breaker of the present invention houses the three-phase vacuum valve 3 collectively in a closed container 22 composed of a flat surface, and has a concentric circular structure and an equal electric field design. It is more difficult to make the electric field structure equal to that of the conventional vacuum circuit breakers of FIGS. 3 and 4 using a cylindrical container which is easy to use. By using a mixed gas of dry air or nitrogen, a three-phase batch vacuum circuit breaker having better insulation performance can be obtained.

【0010】なお、これらの純粋なSF6 やSF6 の混
合ガスなどの絶縁ガス9は高い絶縁性能を有しているの
で、低圧力でも真空バルブ3の外沿面絶縁が十分確保で
きる。一方平面で構成された密閉容器22は、圧力によ
り平面に曲げ応力が作用し、たわみが発生し易いので、
高い圧力で使用することに適していない。しかしながら
本考案の場合は、密閉容器22の上側を傾斜面付の構造
としたことにより個々の平面が小さくなって強度上の補
強効果があるので、特別な補強を施さなくても比較的高
い圧力に耐えることが出来る。一方、密閉容器22の底
面側は架台13への取付とか密封装置19などの構造物
があって高強度になっているので特に補強を要しない
か、軽微な強化対策によって高い圧力への対応が可能で
ある。しかしながら以上のように強度保全を図ったとし
ても、円筒状の容器であれば内圧力による応力が引張応
力となって変形は軽微に留まることに比べれば、平面を
主体とする構造の場合は変形し易い弱点は基本的に存在
する。本考案はこの弱点を構造上の工夫で克服するもの
である。結果として本考案のような平面構造を有する密
閉容器22に封入する絶縁ガス9は低圧であることが望
ましい。この場合、圧力を2kgf/cm2 以下とすれ
ば、労働省告示によるところの圧力容器構造規格の適用
対象外の安全性の高い低圧力構造物となる。
Since the insulating gas 9 such as pure SF6 or a mixed gas of SF6 has high insulating performance, the outer surface insulation of the vacuum valve 3 can be sufficiently secured even at a low pressure. On the other hand, in the closed container 22 composed of a flat surface, a bending stress acts on the flat surface due to pressure, and deflection is easily generated.
Not suitable for use at high pressures. However, in the case of the present invention, since the upper surface of the closed vessel 22 is provided with an inclined surface, the individual planes become smaller and have a reinforcing effect on strength, so that a relatively high pressure can be obtained without special reinforcement. Can withstand. On the other hand, the bottom side of the sealed container 22 has a structure such as attachment to the gantry 13 or the sealing device 19 and has a high strength. Therefore, no special reinforcement is required. It is possible. However, even if the strength is maintained as described above, in the case of a cylindrical container, the deformation due to the internal pressure becomes a tensile stress and the deformation is slight compared to the case where the structure mainly consists of a flat surface. There are basically weak points that are easy to do. The present invention overcomes this weak point with a structural device. As a result, it is desirable that the insulating gas 9 sealed in the closed container 22 having the planar structure as in the present invention has a low pressure. In this case, if the pressure is set to 2 kgf / cm 2 or less, a low-pressure structure with high safety that is not applicable to the pressure vessel structure standard according to the notification of the Ministry of Labor is obtained.

【0011】又、密閉容器22内を真空曳き、つまり外
気圧0kgf/cm2 に対し、密閉容器22内の圧力−
1kgf/cm2 で、密閉容器22の内外の圧力差を1
kgf/cm2 としてから、密閉容器22に絶縁ガス9
の封入を行う場合は、絶縁ガス9の最高使用圧力を1k
gf/cm2 に設定すれば、内圧と真空曵きしたときに
密閉容器22に作用する外圧では、圧力の作用する方向
に差があるにしても、密閉容器22を構成する平面の強
度に及ぼす効果はほぼ同等であり、密閉容器22の強度
設計上最経済設計となる。最高使用圧力が1kgf/c
2 になる条件は、使用温度の上限を、遮断器に適用さ
れる代表的な規格である電気学会 電気規格調査会標準
規格JEC−2300-1985 を適用すれば、銀接続の場
合、接触部の温度上昇限度=65度で、周囲温度の上限
値40℃と合わせ105℃を得る。実用的には絶縁ガス
9の温度は接触部ほどには上昇しないので、仮に絶縁ガ
スの温度が20〜60℃上昇し60〜100℃になった
とすれば、基準温度を20℃として、絶対圧力は絶対温
度に比例するから、常用圧力Pは P=2×(273+20)/{273+(60〜100)}−1 =0.76〜0.57kgf/cm2 を得る。このことから20℃における常用圧力を0.8
〜0.5kgf/cm2の範囲に設定すれば密閉容器2
2の最経済設計が可能となる。
Further, the inside of the closed container 22 is vacuum-pulled, that is, the pressure in the closed container 22 is reduced with respect to the external pressure of 0 kgf / cm 2.
At 1 kgf / cm 2 , the pressure difference between the inside and outside of
kgf / cm 2, and put the insulating gas 9
When encapsulating, the maximum operating pressure of the insulating gas 9 is 1 k
If the pressure is set to gf / cm 2 , the effect on the strength of the plane constituting the closed container 22 is exerted even if there is a difference between the internal pressure and the external pressure acting on the closed container 22 when vacuuming is applied. Are almost the same, which is the most economical design in terms of the strength design of the sealed container 22. Maximum operating pressure is 1kgf / c
Conditions to be m 2, the upper limit of the operating temperature, by applying an electrical Engineers electrical standards Committee Standard JEC-2300-1985 is a typical standard being applied to a circuit breaker, if the silver connection, the contact portion With the temperature rise limit of 65 ° C., 105 ° C. is obtained in combination with the upper limit of the ambient temperature of 40 ° C. Practically, the temperature of the insulating gas 9 does not rise as high as the contact portion. Therefore, if the temperature of the insulating gas rises by 20 to 60 ° C. to reach 60 to 100 ° C., the reference temperature is set to 20 ° C. Is proportional to the absolute temperature, so that the normal pressure P is obtained as P = 2 × (273 + 20) / {273+ (60-100)} − 1 = 0.76-0.57 kgf / cm 2 . From this, the normal pressure at 20 ° C. is 0.8
If it is set in the range of 0.5 kgf / cm 2, the sealed container 2
2, the most economical design is possible.

【0012】[0012]

【考案の効果】密閉容器は三相の真空バルブに対し1個
でよいので少ない部材で構成することが出来る。又、密
閉容器は特に部材を付加することなく傾斜面という構造
上の特徴を合理的に生かして補強が図ってある。さらに
貫通ブッシングを密閉容器に傾斜して、かつ直接植設出
来るので構造が簡単なうえ、第1と第2の貫通ブッシン
グを傾斜して装着することにより気中寸法が大きく取れ
るので、結果として密閉容器が小型化できる。したがっ
て短期間で製作することが出来、経済的である。又、部
材数量の減少とともに、ガスシール箇所が削減されるの
でガス漏れ要因が減り、信頼性も向上する。さらに三相
間を連結するガス配管も不要となって一層経済的である
上、強度上の弱点も排除される。
[Effect of the Invention] Since only one closed vessel is required for the three-phase vacuum valve, it can be constituted by a small number of members. In addition, the closed container is reinforced by rationally utilizing the structural feature of the inclined surface without adding any members. Furthermore, since the through bushing can be implanted directly in the closed container and can be directly implanted, the structure is simple, and since the first and second through bushings are mounted at an angle, the aerial dimensions can be increased. The container can be miniaturized. Therefore, it can be manufactured in a short time and is economical. Further, as the number of parts is reduced and the number of gas seal locations is reduced, the cause of gas leakage is reduced and reliability is improved. Further, gas piping for connecting the three phases is not required, which is more economical and eliminates weaknesses in strength.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の三相一括形真空遮断器の全体構造図で
ある。
FIG. 1 is an overall structural view of a three-phase collective vacuum circuit breaker of the present invention.

【図2】本考案の三相一括形真空遮断器の本体部分の断
面構造図である。
FIG. 2 is a sectional structural view of a main body portion of the three-phase collective vacuum circuit breaker of the present invention.

【図3】従来構造の三相用タンク形真空遮断器の全体構
造図例である。
FIG. 3 is an example of the overall structure of a conventional three-phase tank type vacuum circuit breaker.

【図4】従来構造の三相用タンク形真空遮断器の本体部
分の断面構造図例である。
FIG. 4 is an example of a sectional structural view of a main body of a three-phase tank type vacuum circuit breaker having a conventional structure.

【符号の説明】[Explanation of symbols]

3 真空バルブ 5a 第1の貫通ブッシング 5b 第2の貫通ブッシング 9 絶縁ガス 12 操作装置 18 絶縁ロッド 19 密封装置 21 遮断器本体 22 密閉容器 23 絶縁スペーサ 24a 第1の傾斜面 24b 第2の傾斜面 25a 第1の導体 25b 第2の導体 28 駆動機構 Reference Signs List 3 vacuum valve 5a first through bushing 5b second through bushing 9 insulating gas 12 operating device 18 insulating rod 19 sealing device 21 circuit breaker body 22 closed container 23 insulating spacer 24a first inclined surface 24b second inclined surface 25a First conductor 25b Second conductor 28 Drive mechanism

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】直方体の上水平面と4つの垂直面で構成さ
れる4箇所の直交部のうち、対向する2箇所を傾斜面に
形成した8面体の密閉容器と、 該密閉容器に封入した絶縁ガスと、 前記密閉容器内に、水平で、かつ所定の間隔を離間し
て、絶縁スペーサを介して固定した三相の真空バルブ
と、該真空バルブの一端に接続されるとともに前記密閉容器
の内外を導通する第1の導体を有し、前記三相の真空バ
ルブとそれぞれ対応する位置に所定の空間を離間して、
前記密閉容器の傾斜面の一方に設置した三相の 第1の貫
通ブッシングと、前記真空バルブの他端に接続されるとともに前記密閉容
器の内外を導通する第2の導体を有し、前記三相の真空
バルブとそれぞれ対応する位置に所定の空間を離間し
て、前記密閉容器の傾斜面の他方に設置した三相の 第2
の貫通ブッシングと、 を備えた ことを特徴とする三相一括形真空遮断器。
1. An octahedral closed container in which two opposing portions of a rectangular parallelepiped are formed of an upper horizontal surface and four vertical surfaces, and two opposing portions are formed on inclined surfaces, and an insulating member sealed in the closed container. Gas and in the closed container , horizontally and at a predetermined interval.
And a three-phase vacuum valve fixed via an insulating spacer, and the closed container connected to one end of the vacuum valve.
A first conductor that conducts between the inside and the outside of the three-phase vacuum chamber.
Lube and a predetermined space at the corresponding position,
A three-phase first through bushing installed on one of the inclined surfaces of the closed container , connected to the other end of the vacuum valve and connected to the closed container;
A second conductor for conducting between the inside and outside of the vessel, and the three-phase vacuum
Separate predetermined spaces at positions corresponding to valves.
And a three-phase second set on the other of the inclined surfaces of the closed container .
Three-phase type vacuum circuit breaker characterized by comprising a through bushing, the.
【請求項2】 絶縁ガスは、ほぼ90%のSF6 と、ほ
ぼ10%の乾燥空気又は、窒素の混合体で構成されたこ
とを特徴とする請求項1記載の三相一括形真空遮断器。
2. The three-phase vacuum circuit breaker according to claim 1, wherein the insulating gas comprises a mixture of approximately 90% SF6 and approximately 10% dry air or nitrogen.
JP1991046512U 1991-05-24 1991-05-24 Three-phase batch vacuum circuit breaker Expired - Lifetime JP2560374Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1991046512U JP2560374Y2 (en) 1991-05-24 1991-05-24 Three-phase batch vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1991046512U JP2560374Y2 (en) 1991-05-24 1991-05-24 Three-phase batch vacuum circuit breaker

Publications (2)

Publication Number Publication Date
JPH04131835U JPH04131835U (en) 1992-12-04
JP2560374Y2 true JP2560374Y2 (en) 1998-01-21

Family

ID=31926013

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1991046512U Expired - Lifetime JP2560374Y2 (en) 1991-05-24 1991-05-24 Three-phase batch vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JP2560374Y2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6233466Y2 (en) * 1980-11-07 1987-08-27
JPS58196510U (en) * 1982-06-21 1983-12-27 三菱電機株式会社 Electrical equipment with bushings
JPH0613540Y2 (en) * 1988-02-26 1994-04-06 日新電機株式会社 Gas insulated switchgear

Also Published As

Publication number Publication date
JPH04131835U (en) 1992-12-04

Similar Documents

Publication Publication Date Title
EP2639903A1 (en) Switchgear
CN205452934U (en) Inflatable cubical switchboard
CN100442615C (en) Gas insulation switch device
AU2010349157B2 (en) Vacuum-circuit breaker
JP4073623B2 (en) Switchgear
KR20040040358A (en) Metal-enclosed switchgear
EP1107408A1 (en) Gas-insulated switchgear
WO2001035431A1 (en) Switch gear
JP2013055738A (en) Switching device
JP2560374Y2 (en) Three-phase batch vacuum circuit breaker
WO2000069041A1 (en) Vacuum switch gear
JP4712609B2 (en) Switchgear
US20020134757A1 (en) Vacuum circuit breaker
JP2004064955A (en) Gas insulated switchgear
JP2692437B2 (en) Three-phase batch vacuum circuit breaker
JP4222848B2 (en) Gas insulated switchgear
JPH0583978U (en) Three-phase batch type vacuum circuit breaker
JP3775939B2 (en) Switchgear
JPH04349321A (en) Three phase package type vacuum circuit breaker
CN203135303U (en) Environmentally-friendly gas-insulated vacuum sealed-type switch device
JPH04355020A (en) Three-phase collective type vacuum breaker
CN1139305A (en) Gas insulated switchgear
JPH07322432A (en) Gas-insulated switchgear and its switch unit
JPS6130487B2 (en)
JPS6062806A (en) Sealed switching device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term