JP4222848B2 - Gas insulated switchgear - Google Patents

Gas insulated switchgear Download PDF

Info

Publication number
JP4222848B2
JP4222848B2 JP2003023411A JP2003023411A JP4222848B2 JP 4222848 B2 JP4222848 B2 JP 4222848B2 JP 2003023411 A JP2003023411 A JP 2003023411A JP 2003023411 A JP2003023411 A JP 2003023411A JP 4222848 B2 JP4222848 B2 JP 4222848B2
Authority
JP
Japan
Prior art keywords
gas
bellows
vacuum
circuit breaker
grounded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003023411A
Other languages
Japanese (ja)
Other versions
JP2004236455A (en
JP2004236455A5 (en
Inventor
知明 内海
奎将 遠藤
義豊 八木橋
敏昭 六戸
俊二 伊藤
荘司 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2003023411A priority Critical patent/JP4222848B2/en
Publication of JP2004236455A publication Critical patent/JP2004236455A/en
Publication of JP2004236455A5 publication Critical patent/JP2004236455A5/ja
Application granted granted Critical
Publication of JP4222848B2 publication Critical patent/JP4222848B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、民需用特高受変電設備、電力系統の変電所、開閉所、配電用変電所などに適用されるガス絶縁開閉装置に関する。
【0002】
【従来の技術】
従来のガス絶縁開閉装置は、圧縮したSF6ガスを封入した接地密閉容器内に、この接地密閉容器から電気的に絶縁した状態で主回路を形成する高電圧導体を支持して遮断器およびそれ以外の機器を構成していた。しかし、近年、地球規模の環境問題から地球温暖化係数が二酸化炭素の約24000倍も高いSF6ガスの使用を規制する動きが強まり、機器のSF6ガス使用量を可能な限り低減することが必須となっている。このため、遮断器としてSF6ガス遮断器の代わりに真空遮断器を用い、SF6ガス使用量を大幅に低減したガス絶縁開閉装置が知られている(例えば、特許文献1参照)。また、この絶縁性ガスとして、乾燥空気、窒素、炭酸ガス、あるいはこれらの混合ガスに、SF6ガスより温暖化係数の小さいc-C4F8、CF3SF5、C3F8、CF3OSF3を混合したものが知られている(例えば、特許文献2参照)。このような絶縁性ガスは、絶縁耐力がSF6ガス並みに高いため、接地密閉容器内にSF6ガスを封入した場合と同じ製品構造を採用して、地球温暖化係数を低くすることができる。さらに、真空遮断器を使用した場合に、真空容器内の真空度を保持しながら可動電極の開閉動作を許すベローズの内側と外側に加わる圧力差を軽減して疲労亀裂の発生を防止するために、二重のベローズを設け、両ベローズ間に中間圧力室を形成したものが知られている(例えば、特許文献1および特許文献3参照)。
【0003】
【特許文献1】
特開昭60―205926号公報
【特許文献2】
特開2001―251714号公報
【特許文献3】
特開63―314732号公報
【0004】
【発明が解決しようとする課題】
しかしながら、従来のガス絶縁開閉装置は、遮断器として真空遮断器を用い、接地密閉容器内に封入する絶縁性ガスとして、乾燥空気、窒素、炭酸ガス、あるいはこれらの混合ガスに、SF6ガスより温暖化係数の小さいc−C4F8、CF3SF5、C3F8、CF3OSF3を混合したものを使用しても、地球温暖化係数がSF6ガスより低くなるが炭酸ガスよりは高く、特に、フロンガスは化学的に安定な物質であるため、据付点検作業時のガス放出や、長期間運転時の漏れが大気中に累積し、将来的に地球環境上問題となってしまう。また、内部点検などで接地密閉容器内から絶縁性ガスを回収する場合、回収する接地密閉容器内のガス圧を高くすると、c−C4F8、CF3SF5、C3F8、CF3OSF3の飽和蒸気圧が低いため一部液化してしまい、混合比を管理するために分離回収が必要となり、回収装置が大掛かりになる。逆に、回収タンクガス圧を低くすると、回収タンクが大きくなってしまう。
【0005】
一方、乾燥空気、窒素、炭酸ガスを上述したフロンガスを混合しないで使用すると、絶縁耐力はSF6ガスの半分以下となるため、圧力が同じなら機器の大きさは絶縁距離で2倍以上、体積にして約8倍以上となり、非常にコスト高となってしまう。また、これらの絶縁性ガスの電流遮断性能はSF6ガスの30%以下であるため、絶縁性ガスによる電流遮断能力が大幅に低下するが、遮断器として真空遮断器を使用した場合、真空容器内の真空を保持しながら可動電極の動作を許すために使用されるベローズへの内外圧力差による負担が大きく、多数回の動作によりベローズが疲労して亀裂が入って真空を保持できず、真空遮断器が電流を遮断できなくなるから、この圧力差を考慮すると、ガス圧力の上昇によって絶縁性能の向上を図ることはできない。
【0006】
本発明の目的は、SF6、c−C4F8、CF3SF5、C3F8、CF3OSF3などのフロンガスの使用を抑制した上で、小型化を図ったガス絶縁開閉装置を提供することにある。
【0007】
【課題を解決するための手段】
本発明は上記目的を達成するために、絶縁性ガスを封入した接地密閉容器内に、主回路を構成する高電圧導体を絶縁支持して遮断器および断路器を構成し、上記遮断器は、真空容器内の真空度を保持して可動電極の開閉動作を許すベローズを有する真空遮断器によって構成したガス絶縁開閉装置において、上記真空遮断器の両極にそれぞれ上記断路器を電気的直列に接続し、上記真空遮断器を収納した上記接地密閉容器と上記両断路器をそれぞれ収納した接地密閉容器との間に、上記真空容器とその内部の真空度を保持して上記可動電極の開閉動作を許す上記ベローズとによって上記接地密閉容器内からガス的に区分した構成とは別にそれぞれ絶縁スペーサを設けてガス的に区分し、上記真空遮断器を収納した上記接地密閉容器内に封入した絶縁性ガスのガス圧力を上記断路器を収納した上記接地密閉容器内に封入した絶縁性ガスより低くしたことを特徴とする。
【0008】
本発明によるガス絶縁開閉装置は、接地密閉容器を絶縁スペーサにより二つ以上のガス区画に区分し、一方のガス区画内に真空遮断器を配置し、他方のガス区画内に断路器を配置し、一方のガス区画内のガス圧力を他方のガス区画より低くしたため、真空遮断器を収納した接地密閉容器内の絶縁性ガスによるベローズの内外圧力差による負担を軽減することができ、また温暖化係数の高いSF6ガスなどのフロンガスの使用を制限しても絶縁耐力を向上させることができ、これにより、環境負荷が少なく、かつ、従来並みに縮小化された低コストのガス絶縁開閉装置を提供することができる。
【0009】
請求項2に記載の本発明は、請求項1記載のものにおいて、上記絶縁性ガスとして乾燥空気または窒素ガスまたは炭酸ガスを主成分としたガスを封入したことを特徴としているため、両者のガス区画にとってそれぞれ望ましい絶縁性ガスの使用によって、特に真空遮断器を収納した設置密閉容器内のガス圧を下げて部ローズの内外圧力による負担を一層軽減することができる。
【0010】
請求項3に記載の本発明は、上記絶縁性ガスとして、乾燥空気または窒素ガスまたは炭酸ガスを主成分とするガスに、20%以下のフロンガスを混入した混合ガスを用いたことを特徴としているため、環境に優しい絶縁性ガスとなると共に、絶縁体力に優れた絶縁性ガスとすることができ、また、これによって真空遮断器を収納した設置密閉容器内のガス圧力を下げてベローズの内外圧力による負担を一層軽減することができる。
【0012】
このようなガス絶縁開閉装置によれば、真空遮断器を配置した接地密閉容器内と、断路器を配置した接地密閉容器内の絶縁性ガス、およびそのガス圧力とを、第一ベローズおよび第二ベローズの内外ガス圧力差による負担とは無関係にそれぞれ最適の条件で選定できるため、両ベローズの内外ガス圧力差による負担を軽減すると同時に、この接地密閉容器内における絶縁性ガスの圧力を上げて絶縁耐力を向上することが可能となり、小型でより安定した性能を有するガス絶縁開閉装置とすることができる。
【0015】
【発明の実施の形態】
以下、本発明の実施の形態を図面によって説明する。
図1は、本発明の一実施の形態によるガス絶縁開閉装置を示す断面図である。絶縁性ガスを封入した接地密閉容器11,41,48内には、主回路を構成する高電圧導体が適当な絶縁支持物9a〜9c,18によって接地密閉容器11,41,48から電気的に絶縁した状態で構成されている。全体の接地密閉容器11,41,48は、絶縁スペーサー1,2によって複数にガス区画され、断路器と主母線を配置した母線ユニット4と、真空遮断器20を配置した遮断器ユニット10と、断路器や接地開閉器を配置した断路器ユニット7と、この断路器ユニット7からケーブルヘッド52を介して導出したケーブルユニット6とに区分されている。
【0016】
母線ユニット4は、絶縁支持物9a〜9cによって支持した三相の主母線導体8a〜8cを有する三相一括型で、各相ともほぼ同一構成であるから任意の一相について説明すると、主母線導体8bに断路器の固定側電極43を取り付け、この固定側電極43に所定距離隔てて可動側電極45を設け、可動側電極45と常時接触しながら固定側電極43に接離する可動接触子44を設け、この可動接触子44は絶縁物46を介して操作機構47により開閉操作されるように構成されている。他の実施の形態では、この母線ユニット4を主母線導体8a〜8cを中心とする母線ユニットと、断路器を中心とする断路器ユニットに分けて、両者間を絶縁スペーサーでガス区画してもよい。
【0017】
真空遮断器20を配置した遮断器ユニット10は、外表部を絶縁モールド部材12で被覆した真空容器13の上下部を絶縁支持物18によって支持し、固定電極14側の固定側導体35は絶縁スペーサー1の中心導体を介して断路器の固定側電極53に接続している。可動電極15に連結した可動ロッド25は第一ベローズ21を介して真空容器13外に導出され、絶縁物27を介して操作器32の機構部31に連結されている。真空容器13の下部に配置した絶縁支持物18は第一ベローズ21の近傍を包囲する筒状導体24を絶縁支持しており、この筒状導体24を介して真空容器13の下部を支持すると共に、可動側導体36および絶縁スペーサー2の中心導体を介して断路器ユニット70の断路器に接続されている。可動ロッド25には集電部26が設けられ、この集電部26は図示を省略した可撓性導体によって筒状導体24に電気的に接続されている。筒状導体24内に位置する可動ロッド25には、密閉端蓋23が連結されており、この密閉端蓋23によって第一ベローズ21の下端が気密に封じられている。また密閉端蓋23には第二ベローズ22の上端が気密に封じられ、この第二ベローズ22の下端は筒状導体24によって気密に封じている。これによって、第一ベローズ21内は真空容器13内と同じ真空であり、筒状導体24内と第一ベローズ21および第二ベローズ22の外周部間には中間室24aが形成され、さらに第二ベローズ22の内部側は接地密閉容器11と同じガス空間となっている。
【0018】
断路器や接地開閉器を配置した断路器ユニット7は、母線ユニット4の断路器と同一構造の断路器を有しており、さらに可動接地接触子49と固定接地接触子50とを有する接地開閉器や、避雷器51などが構成されている。
【0019】
ケーブルユニット6は、この断路器ユニット7からケーブルヘッド52を介して導出したケーブル53を有し、このケーブル53の外周部に変流器54を設けている。
【0020】
各ユニットの接地密閉容器11,41,48内には、絶縁性ガスとして乾燥空気もしくは二酸化炭素あるいは窒素を主成分とするガスに、SF6ガス、c−C4F8、CF3SF5、C3F8、CF3OSF3などのフロンガスを20%以下で混合した混合ガスを封入している。
【0021】
c−C4F8、CF3SF5、C3F8、CF3OSF3などのフロンは化学的に安定な物質であるため、混合比が20%以上もあると、据付点検作業時のガス放出や、長期間運転時の漏れが大気中に累積し、将来的に地球環境上問題となる。また、内部点検などで接地密閉容器11,41,48内のガスを回収する場合、それらの接地密閉容器内のガス圧を高くすると、c−C4F8、CF3SF5、C3F8、CF3OSF3の飽和蒸気圧が低いため一部液化してしまい、混合比を管理するために分離回収が必要となって回収装置が大掛かりになってしまう。逆に、回収するときのガス圧を低くすると、回収タンクが大きくなってしまう。一方、乾燥空気、窒素、炭酸ガスに上述したフロンガスを混合しない絶縁性ガスを使用すると、絶縁耐力はSF6ガスの半分以下となるため、圧力が同じなら機器のサイズは、絶縁距離で2倍以上、体積にして約8倍以上となるため、非常にコスト高となってしまう。しかしながら、上述したように混合した混合ガスを使用することにより、これらの問題は解決されている。
【0022】
また、これらの絶縁性ガスの電流遮断性能はSF6ガスの30%以下で大きく低下するので、遮断器として真空遮断器20を使用し、ループ電流等の小電流遮断性能が求められる断路器を配置した接地密閉容器41,48内のガス圧力を、真空遮断器20を配置した接地密閉容器11内のガス圧力よりも高くしている。
【0023】
ここで、遮断器ユニット10を構成するために使用した真空遮断器20は、セラミック製真空容器13の中に固定電極14、可動電極15、シールド16を配置した構成であり、真空容器13内の真空度を保持しながら可動電極15の開閉動作を許すためにベローズ21,22が使用され、このベローズ21,22は、その内側と外側の圧力差が大きい場合、動作時に加わる負荷が大きく多数回の動作により疲労して亀裂が入って真空を保持できなくなる。このため、ベローズ21,22における内外圧力差をできるだけ0.4MPa以下とする必要がある。この解決策として、上述したように真空遮断器20を配置した接地密閉容器11内のガス圧力を断路器を配置した接地密閉容器41,71内のガス圧力よりも低くすることが有効であるが、以下、この点を補う構成について説明する。
【0024】
図1に示すように、真空容器13の下部に筒状導体24を耐気密接続し、第一ベローズ21の下端を気密に封じた密閉端蓋23に第二ベローズ22の上端を耐気密接続すると共に、第二ベローズ22の下端を筒状導体24に耐気密接続している。従って、第一ベローズ21の内部までが真空容器13であるが、筒状導体24の内部とベローズ21,22の外周部間に気密な中間室24aが形成され、この中間室24aは真空容器13の一部ではなく、しかも遮断器ユニット10の接地密閉容器11からもガス区分されている。この中間室24aのガス圧力は、接地密閉容器11内に封入した絶縁性ガスのガス圧力よりも低い0.1〜0.3MPa・Gにして封じ切りすることにより、ベローズ21,22にかかるガス圧力を0.4MPa以下にするようにしている。
【0025】
ここで、第一ベローズ21と第二ベローズ22の径をほぼ等しくすると、可動ロッド25を軸方向に駆動して行う開閉動作時、中間室24aの容積を不変にすることができるので、中間室24a内での圧力変化は生じない。従って、開閉動作時の圧力差をできるだけ少なくし通常20%以下にして、大幅な絶縁構造の変更がないようにする。
【0026】
図2は、本発明の他の実施の形態によるガス絶縁開閉装置の要部を示す断面図である。
図1に示した実施の形態では、二つのベローズ21,22の動作は逆方向で、第一ベローズ21の伸張時に第二ベローズ22は圧縮されるようにしたが、図2のように両ベローズ21,22の伸張および圧縮方向を同一にしてもよい。ここで、真空容器13の下端に耐気密接続した筒状導体24は、開路位置の下部端蓋23に接触しない軸長とし、この筒状導体24の下部に第二ベローズ22の上端を耐気密接続すると共に、第二ベローズ22の下端を可動ロッド25、あるいはこの可動ロッド25に気密を保持して設けた固定部材33に耐気密接続している。従って、第一ベローズ21の内部は真空容器13の一部として形成され、筒状導体24の内部と第一ベローズ21の外部と第二ベローズ22の内部とで成る中間室24aが形成される。
【0027】
この中間室24aは真空容器13の一部ではなく、しかも遮断器ユニット10の接地密閉容器11からも区分されており、この中間室24aのガス圧力を、接地密閉容器11内に封入した絶縁性ガスのガス圧力よりも低い0.1〜0.3MPa・Gにして封じ切りすることにより、ベローズ21,22にかかるガス圧力を0.4MPa以下にすることができる。ここでも、第一ベローズ21と第二ベローズ22の径をほぼ等しくすると、可動ロッド25を軸方向に駆動して行う開閉動作時、中間室24aの容積を不変にすることができるので、中間室24a内での圧力変化は生じない。
【0028】
図3は、本発明のさらに他の実施の形態によるガス絶縁開閉装置の要部を示す断面図である。
この実施の形態は、図2に示した両ベローズ21,22を円錐状にしたもので、両ベローズ21,22を円錐状にすることにより、両者には軸方向に重ね合った部分を造ることができるので、軸方向に小型化することができる。
【0029】
上述した各実施の形態では中間室24aを一つ形成し、真空容器13内と接地密閉容器11内との中間の圧力にしたが、二つ以上のベローズを用いて二つ以上の中間室を形成し、段階的にガス圧を変えるようにすると、ベローズのガス圧に対する負担を軽減しながら接地密閉容器11内のガス圧をさらに高くすることができる。
【0030】
このように真空遮断器20のベローズに対するガス圧力の負担を軽減することにより、図1に示したようなガス絶縁開閉装置では、絶縁スペーサ1,2により複数にガス区画を区分し、遮断器ユニット10の接地密閉容器11内の絶縁性ガスのガス圧をベローズの機械的強度で決まるガス圧力まで下げ、他のユニット4,6の接地密閉容器41,48に封入した絶縁性ガスのガス圧を高くして、他のユニット4,6の絶縁距離を短くして縮小化を図ることができる。また、遮断器ユニット10以外の他のユニット4,6は断路器を含んでいるので、ガス圧力を高めることにより断路器の小電流遮断性能を向上することができる。他方、遮断器ユニット10の接地密閉容器11内では、断路器などのように直接ガス中でアークが発生しないため、窒素より絶縁性能が10〜20%良い乾燥空気を封入して絶縁性能を高め、機器を縮小化することができる。
【0031】
また図1に示したガス絶縁開閉装置においては、真空遮断器20における真空容器13の外周部に絶縁モールド部材12をモールドして、真空遮断器20の対地および相間絶縁耐力を向上している。この絶縁モールド部材12を中間室24aに施してもよい。この絶縁モールド部材12は、セラミック製の真空容器13におけるセラミック部分も含めて施してもよいが、金属部に限定して施してもよい。
【0032】
図4は、本発明のさらに他の実施の形態によるガス絶縁開閉装置の要部を示す断面図であり、先の実施の形態との同等物には同一符号を付けて詳細な説明を省略する。
この実施の形態では、真空容器13の下端に耐気密接続した絶縁筒29を設け、この絶縁筒29の下端部を接地密閉容器11に気密に接続している。絶縁筒29としては、可動側高圧導体36との接続部となる筒状導体24をその上部に一体的に設けたものでも、筒状導体24の下部にその上部を耐気密接続したものであってもよい。可動電極15を有する可動ロッド25は、第一ベローズ21によって真空容器13内の真空度を保持しながら軸方向に開閉動作可能になされ、その下端部に連結したロッド部37は絶縁物2を介して接地密閉容器11外に導出し、この導出したロッド部37に第二ベローズ22を配置している。この第二ベローズ22によって接地密閉容器11の外部へ導出したロッド部37は、接地密閉容器11外に配置した真空遮断器20の操作器32および機構部31に連結されている。
【0033】
第二ベローズ22は、その上端を端蓋34によってロッド部37に耐気密接続し、その下端を接地密閉容器11に耐気密接続している。従って、絶縁筒29内には、両ベローズ21,22によって区分した中間室24aが形成され、この中間室24aを真空容器13内と大気中の間の中間のガス圧力にすることができる。先の実施の形態における中間室24aは、真空容器13内と接地密閉容器11内との中間のガス圧力としたが、ここでは真空容器13内と大気中の中間のガス圧力にすることができる。これは、両ベローズ21,22の内外ガス圧力差による負担の観点から見ると、接地密閉容器11内のガス圧力とは無関係になるため、接地密閉容器11内のガス圧力を両ベローズ21,22と無関係に設定することができることを意味している。
【0034】
このようなガス絶縁開閉装置によれば、真空遮断器20を配置した接地密閉容器11内と、断路器を配置した接地密閉容器41,48内の絶縁性ガス、およびそのガス圧力を両ベローズ21,22の内外ガス圧力差による負担とは無関係にそれぞれ最適の条件で選定できるため、小型でより安定した性能を有するガス絶縁開閉装置とすることができる。また、図1に示したガス絶縁開閉装置と比較すると、両ベローズ21,22の内外ガス圧力差による負担に対しては図1の接地密閉容器11内のガス圧力を大気圧まで下げたのと同等であり、しかも、接地密閉容器11内における絶縁性ガスの絶縁耐力の点では図1の接地密閉容器11内のガス圧力を上げたのと同等の効果を得ることができる。
【0035】
図5は、本発明のさらに他の実施の形態によるガス絶縁開閉装置の要部を示す断面図であり、図4に示した実施の形態との同等物には同一符号を付けて詳細な説明を省略する。
この実施の形態では、真空容器13の下端に耐気密接続した絶縁筒29を設け、この絶縁筒29の下端部を接地密閉容器11に気密に接続している。絶縁筒29としては、可動側高圧導体36との接続部となる筒状導体24を絶縁筒29の上部に一体的に設けたものでも、筒状導体24の下部に絶縁筒29の上部を耐気密接続したものであってもよい。いずれにせよ真空容器13内と絶縁筒29間にはベローズが省略され、両者は連通されて一体的な真空容器を形成している。可動電極15を有する可動ロッド25は、この一体的な真空容器内において絶縁物27を介してロッド部37に連結され、その後、接地密閉容器11外に導出している。この接地密閉容器11外への導出部には第二ベローズ22が設けられ、この第二ベローズ22によって一体的な真空容器内の真空度を保持しながら軸方向に開閉動作可能にしている。この第二ベローズ22によって導出したロッド部37は、接地密閉容器11外に配置した真空遮断器20の操作器32および機構部31に連結されている。
【0036】
第二ベローズ22は、その上端を端蓋34によってロッド部37に耐気密接続し、その下端を接地密閉容器11に耐気密接続している。従って、第二ベローズ22によってのみ、一体的な真空容器13内の真空度と、接地密閉容器11外の大気間がガス区分されることになる。ここで先の実施の形態における中間室24aはないが、第二ベローズ22には、一体的な真空容器13内と大気中の圧力差だけしか加わらないので、第二ベローズ22の内外ガス圧力差による負担は軽減されている。しかも、接地密閉容器11内のガス圧力と第二ベローズ22の内外ガス圧力差による負担とは無関係になるため、接地密閉容器11内のガス圧力は所望の絶縁耐力によって決定することができる。
【0037】
このようなガス絶縁開閉装置によれば、真空遮断器20を配置した接地密閉容器11内と、断路器を配置した接地密閉容器41,71内の絶縁性ガス、およびそのガス圧力を第一ベローズ21の内外ガス圧力差による負担とは無関係にそれぞれ最適の条件で選定できるため、先の実施の形態の場合と同様に小型でより安定した性能を有するガス絶縁開閉装置とすることができる。
【0038】
【発明の効果】
以上説明したように本発明のガス絶縁開閉装置は、接地密閉容器を絶縁スペーサにより二つ以上のガス区画に区分し、一方のガス区画内に真空遮断器を配置し、他方のガス区画内に断路器を配置し、一方のガス区画内のガス圧力を他方のガス区画より低くしたため、真空遮断器を収納した接地密閉容器内の絶縁性ガスによるベローズの内外圧力差による負担を軽減することができ、また温暖化係数の高いSF6ガスなどのフロンガスの使用を制限しても絶縁耐力を向上させることができ、これにより、環境負荷が少なく、かつ、従来並みに縮小化して低コストにすることができる。
【0039】
また本発明のガス絶縁開閉装置は、真空遮断器を収納した接地密閉容器内のガス圧を、ベローズの強度による制限より高くすることができるので、温暖化係数の高いSF6ガスの使用を制限しても絶縁耐力を向上させることができ、これにより、環境負荷が少なく、かつ、従来並みに縮小化して低コストにすることができる。
【図面の簡単な説明】
【図1】本発明の一実施の形態によるガス絶縁開閉装置を示す断面図である。
【図2】本発明の他の実施の形態によるガス絶縁開閉装置の要部を示す断面図である。
【図3】本発明のさらに他の実施の形態によるガス絶縁開閉装置の要部を示す断面図である。
【図4】本発明のさらに他の実施の形態によるガス絶縁開閉装置の要部を示す断面図である。
【図5】本発明のさらに他の実施の形態によるガス絶縁開閉装置の要部を示す断面図である。
【符号の説明】
1,2 絶縁スペーサ
4 母線ユニット
7 断路器ユニット
10 遮断器ユニット
11 接地密閉容器
12 真空容器
20 真空遮断器
21 第一ベローズ
22 第二ベローズ
24 筒状導体
24a 中間室
41,48 接地密閉容器
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a gas-insulated switchgear that is applied to an extra-high voltage substation facility for private demand, a power system substation, a switching station, a distribution substation, and the like.
[0002]
[Prior art]
A conventional gas insulated switchgear supports a high-voltage conductor that forms a main circuit in a grounded sealed container filled with compressed SF6 gas while being electrically insulated from the grounded sealed container, and other circuit breakers. The equipment was configured. However, in recent years, the movement to regulate the use of SF6 gas, whose global warming potential is about 24,000 times higher than that of carbon dioxide, has become stronger due to global environmental problems, and it is essential to reduce the amount of SF6 gas used in equipment as much as possible. It has become. For this reason, a gas insulated switchgear that uses a vacuum circuit breaker instead of the SF6 gas circuit breaker as the circuit breaker and greatly reduces the amount of SF6 gas used is known (for example, see Patent Document 1). Also, as this insulating gas, dry air, nitrogen, carbon dioxide gas, or a mixed gas thereof is known in which c-C4F8, CF3SF5, C3F8, CF3OSF3 having a warming coefficient smaller than that of SF6 gas is mixed ( For example, see Patent Document 2). Since such an insulating gas has a dielectric strength as high as that of SF6 gas, the same product structure as that in the case where SF6 gas is sealed in a grounded sealed container can be adopted to reduce the global warming potential. Furthermore, when using a vacuum circuit breaker, to reduce the pressure difference between the inside and outside of the bellows that allows the movable electrode to open and close while maintaining the degree of vacuum in the vacuum vessel, to prevent the occurrence of fatigue cracks A double bellows is provided, and an intermediate pressure chamber is formed between the two bellows (see, for example, Patent Document 1 and Patent Document 3).
[0003]
[Patent Document 1]
Japanese Patent Laid-Open No. 60-205926 [Patent Document 2]
JP 2001-251714 A [Patent Document 3]
JP 63-314732 A
[Problems to be solved by the invention]
However, the conventional gas-insulated switchgear uses a vacuum circuit breaker as a circuit breaker, and uses dry air, nitrogen, carbon dioxide gas, or a mixed gas thereof as an insulating gas sealed in a grounded airtight container. Even if a mixture of c-C4F8, CF3SF5, C3F8, and CF3OSF3 with a low activation coefficient is used, the global warming potential is lower than that of SF6 gas, but higher than that of carbon dioxide. In particular, chlorofluorocarbon is a chemically stable substance. Therefore, gas emissions during installation inspection work and leaks during long-term operation accumulate in the atmosphere, which will cause problems in the global environment in the future. Also, when collecting insulating gas from the grounded closed container for internal inspection, etc., if the gas pressure in the grounded sealed container to be recovered is increased, the saturated vapor pressure of c-C4F8, CF3SF5, C3F8, and CF3OSF3 is low and partly Liquefaction occurs, and separation and recovery are required to manage the mixing ratio, and the recovery device becomes large. Conversely, if the recovery tank gas pressure is lowered, the recovery tank becomes larger.
[0005]
On the other hand, if dry air, nitrogen, or carbon dioxide gas is used without mixing the above-mentioned chlorofluorocarbon gas, the dielectric strength is less than half that of SF6 gas, so if the pressure is the same, the size of the equipment should be more than twice the insulation distance and volume. It becomes about 8 times or more and becomes very expensive. Moreover, since the current interruption performance of these insulating gases is 30% or less of SF6 gas, the current interruption capability by the insulating gas is greatly reduced. However, when a vacuum circuit breaker is used as a circuit breaker, The load due to the pressure difference between the inside and outside of the bellows used to allow the movable electrode to operate while maintaining the vacuum of the tube is large, the bellows fatigues and cracks due to multiple operations, and the vacuum cannot be maintained, and the vacuum is shut off When the pressure difference is taken into consideration, the insulation performance cannot be improved by increasing the gas pressure.
[0006]
An object of the present invention is to provide a gas insulated switchgear that is downsized while suppressing the use of Freon gas such as SF6, c-C4F8, CF3SF5, C3F8, and CF3OSF3.
[0007]
[Means for Solving the Problems]
The present invention, in order to achieve the above object, the ground sealed container enclosing an insulating gas, constitutes the breaker contact and disconnecting switch a high voltage conductors constituting the main circuit insulating support to said circuit breaker In a gas-insulated switchgear constituted by a vacuum circuit breaker having a bellows that maintains the degree of vacuum in the vacuum vessel and allows opening and closing operations of the movable electrode, the disconnectors are electrically connected in series to both poles of the vacuum circuit breaker. The movable electrode is opened and closed while maintaining the vacuum vessel and the degree of vacuum inside thereof between the grounded sealed container containing the vacuum circuit breaker and the grounded sealed container containing the both disconnectors. provided separately from each insulating spacer is configured such that divided the gas manner from the ground sealed vessel divided gas to by the above bellows permits, sealed to the ground sealed container containing the vacuum circuit breaker The gas pressure of the edge gas, characterized in that lower than the insulating gas sealed in the ground sealed container containing the disconnector.
[0008]
The gas insulated switchgear according to the present invention divides a grounded closed vessel into two or more gas compartments by an insulating spacer, arranges a vacuum circuit breaker in one gas compartment, and arranges a disconnector in the other gas compartment. Because the gas pressure in one gas compartment is lower than the other gas compartment, the burden due to the pressure difference between the inside and outside of the bellows due to the insulating gas in the grounded sealed container containing the vacuum circuit breaker can be reduced, and warming Even if the use of Freon gas such as SF6 gas with a high coefficient is restricted, the dielectric strength can be improved, thereby providing a low-cost gas insulated switchgear that has a low environmental impact and is reduced to the conventional level. can do.
[0009]
The present invention is defined in claim 2, since in those of claim 1, is characterized by encapsulating gas composed mainly of dry air or nitrogen gas or carbon dioxide gas as the upper Kize' edge gas, both By using an insulating gas that is desirable for each gas section, it is possible to reduce the gas pressure in the installed sealed container containing the vacuum circuit breaker, and to further reduce the burden due to the internal and external pressure of the part rose.
[0010]
The present invention described in claim 3 is characterized in that a mixed gas in which 20% or less of chlorofluorocarbon gas is mixed in a gas mainly composed of dry air, nitrogen gas or carbon dioxide gas is used as the insulating gas. Therefore, it becomes an environmentally friendly insulating gas and can be an insulating gas with excellent insulation power, and this reduces the gas pressure in the installation sealed container containing the vacuum circuit breaker, thereby reducing the pressure inside and outside the bellows. The burden due to can be further reduced.
[0012]
According to such a gas-insulated switchgear, the first bellows and the second gas in the grounded airtight container in which the vacuum circuit breaker is disposed, the insulating gas in the grounded airtight container in which the disconnector is disposed, and the gas pressure thereof. Since it can be selected under optimum conditions regardless of the burden caused by the gas pressure difference between the inside and outside of the bellows, the burden caused by the gas pressure difference between the inside and outside of the bellows can be alleviated, and at the same time the insulation gas pressure in this grounded sealed container can be increased to insulate Yield strength can be improved, and a gas insulated switchgear having a smaller size and more stable performance can be obtained.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a cross-sectional view showing a gas insulated switchgear according to an embodiment of the present invention. In the grounded sealed containers 11, 41, and 48 filled with the insulating gas, the high voltage conductors constituting the main circuit are electrically connected from the grounded sealed containers 11, 41, and 48 by appropriate insulating supports 9a to 9c and 18. It is configured in an insulated state. The entire grounded airtight container 11, 41, 48 is divided into a plurality of gas sections by insulating spacers 1, 2, a bus bar unit 4 in which a disconnector and a main bus bar are disposed, a circuit breaker unit 10 in which a vacuum circuit breaker 20 is disposed, The disconnector unit 7 is provided with a disconnector and a ground switch, and the cable unit 6 is led out from the disconnector unit 7 via a cable head 52.
[0016]
The busbar unit 4 is a three-phase collective type having three-phase main busbar conductors 8a to 8c supported by insulating supports 9a to 9c. Since each phase has substantially the same configuration, an arbitrary one phase will be described. A fixed contact electrode 43 of a disconnector is attached to the conductor 8b, a movable electrode 45 is provided at a predetermined distance from the fixed electrode 43, and a movable contactor that contacts and separates from the fixed electrode 43 while always in contact with the movable electrode 45. The movable contact 44 is configured to be opened and closed by an operation mechanism 47 through an insulator 46. In another embodiment, the bus unit 4 is divided into a bus unit having the main bus conductors 8a to 8c as the center and a disconnect unit having the disconnector as the center, and a gas partition is provided between them by an insulating spacer. Good.
[0017]
The circuit breaker unit 10 provided with the vacuum circuit breaker 20 supports the upper and lower portions of the vacuum vessel 13 whose outer surface is covered with the insulating mold member 12 by the insulating support 18, and the fixed side conductor 35 on the fixed electrode 14 side is an insulating spacer. 1 is connected to the fixed-side electrode 53 of the disconnector through a central conductor. The movable rod 25 connected to the movable electrode 15 is led out of the vacuum vessel 13 via the first bellows 21 and is connected to the mechanism portion 31 of the operating device 32 via the insulator 27. The insulating support 18 disposed at the lower part of the vacuum vessel 13 insulates and supports the cylindrical conductor 24 surrounding the vicinity of the first bellows 21, and supports the lower portion of the vacuum vessel 13 through the cylindrical conductor 24. The disconnector unit 70 is connected to the disconnector via the movable conductor 36 and the central conductor of the insulating spacer 2. The movable rod 25 is provided with a current collector 26, and the current collector 26 is electrically connected to the cylindrical conductor 24 by a flexible conductor (not shown). A sealed end lid 23 is connected to the movable rod 25 located in the cylindrical conductor 24, and the lower end of the first bellows 21 is hermetically sealed by the sealed end lid 23. Further, the upper end of the second bellows 22 is hermetically sealed by the hermetic end lid 23, and the lower end of the second bellows 22 is hermetically sealed by the cylindrical conductor 24. Thereby, the inside of the first bellows 21 is the same vacuum as the inside of the vacuum container 13, and an intermediate chamber 24 a is formed between the inside of the cylindrical conductor 24 and the outer periphery of the first bellows 21 and the second bellows 22, and the second The inner side of the bellows 22 is the same gas space as the grounded sealed container 11.
[0018]
The disconnector unit 7 provided with a disconnector or a ground switch has a disconnector having the same structure as the disconnector of the bus unit 4, and further includes a movable ground contact 49 and a fixed ground contact 50. And a lightning arrester 51 and the like.
[0019]
The cable unit 6 has a cable 53 led out from the disconnector unit 7 through a cable head 52, and a current transformer 54 is provided on the outer periphery of the cable 53.
[0020]
In the grounded sealed containers 11, 41, and 48 of each unit, a fluorocarbon gas such as SF6 gas, c-C4F8, CF3SF5, C3F8, and CF3OSF3 is used as a gas mainly composed of dry air or carbon dioxide or nitrogen as an insulating gas. A mixed gas mixed at 20% or less is enclosed.
[0021]
c-C4F8, CF3SF5, C3F8, CF3OSF3 and other chlorofluorocarbons are chemically stable substances, so if the mixing ratio is 20% or more, outgassing during installation inspection work and leakage during long-term operation will be atmospheric. Accumulate in the future and become a global environmental problem in the future. Further, when recovering the gas in the grounded sealed containers 11, 41, 48 by internal inspection or the like, if the gas pressure in these grounded sealed containers is increased, the saturated vapor pressure of c-C4F8, CF3SF5, C3F8, CF3OSF3 is low. For this reason, the liquid is partially liquefied, and separation and recovery are required to manage the mixing ratio, and the recovery apparatus becomes large. Conversely, if the gas pressure during recovery is lowered, the recovery tank will become large. On the other hand, if an insulating gas that does not mix the above-mentioned Freon gas with dry air, nitrogen, or carbon dioxide gas is used, the dielectric strength is less than half that of SF6 gas, so if the pressure is the same, the size of the equipment is more than twice the insulation distance. Since the volume is about 8 times or more, the cost is very high. However, these problems are solved by using the mixed gas mixed as described above.
[0022]
In addition, since the current interruption performance of these insulating gases is greatly reduced below 30% of SF6 gas, the vacuum circuit breaker 20 is used as a circuit breaker, and a disconnector that requires small current interruption performance such as loop current is disposed. The gas pressure in the grounded sealed containers 41 and 48 is higher than the gas pressure in the grounded sealed container 11 in which the vacuum circuit breaker 20 is disposed.
[0023]
Here, the vacuum circuit breaker 20 used to configure the circuit breaker unit 10 has a configuration in which a fixed electrode 14, a movable electrode 15, and a shield 16 are arranged in a ceramic vacuum container 13. Bellows 21 and 22 are used to allow the movable electrode 15 to open and close while maintaining a degree of vacuum. When the pressure difference between the inside and outside of the bellows 21 and 22 is large, the load applied during operation is large and many times. The operation causes fatigue and cracks, making it impossible to maintain the vacuum. For this reason, the internal / external pressure difference in the bellows 21 and 22 needs to be 0.4 MPa or less as much as possible. As a solution to this, it is effective to make the gas pressure in the grounded sealed container 11 in which the vacuum circuit breaker 20 is disposed lower than the gas pressure in the grounded sealed containers 41 and 71 in which the disconnector is disposed as described above. Hereinafter, a configuration that compensates for this point will be described.
[0024]
As shown in FIG. 1, a cylindrical conductor 24 is airtightly connected to the lower portion of the vacuum vessel 13, and an upper end of the second bellows 22 is airtightly connected to a sealed end lid 23 that hermetically seals the lower end of the first bellows 21. At the same time, the lower end of the second bellows 22 is airtightly connected to the cylindrical conductor 24. Accordingly, although the vacuum vessel 13 extends to the inside of the first bellows 21, an airtight intermediate chamber 24 a is formed between the inside of the cylindrical conductor 24 and the outer peripheral portions of the bellows 21, 22. In addition, the gas is also separated from the grounded sealed container 11 of the circuit breaker unit 10. The gas pressure applied to the bellows 21 and 22 is sealed by setting the gas pressure in the intermediate chamber 24a to 0.1 to 0.3 MPa · G lower than the gas pressure of the insulating gas sealed in the grounded hermetic container 11. The pressure is set to 0.4 MPa or less.
[0025]
Here, if the diameters of the first bellows 21 and the second bellows 22 are substantially equal, the volume of the intermediate chamber 24a can be made unchanged during the opening / closing operation performed by driving the movable rod 25 in the axial direction. No pressure change occurs within 24a. Therefore, the pressure difference during the opening / closing operation is made as small as possible, usually 20% or less, so that there is no significant change in the insulation structure.
[0026]
FIG. 2 is a cross-sectional view showing a main part of a gas insulated switchgear according to another embodiment of the present invention.
In the embodiment shown in FIG. 1, the operations of the two bellows 21 and 22 are opposite to each other, and the second bellows 22 is compressed when the first bellows 21 is extended. However, as shown in FIG. The expansion and compression directions of 21 and 22 may be the same. Here, the cylindrical conductor 24 that is airtightly connected to the lower end of the vacuum vessel 13 has an axial length that does not contact the lower end lid 23 in the open position, and the upper end of the second bellows 22 is airtightly sealed to the lower portion of the cylindrical conductor 24. In addition to being connected, the lower end of the second bellows 22 is airtightly connected to the movable rod 25 or to a fixed member 33 provided with airtightness to the movable rod 25. Therefore, the inside of the first bellows 21 is formed as a part of the vacuum vessel 13, and an intermediate chamber 24 a composed of the inside of the cylindrical conductor 24, the outside of the first bellows 21, and the inside of the second bellows 22 is formed.
[0027]
The intermediate chamber 24 a is not part of the vacuum vessel 13 and is also separated from the grounded sealed container 11 of the circuit breaker unit 10, and the insulating pressure in which the gas pressure in the intermediate chamber 24 a is sealed in the grounded sealed vessel 11. The gas pressure applied to the bellows 21 and 22 can be reduced to 0.4 MPa or less by sealing with 0.1 to 0.3 MPa · G lower than the gas pressure of the gas. Again, if the diameters of the first bellows 21 and the second bellows 22 are substantially equal, the volume of the intermediate chamber 24a can be made unchanged during the opening / closing operation performed by driving the movable rod 25 in the axial direction. No pressure change occurs within 24a.
[0028]
FIG. 3 is a cross-sectional view showing a main part of a gas insulated switchgear according to still another embodiment of the present invention.
In this embodiment, both bellows 21 and 22 shown in FIG. 2 are formed in a conical shape, and both bellows 21 and 22 are formed in a conical shape so that they overlap each other in the axial direction. Therefore, it is possible to reduce the size in the axial direction.
[0029]
In each of the above-described embodiments, one intermediate chamber 24a is formed, and the intermediate pressure between the vacuum vessel 13 and the grounded sealed vessel 11 is set, but two or more intermediate chambers are formed using two or more bellows. If the gas pressure is formed and changed stepwise, the gas pressure in the grounded sealed container 11 can be further increased while reducing the burden on the gas pressure of the bellows.
[0030]
In this way, by reducing the burden of the gas pressure on the bellows of the vacuum circuit breaker 20, the gas insulated switchgear as shown in FIG. The gas pressure of the insulating gas in the 10 grounded sealed containers 11 is lowered to a gas pressure determined by the mechanical strength of the bellows, and the gas pressure of the insulating gas sealed in the grounded sealed containers 41 and 48 of the other units 4 and 6 is reduced. By increasing the length, the insulation distance of the other units 4 and 6 can be shortened to reduce the size. Moreover, since units 4 and 6 other than the circuit breaker unit 10 include a disconnector, the small current interrupting performance of the disconnector can be improved by increasing the gas pressure. On the other hand, in the grounded sealed container 11 of the circuit breaker unit 10, since an arc is not generated directly in the gas as in the case of a disconnector, etc., the insulation performance is improved by enclosing dry air whose insulation performance is 10 to 20% better than nitrogen. The equipment can be reduced.
[0031]
In the gas insulated switchgear shown in FIG. 1, the insulation mold member 12 is molded on the outer peripheral portion of the vacuum vessel 13 in the vacuum circuit breaker 20 to improve the grounding and interphase dielectric strength of the vacuum circuit breaker 20. The insulating mold member 12 may be applied to the intermediate chamber 24a. The insulating mold member 12 may be applied including the ceramic portion in the ceramic vacuum vessel 13, but may be applied only to the metal portion.
[0032]
FIG. 4 is a cross-sectional view showing a main part of a gas-insulated switchgear according to still another embodiment of the present invention, and the same components as those of the previous embodiment are denoted by the same reference numerals and detailed description thereof is omitted. .
In this embodiment, an insulating tube 29 that is airtightly connected to the lower end of the vacuum vessel 13 is provided, and the lower end portion of the insulating tube 29 is airtightly connected to the grounded hermetic vessel 11. The insulating cylinder 29 may be one in which the cylindrical conductor 24 serving as a connection portion with the movable high-voltage conductor 36 is integrally provided on the upper portion thereof, but the upper portion thereof is airtightly connected to the lower portion of the cylindrical conductor 24. May be. Movable rod 25 having a movable electrode 15 is made axially openably operation while maintaining the vacuum degree in the vacuum container 13 by a first bellows 21, the rod portion 37 which is connected at its lower end an insulator 2 7 The second bellows 22 is disposed on the rod portion 37 that is led out to the grounded sealed container 11. The rod part 37 led out of the grounded sealed container 11 by the second bellows 22 is connected to the operating unit 32 and the mechanism part 31 of the vacuum circuit breaker 20 arranged outside the grounded sealed container 11.
[0033]
The second bellows 22 has an upper end connected to the rod portion 37 in an airtight manner by an end lid 34 and a lower end connected to the grounded sealed container 11 in an airtight manner. Accordingly, an intermediate chamber 24a divided by both bellows 21 and 22 is formed in the insulating cylinder 29, and this intermediate chamber 24a can be set to an intermediate gas pressure between the vacuum vessel 13 and the atmosphere. The intermediate chamber 24a in the previous embodiment has an intermediate gas pressure between the inside of the vacuum vessel 13 and the grounded sealed vessel 11, but here it can be set to an intermediate gas pressure in the vacuum vessel 13 and in the atmosphere. . This is irrelevant to the gas pressure in the grounded sealed container 11 from the viewpoint of the burden due to the difference in gas pressure between the inside and outside of the bellows 21 and 22, so the gas pressure in the grounded sealed container 11 is changed to the both bellows 21 and 22. It means that it can be set independently.
[0034]
According to such a gas insulated switchgear, the insulating gas in the grounded sealed container 11 in which the vacuum circuit breaker 20 is disposed, and the grounded sealed containers 41 and 48 in which the disconnector is disposed, and the gas pressure thereof are both bellows 21. , 22 can be selected under optimum conditions regardless of the burden caused by the difference in gas pressure between the inside and outside, so that a gas insulated switchgear having a smaller size and more stable performance can be obtained. Compared to the gas insulated switchgear shown in FIG. 1, the gas pressure in the grounded sealed container 11 in FIG. Further, in terms of the dielectric strength of the insulating gas in the grounded sealed container 11, the same effect as that obtained by increasing the gas pressure in the grounded sealed container 11 of FIG. 1 can be obtained.
[0035]
FIG. 5 is a cross-sectional view showing a main part of a gas-insulated switchgear according to still another embodiment of the present invention, and the same reference numerals are given to the equivalents of the embodiment shown in FIG. Is omitted.
In this embodiment, an insulating tube 29 that is airtightly connected to the lower end of the vacuum vessel 13 is provided, and the lower end portion of the insulating tube 29 is airtightly connected to the grounded hermetic vessel 11. The insulating tube 29, also a cylindrical conductor 24 serving as a connecting portion with the movable-side high pressure conductor 36 that is provided integrally with the upper portion of the insulating cylinder 29, resistance to the upper portion of the insulating tube 29 to the lower portion of the tubular conductor 24 An airtight connection may be used. In any case, the bellows is omitted between the vacuum vessel 13 and the insulating cylinder 29, and both communicate with each other to form an integral vacuum vessel. The movable rod 25 having the movable electrode 15 is connected to the rod portion 37 via the insulator 27 in this integral vacuum container, and then led out of the grounded sealed container 11. A second bellows 22 is provided at the lead-out portion to the outside of the grounded sealed container 11, and the second bellows 22 can be opened and closed in the axial direction while maintaining the degree of vacuum in the integral vacuum container. The rod portion 37 led out by the second bellows 22 is connected to the operating device 32 and the mechanism portion 31 of the vacuum circuit breaker 20 arranged outside the grounded sealed container 11.
[0036]
The second bellows 22 has an upper end connected to the rod portion 37 in an airtight manner by an end lid 34 and a lower end connected to the grounded sealed container 11 in an airtight manner. Therefore, only the second bellows 22 separates the degree of vacuum in the integrated vacuum vessel 13 and the atmosphere outside the grounded sealed vessel 11. Without intermediate chamber 24a in this case in the previous embodiment, the second bellows 22, so not applied only pressure difference integral vacuum vessel 13 and the atmosphere, inside and outside the gas pressure difference between the second bellows 22 The burden caused by is reduced. Moreover, since the gas pressure in the grounded sealed container 11 and the burden due to the gas pressure difference between the inside and outside of the second bellows 22 are irrelevant, the gas pressure in the grounded sealed container 11 can be determined by a desired dielectric strength.
[0037]
According to such a gas-insulated switchgear, the insulating bellows in the grounded sealed container 11 in which the vacuum circuit breaker 20 is disposed, and the grounded sealed containers 41 and 71 in which the disconnectors are disposed, and the gas pressure are supplied to the first bellows. Since the selection can be made under optimum conditions regardless of the load caused by the difference in gas pressure between the inside and outside of the gas chamber 21, the gas insulated switchgear having a smaller size and more stable performance can be obtained as in the case of the previous embodiment.
[0038]
【The invention's effect】
As described above, the gas-insulated switchgear according to the present invention divides the grounded container into two or more gas compartments by the insulating spacer, arranges the vacuum circuit breaker in one gas compartment, and places the other in the other gas compartment. Since the disconnector is arranged and the gas pressure in one gas compartment is lower than the other gas compartment, the burden due to the pressure difference between the inside and outside of the bellows due to the insulating gas in the grounded sealed container containing the vacuum circuit breaker can be reduced. In addition, the dielectric strength can be improved even if the use of Freon gas such as SF6 gas with a high global warming potential is restricted, thereby reducing the environmental impact and reducing the cost to the conventional level. Can do.
[0039]
Moreover, the gas insulated switchgear of the present invention can limit the use of SF6 gas with a high global warming potential because the gas pressure in the grounded sealed container containing the vacuum circuit breaker can be made higher than the limit due to the strength of the bellows. However, it is possible to improve the dielectric strength, thereby reducing the environmental load and reducing the cost to the same level as in the past.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing a gas insulated switchgear according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing a main part of a gas insulated switchgear according to another embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a main part of a gas insulated switchgear according to still another embodiment of the present invention.
FIG. 4 is a cross-sectional view showing a main part of a gas insulated switchgear according to still another embodiment of the present invention.
FIG. 5 is a cross-sectional view showing a main part of a gas insulated switchgear according to still another embodiment of the present invention.
[Explanation of symbols]
1, 2 Insulating spacer 4 Bus unit 7 Disconnector unit 10 Breaker unit 11 Grounded airtight container 12 Vacuum container 20 Vacuum circuit breaker 21 First bellows 22 Second bellows 24 Tubular conductor 24a Intermediate chamber 41, 48 Grounded airtight container

Claims (3)

絶縁性ガスを封入した接地密閉容器内に、主回路を構成する高電圧導体を絶縁支持して遮断器および断路器を構成し、上記遮断器は、真空容器内の真空度を保持して可動電極の開閉動作を許すベローズを有する真空遮断器によって構成したガス絶縁開閉装置において、上記真空遮断器の両極にそれぞれ上記断路器を電気的直列に接続し、上記真空遮断器を収納した上記接地密閉容器と上記両断路器をそれぞれ収納した上記接地密閉容器との間に、上記真空容器とその内部の真空度を保持して上記可動電極の開閉動作を許す上記ベローズとによって上記接地密閉容器内からガス的に区分した構成とは別にそれぞれ絶縁スペーサを設けてガス的に区分し、上記真空遮断器を収納した上記接地密閉容器内に封入した絶縁性ガスのガス圧力を上記断路器を収納した上記接地密閉容器内に封入した絶縁性ガスより低くしたことを特徴とするガス絶縁開閉装置。  In a grounded airtight container filled with an insulating gas, the high-voltage conductor that constitutes the main circuit is insulated and supported to form a circuit breaker and disconnector. The circuit breaker is movable while maintaining the degree of vacuum in the vacuum container. In a gas insulated switchgear constituted by a vacuum circuit breaker having a bellows that allows an electrode opening / closing operation, the disconnector is electrically connected in series to both poles of the vacuum circuit breaker, and the grounded hermetic housing the vacuum circuit breaker Between the container and the grounded sealed container that houses the both disconnectors, the vacuum container and the bellows that keeps the degree of vacuum inside and allows the movable electrode to open and close from the grounded sealed container. Separately from the gas-divided configuration, an insulating spacer is provided for each gas segmentation, and the gas pressure of the insulating gas sealed in the grounded sealed container containing the vacuum circuit breaker is changed to the disconnection. Gas insulated switchgear is characterized in that lower than the insulating gas sealed in the ground sealed container housing a. 上記絶縁性ガスとして乾燥空気または窒素ガスまたは炭酸ガスを主成分としたガスを封入したことを特徴とする請求項1に記載のガス絶縁開閉装置。  2. The gas insulated switchgear according to claim 1, wherein a gas mainly composed of dry air, nitrogen gas or carbon dioxide gas is enclosed as the insulating gas. 上記絶縁性ガスとして、乾燥空気または窒素ガスまたは炭酸ガスを主成分とするガスに、20%以下のフロンガスを混入した混合ガスを用いたことを特徴とする請求項1に記載のガス絶縁開閉装置。  The gas-insulated switchgear according to claim 1, wherein the insulating gas is a mixed gas in which 20% or less of chlorofluorocarbon gas is mixed in a gas mainly composed of dry air, nitrogen gas, or carbon dioxide gas. .
JP2003023411A 2003-01-31 2003-01-31 Gas insulated switchgear Expired - Fee Related JP4222848B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003023411A JP4222848B2 (en) 2003-01-31 2003-01-31 Gas insulated switchgear

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003023411A JP4222848B2 (en) 2003-01-31 2003-01-31 Gas insulated switchgear

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2005186606A Division JP4119441B2 (en) 2005-06-27 2005-06-27 Gas insulated switchgear
JP2006043330A Division JP4212595B2 (en) 2006-02-21 2006-02-21 Gas insulated switchgear

Publications (3)

Publication Number Publication Date
JP2004236455A JP2004236455A (en) 2004-08-19
JP2004236455A5 JP2004236455A5 (en) 2005-10-20
JP4222848B2 true JP4222848B2 (en) 2009-02-12

Family

ID=32952215

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003023411A Expired - Fee Related JP4222848B2 (en) 2003-01-31 2003-01-31 Gas insulated switchgear

Country Status (1)

Country Link
JP (1) JP4222848B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136311A (en) * 2010-11-10 2011-07-27 中国科学院电工研究所 Mixed gas insulating medium

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4515966B2 (en) * 2005-06-14 2010-08-04 株式会社日本Aeパワーシステムズ Three-phase collective gas insulated switchgear
JP4709062B2 (en) 2006-05-11 2011-06-22 株式会社日本Aeパワーシステムズ Tank type vacuum circuit breaker
JP5249424B2 (en) * 2009-10-29 2013-07-31 三菱電機株式会社 Electromagnetic operation switchgear
JP6053463B2 (en) * 2012-11-13 2016-12-27 三菱電機株式会社 Vacuum valve
JP6044645B2 (en) * 2015-01-07 2016-12-14 株式会社明電舎 Vacuum circuit breaker
CN108172454A (en) * 2018-01-06 2018-06-15 北海银河开关设备有限公司 Electric locomotive high-voltage circuitbreaker

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102136311A (en) * 2010-11-10 2011-07-27 中国科学院电工研究所 Mixed gas insulating medium

Also Published As

Publication number Publication date
JP2004236455A (en) 2004-08-19

Similar Documents

Publication Publication Date Title
JP4724003B2 (en) Gas insulated switchgear
JP4764906B2 (en) Vacuum switch and vacuum switch gear
WO2016067647A1 (en) Switchgear
EP2546850A2 (en) Switchgear and method for operating switchgear
CN102044375A (en) Vacuum switch tube
JP2003047113A (en) Switching device
US20020060204A1 (en) Gas-insulated switching apparatus
JP3577247B2 (en) Switchgear
CN201134639Y (en) 72.5KV gas-insulated metal-enclosed switchgear
JP4212595B2 (en) Gas insulated switchgear
JP4222848B2 (en) Gas insulated switchgear
JP4119441B2 (en) Gas insulated switchgear
US3903387A (en) Gas-insulated switching apparatus
JP2003045300A (en) Circuit breaker
JP3623333B2 (en) Substation equipment
JP4712609B2 (en) Switchgear
JPH11164429A (en) Disconnector with grounding device
JP2000197221A (en) Closed type gas insulated three-phase switchgear
JP2004056845A (en) Insulated switchgear
JP4468540B2 (en) Sealed gas insulated switchgear
JP4040954B2 (en) Vacuum switchgear
JPH06265580A (en) Full-voltage interruption test equipment for gas insulated switchgear
JP2000341816A (en) Switchgear
JP2002320305A (en) Switch gear, and method of sealing mobile section thereof
JP5161608B2 (en) Gas circuit breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040804

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050627

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20050627

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20050712

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051003

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060221

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060306

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20060616

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

R150 Certificate of patent or registration of utility model

Ref document number: 4222848

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111128

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121128

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131128

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees