JPH04355020A - Three-phase collective type vacuum breaker - Google Patents

Three-phase collective type vacuum breaker

Info

Publication number
JPH04355020A
JPH04355020A JP15616391A JP15616391A JPH04355020A JP H04355020 A JPH04355020 A JP H04355020A JP 15616391 A JP15616391 A JP 15616391A JP 15616391 A JP15616391 A JP 15616391A JP H04355020 A JPH04355020 A JP H04355020A
Authority
JP
Japan
Prior art keywords
phase
bushing
circuit breaker
container
vacuum valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15616391A
Other languages
Japanese (ja)
Inventor
Tadayoshi Iida
飯田 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP15616391A priority Critical patent/JPH04355020A/en
Publication of JPH04355020A publication Critical patent/JPH04355020A/en
Pending legal-status Critical Current

Links

Landscapes

  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

PURPOSE:To directly implant a through bushing in a closed vessel while eliminating necessity for a shielding cover by constitution of the single closed vessel relating to a 3-phase breaker main unit. CONSTITUTION:A 3-phase vacuum valve 3 and a connecting mechanism 29 are collectively housed in a closed vessel 22 of rectangular parallelopiped sealed with insulating gas 9. Operating force generated in an operating device 12 is transmitted through a drive rod 28, mechanism 29 and an insulation rod 18 to perform action of opening/closing the valve 3. In the vessel 22, the first through bushings 5a, 5b of three phase, provided with the first conductor 25a connected to this vessel, provided. By constituting this closed vessel of a single quantity, necessity of a cover for shielding the connecting mechanism from wind and rain is eliminated, in a 3-phase breaker main unit, and the through bushing can be directly implanted in the closed vessel to improve reliability by simplifying constitution.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、送、変電所などの電力
用回路に使用される三相一括形真空遮断器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-phase vacuum circuit breaker used in power circuits such as transmission lines and substations.

【0002】0002

【従来の技術】真空遮断器は遮断性能が優れ、かつ信頼
性も高いことから、広く用いられている。又、電流遮断
点となる真空バルブを一相づつSF6 ガスなどの絶縁
ガスを封入した円筒状の接地容器に収納し、電流遮断と
真空バルブ内の絶縁を真空に負担させるとともに、真空
バルブの外沿面の絶縁を絶縁ガスに分担させ、コンパク
ト化を図ったタンク形真空遮断器が使用されている。図
3に従来構造の三相用タンク形真空遮断器の全体構造の
一例を、図4に図3の遮断器本体1の1相分の断面構造
を示す。図3、図4において、2は円筒断面を有する密
閉容器、3は真空バルブで、絶縁スペーサ4によって接
地電位である密閉容器2に対し、絶縁を保持した状態で
固定されている。5aは第1の貫通ブッシングで、密閉
容器2の一方の端部に植設された第1の枝管部6aに固
定されている。7aは外部電線8aと接続する端子台で
、第1の貫通ブッシング5aの上端部で、第1の貫通ブ
ッシング5a及び密閉容器2内に封入された絶縁ガス9
を封止するとともに、第1の貫通ブッシング5a内を貫
通し真空バルブ3の一端と電気的に接続する第1の導体
10aに接続されている。密閉容器2の前記の枝管部6
aの反対側の端部には、第2の枝管部6bがあって、第
1の枝管部6a側と同様に外部電線8bと接続する端子
台7b、第2の導体10b、第2の貫通ブッシング5b
が設置されている。前記の絶縁ガス9にはSF6 など
の高絶縁性能を有する媒体を用いるのが適当で、密閉容
器2及び第1と第2の貫通ブッシング5a、5b内に一
括して充填されている。図4には遮断器本体1の1相分
だけの構造を示したが、他の2相も略々同一構造である
。11は三相の密閉容器2の絶縁ガス9を連通させるガ
ス配管である。すなわち絶縁ガス9を経済的に監視する
ため、三相の絶縁ガス9をガス配管11によって共通化
している。
2. Description of the Related Art Vacuum circuit breakers are widely used because of their excellent breaking performance and high reliability. In addition, each phase of the vacuum valve, which serves as a current cutoff point, is housed in a cylindrical grounded container filled with an insulating gas such as SF6 gas, and the vacuum is responsible for current cutoff and insulation inside the vacuum valve. A tank-type vacuum circuit breaker is used, which uses an insulating gas to perform creeping insulation and is more compact. FIG. 3 shows an example of the overall structure of a conventional three-phase tank-type vacuum circuit breaker, and FIG. 4 shows a cross-sectional structure of one phase of the circuit breaker body 1 shown in FIG. 3. In FIGS. 3 and 4, 2 is a closed container having a cylindrical cross section, and 3 is a vacuum valve, which is fixed to the closed container 2 which is at ground potential by an insulating spacer 4 while maintaining insulation. Reference numeral 5a denotes a first through bushing, which is fixed to a first branch pipe section 6a implanted at one end of the closed container 2. 7a is a terminal block connected to an external electric wire 8a, and an insulating gas 9 sealed in the first through bushing 5a and the airtight container 2 is connected to the upper end of the first through bushing 5a.
It is connected to a first conductor 10a that passes through the first through bushing 5a and is electrically connected to one end of the vacuum valve 3. The branch pipe section 6 of the closed container 2
At the end opposite to a, there is a second branch pipe part 6b, which has a terminal block 7b connected to an external electric wire 8b, a second conductor 10b, a second through bushing 5b
is installed. As the insulating gas 9, it is appropriate to use a medium having high insulating performance such as SF6, which is filled in the closed container 2 and the first and second through bushings 5a and 5b all at once. Although FIG. 4 shows the structure of only one phase of the circuit breaker main body 1, the other two phases also have substantially the same structure. Reference numeral 11 denotes a gas pipe that communicates the insulating gas 9 of the three-phase hermetic container 2. That is, in order to economically monitor the insulating gas 9, the three-phase insulating gas 9 is shared by the gas pipe 11.

【0003】12は当該遮断器の開閉操作を行う操作装
置で、架台13に装着されている。14は駆動ロッドで
、操作装置12と遮断器本体1の第1相を連結し、操作
装置12で発生した操作力を伝達する。15は連結機構
で、遮断器本体1の第一相と第二相、遮断器本体1の第
二相と第三相をそれぞれ連結するロッド16a、16b
、操作力の向き変換するレバー17等で構成されている
。18は絶縁ロッドでレバー17と真空バルブ3の間を
絶縁するとともに、駆動ロッド15及びロッド16a、
16bの操作力を真空バルブ3に伝達する。絶縁ガス9
はレバー17部に設けた密封装置19によって可回転的
に大気側と封止されている。20は駆動ロッド15やロ
ッド16a、16bなどを風雨から遮蔽するカバーであ
る。この遮断器は、操作装置12によって三相の遮断器
本体1が一括して動作する三相用タンク形真空遮断器と
なっている。
Reference numeral 12 denotes an operating device for opening and closing the circuit breaker, which is mounted on a pedestal 13. A driving rod 14 connects the operating device 12 and the first phase of the circuit breaker main body 1 and transmits the operating force generated by the operating device 12. Reference numeral 15 denotes a connecting mechanism, and rods 16a and 16b connect the first phase and second phase of the circuit breaker body 1, and the second phase and third phase of the circuit breaker body 1, respectively.
, a lever 17 for changing the direction of the operating force, and the like. 18 is an insulating rod that insulates between the lever 17 and the vacuum valve 3, and also includes the driving rod 15, the rod 16a,
16b is transmitted to the vacuum valve 3. Insulating gas 9
is rotatably sealed from the atmosphere by a sealing device 19 provided on the lever 17. A cover 20 shields the drive rod 15, rods 16a, 16b, etc. from wind and rain. This circuit breaker is a three-phase tank-type vacuum circuit breaker in which the three-phase circuit breaker main body 1 is operated all at once by an operating device 12.

【0004】0004

【発明が解決しようとする課題】本発明は従来機器にお
けるつぎの問題点を解決する、三相一括形真空遮断器を
提供することを目的としている。(1)従来のガス絶縁
と組み合わせた三相用タンク形真空遮断器は、三相のそ
れぞれが独立した円筒状の密閉容器に収納されているの
で、密閉容器部分ばかりでなく、三相間を連結するロッ
ドとかレバーなどの連結機構を風雨から遮蔽するための
カバーなどの収納用品が必要であったり、円筒状の密閉
容器に略々直交するように碍管を植設するための枝管部
が必要になるなど、部品点数が多く、かつ構造が複雑で
あるため高価である。(2)部品点数及び、ガスシール
箇所が多く信頼性を減殺する要因が多い。(3)遮断気
本体はガス中という、外部環境の影響を受けない安定し
た雰囲気の中に設置されており、経年による劣化が少な
いのに比べ、操作装置の操作力を伝達する連結機構部は
カバーによって風雨からは遮蔽されているとはいえ大気
と連通した雰囲気中に設置されているので、例えば湿気
等によって時間の経過とともに錆が発生したりして劣化
が進展することは避け得ない。(4)各々の密閉容器間
を接続するガス配管が強度上の弱点になり易い。
SUMMARY OF THE INVENTION An object of the present invention is to provide a three-phase vacuum circuit breaker which solves the following problems in conventional equipment. (1) A three-phase tank-type vacuum circuit breaker combined with conventional gas insulation has each of the three phases housed in an independent cylindrical sealed container, so it connects not only the sealed container part but also the three phases. Storage items such as covers are required to shield connecting mechanisms such as rods and levers from wind and rain, and branch pipes are required to install insulated pipes approximately perpendicular to the cylindrical airtight container. It is expensive because it has a large number of parts and a complicated structure. (2) The number of parts and gas seals are large, and there are many factors that reduce reliability. (3) The main body of the shutoff gas is installed in a gas atmosphere, which is a stable atmosphere that is not affected by the external environment, and there is little deterioration over time. Although it is shielded from the wind and rain by the cover, it is installed in an atmosphere that communicates with the atmosphere, so it is unavoidable that, for example, due to humidity, rust will develop over time and deterioration will progress. (4) Gas piping that connects each sealed container tends to be a weak point in terms of strength.

【0005】[0005]

【課題を解決するための手段】直方体状の密閉容器と、
該密閉容器に封入した絶縁ガスと、前記密閉容器内に所
定の間隔を離間して設置した三相の真空バルブと、前記
密閉容器の上面の一方の端部の、三相の真空バルブとそ
れぞれ対応する位置に設置した、密閉容器の内外を連通
する第1の導体を備えた三相の第1の貫通ブッシングと
、第1の貫通ブッシングとは反対側の密閉容器の上面の
端部に設置した、密閉容器の内外を連通する第2の導体
を備えた三相の第2の貫通ブッシングを備え、第1の貫
通ブッシング側から真空バルブを介して第2の貫通ブッ
シング側へ、三相それぞれに接続するとともに、三相の
遮断器本体間を連結し操作力を伝達する連結機構を、前
記の密閉容器内に配置する構造とする。
[Means for solving the problem] A rectangular parallelepiped sealed container,
an insulating gas sealed in the airtight container; a three-phase vacuum valve installed at a predetermined distance within the airtight container; and a three-phase vacuum valve at one end of the upper surface of the airtight container. A three-phase first through bushing equipped with a first conductor that communicates between the inside and outside of the closed container, installed at a corresponding position, and installed at the end of the top surface of the closed container on the opposite side from the first through bushing. A three-phase second through-bushing is provided with a second conductor that communicates between the inside and outside of the sealed container. A connecting mechanism for connecting the three-phase circuit breaker bodies and transmitting operating force is arranged in the sealed container.

【0006】[0006]

【作用】上記のように構成された発明によれば、密閉容
器は三相の遮断器本体に対し1個で構成することが出来
るとともに、三相の遮断器本体間を連結する連結機構を
風雨から遮蔽するカバーが不要となり、かつ連結機構が
絶縁ガス中という、外気の影響を受けない安定した雰囲
気中に設置される。又、貫通ブッシングを密閉容器に直
接植設出来るので、部品数量の減少とともに、ガスシー
ル箇所が削減される。さらに三相間を連結するガス配管
も不要となる。
[Operation] According to the invention configured as described above, one sealed container can be configured for each three-phase circuit breaker body, and the connecting mechanism connecting the three-phase circuit breaker bodies can be This eliminates the need for a cover to shield the connection mechanism from air, and the coupling mechanism is installed in an insulating gas, a stable atmosphere that is not affected by outside air. Furthermore, since the through bushing can be directly implanted into the closed container, the number of parts and gas sealing locations are reduced. Furthermore, gas piping connecting the three phases becomes unnecessary.

【0007】[0007]

【実施例】図1に本発明になる三相一括形真空遮断器の
全体構造を、図2に図1の遮断器本体21の1相分の断
面構造を示す。図3、図4に示す従来品と同一部分につ
いては照合の便宜上同一番号を付す。図1、図2におい
て、22は直方体状の6面体の密閉容器、3は真空バル
ブで三相が所定の間隔を離間され、密閉容器22の底面
に平行に、絶縁スペーサ23によって接地電位である密
閉容器22に対し、絶縁を保持した状態で固定されてい
る。5aは第1の貫通ブッシングで、密閉容器22の上
面の一方の端部24aの、真空バルブ3と対応する位置
に固定されている。7aは外部電線8aと接続する端子
台で、第1の貫通ブッシング5aの上端部で、第1の貫
通ブッシング5a及び密閉容器22内に封入された絶縁
ガス9を封止するとともに、第1の貫通ブッシング5a
内を貫通し真空バルブ3の一端と電気的に接続する第1
の導体25aに接続されている。密閉容器22の前記端
部24aの反対側の端部24bには、端部24a側と同
様に、外部電線8bと接続する端子台7b、第2の導体
25b、第2の貫通ブッシング5bが設置されている。 当該構造においては、第1と第2の貫通ブッシング5a
、5bを植設する端部24a、24bは、第1と第2の
貫通ブッシング5a、5bを固定するに際して使用する
ボルトなどの締結材26を装着しても、密閉容器22の
密封を損なわないだけの厚みさえあればよいので、密閉
容器22を厚めの部材で構成するとか、端部24a、2
4b部をフランジ27を付加した厚肉構造とするだけで
よく、構造がきわめて簡単である。図2には遮断器本体
21の1相分だけの構造を示したが、他の2相も略々同
一構造である。なお真空バルブ3を密閉容器22の底面
に平行に配置したことによって三相の構造が略々同一と
なるため、絶縁スペーサ23をはじめ、第1と第2の導
体25a、25bなどが統一され製作し易いという利点
がある。又、三相の遮断器本体21を一括操作するため
の連結も容易である。製作が容易ということは経済性、
信頼性の高い機器を提供するのに好都合である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the overall structure of a three-phase vacuum circuit breaker according to the present invention, and FIG. 2 shows a cross-sectional structure of one phase of the circuit breaker body 21 shown in FIG. Parts that are the same as those of the conventional product shown in FIGS. 3 and 4 are given the same numbers for convenience of reference. In FIGS. 1 and 2, 22 is a rectangular parallelepiped hexahedral sealed container, 3 is a vacuum valve, and the three phases are separated by a predetermined interval, and the ground potential is set parallel to the bottom surface of the sealed container 22 by an insulating spacer 23. It is fixed to the closed container 22 while maintaining insulation. Reference numeral 5a denotes a first through bushing, which is fixed at one end 24a of the upper surface of the closed container 22 at a position corresponding to the vacuum valve 3. 7a is a terminal block connected to an external electric wire 8a, and at the upper end of the first through bushing 5a, the insulating gas 9 sealed in the first through bushing 5a and the sealed container 22 is sealed, and the first through bushing 5a is sealed. Penetration bushing 5a
A first penetrating the inside of the vacuum valve and electrically connecting with one end of the vacuum valve 3.
is connected to the conductor 25a. At the end 24b of the airtight container 22 opposite to the end 24a, a terminal block 7b connected to the external electric wire 8b, a second conductor 25b, and a second through bushing 5b are installed, similarly to the end 24a side. has been done. In this structure, the first and second through bushings 5a
, 5b are installed, so that the sealing of the airtight container 22 is not impaired even when a fastening material 26 such as a bolt used for fixing the first and second through bushings 5a, 5b is attached. Therefore, the airtight container 22 may be made of a thicker material, or the ends 24a, 2
The structure is extremely simple, as it is only necessary to add the flange 27 to the portion 4b. Although FIG. 2 shows the structure of only one phase of the circuit breaker main body 21, the other two phases also have substantially the same structure. Since the vacuum valve 3 is arranged parallel to the bottom of the sealed container 22, the three-phase structure is almost the same, so the insulating spacer 23, first and second conductors 25a, 25b, etc. are unified and manufactured. It has the advantage of being easy to do. Furthermore, connection for collectively operating the three-phase circuit breaker main body 21 is easy. Easy production means economic efficiency,
This is convenient for providing highly reliable equipment.

【0008】12は当該遮断器の開閉操作を行う操作装
置で、架台13に装着されている。28は駆動ロッドで
、大気側にあり操作装置12と遮断器本体21の第1相
を連結し、操作装置12で発生した操作力を伝達する。 29ば連結機構で絶縁ガス9中にあり、遮断器本体21
の第一相と第二相、遮断器本体21の第二相と第三相を
それぞれ連結するロッド16a、16b、操作力の向き
変換するレバー17等で構成されている。18は絶縁ロ
ッドでレバー17と真空バルブ3の間を絶縁するととも
に、駆動ロッド28及びロッド16a、16bの操作力
を真空バルブ3に伝達する。絶縁ガス9は駆動ロッド2
8と連結機構29の連結軸30部に設けた密封装置31
によって可回転的に大気側と封止されている。つまり密
封装置31から遮断器本体21側は全て絶縁ガス9中に
設置されており、外気の影響が及ばない構造になってい
る。この遮断器は、操作装置12によって三相の遮断器
本体21が一括して動作する三相一括形真空遮断器とな
っている。なお、駆動ロッド28は大気中にあるとして
説明したが、風雨から遮蔽するカバーを付けてもよい。 又、駆動ロッド28を操作装置12と一体として構成す
ることも可能である。駆動ロッド28の遮蔽カバーにつ
いては設計条件に応じて任意に設定できる。ただし該遮
蔽カバーは本発明には関与しない。
Reference numeral 12 denotes an operating device for opening and closing the circuit breaker, which is mounted on a pedestal 13. Reference numeral 28 denotes a drive rod, which is located on the atmospheric side and connects the operating device 12 and the first phase of the circuit breaker main body 21, and transmits the operating force generated by the operating device 12. 29 is a connecting mechanism located in the insulating gas 9, and the circuit breaker body 21
It is comprised of rods 16a and 16b that respectively connect the first and second phases of the circuit breaker body 21 and the second and third phases of the circuit breaker body 21, a lever 17 that changes the direction of the operating force, and the like. 18 is an insulating rod that insulates between the lever 17 and the vacuum valve 3 and transmits the operating force of the drive rod 28 and the rods 16a and 16b to the vacuum valve 3. Insulating gas 9 is connected to drive rod 2
8 and a sealing device 31 provided on the connecting shaft 30 of the connecting mechanism 29.
It is rotatably sealed from the atmosphere side. In other words, everything from the sealing device 31 to the circuit breaker main body 21 side is installed in the insulating gas 9, and has a structure that is not affected by the outside air. This circuit breaker is a three-phase vacuum circuit breaker in which three-phase circuit breaker main bodies 21 are operated simultaneously by an operating device 12. Although the drive rod 28 has been described as being in the atmosphere, it may be provided with a cover to shield it from wind and rain. It is also possible to configure the drive rod 28 integrally with the operating device 12. The shielding cover of the drive rod 28 can be set arbitrarily according to design conditions. However, the shielding cover is not related to the present invention.

【0009】さて、密閉容器22及び、第1と第2の貫
通ブッシング5a、5bの内部を満たす絶縁ガス9は、
SF6 などの高絶縁性能を有する気体が遮断器のコン
パクト化に有効であるが、非平等電界構造の場合には、
ほぼ90%のSF6 とほぼ10%の乾燥空気又は窒素
の混合ガスが、純粋なSF6 ガスよりも絶縁特性が優
れていることが知られている。(例えば、電学誌・第1
07巻、第2号、’87年)本発明の真空遮断器は、直
方体状の密閉容器22の中に三相の真空バルブ3を一括
収納しており、同芯円構造で平等電界設計の容易な円筒
容器を使用した、例えば図3、図4の従来構造の真空遮
断器に比べ、平等電界構造とすることが困難であるので
、前記の、ほぼ90%のSF6 とほぼ10%の乾燥空
気又は窒素の混合ガスを使用することによって一層、絶
縁性能の優れた三相一括形真空遮断器となる。
Now, the insulating gas 9 filling the inside of the closed container 22 and the first and second through bushings 5a and 5b is as follows.
Gases with high insulation performance such as SF6 are effective in making circuit breakers more compact, but in the case of non-uniform electric field structures,
It is known that a gas mixture of approximately 90% SF6 and approximately 10% dry air or nitrogen has better insulating properties than pure SF6 gas. (For example, electronic journal, 1st
(Vol. 07, No. 2, '87) The vacuum circuit breaker of the present invention houses a three-phase vacuum valve 3 in a rectangular parallelepiped sealed container 22, and has a concentric circular structure with an equal electric field design. Compared to the conventional vacuum circuit breakers shown in Figs. 3 and 4, which use a simple cylindrical container, it is difficult to create an equal electric field structure, so the above-mentioned approximately 90% SF6 and approximately 10% dryness is required. By using a mixed gas of air or nitrogen, a three-phase vacuum circuit breaker with even better insulation performance can be obtained.

【0010】なお、これらの純粋なSF6 やSF6 
の混合ガスなどの絶縁ガス9は高い絶縁性能を有してい
るので、低圧力でも真空バルブ3の外沿面絶縁が十分確
保できる。  一方6面の平面で構成された密閉容器2
2は、圧力により平面に曲げ応力が作用し、たわみが発
生し易いので、高い圧力で使用することに適していない
。円筒状の容器であれば内圧力による応力は引張応力と
なって変形は軽微である。結果として直方体状のように
平面構造を有する密閉容器22に封入する絶縁ガス9は
低圧であることが望ましい。この場合、圧力を2kgf
/cm2 以下とすれば、労働省告示によるところの圧
力容器構造規格の適用対象外の安全性の高い低圧力構造
物となる。
[0010] Furthermore, these pure SF6 and SF6
Since the insulating gas 9 such as the mixed gas has high insulating performance, sufficient insulation on the outer surface of the vacuum valve 3 can be ensured even at low pressure. On the other hand, a closed container 2 composed of six flat surfaces
No. 2 is not suitable for use under high pressure because bending stress acts on the plane due to pressure and bending is likely to occur. If the container is cylindrical, stress due to internal pressure becomes tensile stress and deformation is slight. As a result, it is desirable that the insulating gas 9 sealed in the airtight container 22, which has a planar structure like a rectangular parallelepiped, has a low pressure. In this case, the pressure is 2kgf
/cm2 or less, the structure becomes a highly safe low-pressure structure that is not subject to the pressure vessel structural standards according to the Ministry of Labor's notification.

【0011】又、密閉容器22内を真空曳き、つまり外
気圧0kgf/cm2 に対し、密閉容器22内の圧力
−1kgf/cm2 で、密閉容器22の内外の圧力差
を1kgf/cm2 としてから、密閉容器22に絶縁
ガス9の封入を行う場合は、絶縁ガス9の最高使用圧力
を1kgf/cm2 に設定すれば、内圧と真空曵きし
たときに密閉容器22に作用する外圧では、圧力の作用
する方向に差があるにしても、密閉容器22を構成する
平面の強度に及ぼす効果はほぼ同等であり、密閉容器2
2の強度設計上最経済設計となる。最高使用圧力が1k
gf/cm2 になる条件は、使用温度の上限を、遮断
器に適用される代表的な規格である電気学会  電気規
格調査会標準規格JEC−2300−1985 を適用
すれば、銀接続の場合、接触部の温度上昇限度=65度
で、周囲温度の上限値40℃と合わせ105℃を得る。 実用的には絶縁ガス9の温度は接触部ほどには上昇しな
いので、仮に絶縁ガスの温度が20〜60℃上昇し60
〜100℃になったとすれば、基準温度を20℃として
、絶対圧力は絶対温度に比例するから、常用圧力PはP
=2×(273+20)/{273+(60〜100)
}−1=0.76〜0.57kgf/cm2 を得る。 このことから20℃における常用圧力を0.8〜0.5
kgf/cm2の範囲に設定すれば密閉容器22の最経
済設計が可能となる。
[0011] Also, the inside of the sealed container 22 is vacuumed, that is, the pressure inside the sealed container 22 is -1 kgf/cm2 with respect to the external pressure of 0 kgf/cm2, and the pressure difference between the inside and outside of the sealed container 22 is set to 1 kgf/cm2, and then the sealed container 22 is sealed. When filling the container 22 with the insulating gas 9, if the maximum working pressure of the insulating gas 9 is set to 1 kgf/cm2, the direction in which the pressure acts will differ between the internal pressure and the external pressure that acts on the sealed container 22 when vacuumed. Even if there is a difference in
This is the most economical design in terms of strength design. Maximum working pressure is 1k
gf/cm2, if the upper limit of the operating temperature is applied to the IEEJ Electrical Standards Committee standard JEC-2300-1985, which is a typical standard applied to circuit breakers, in the case of silver connections, contact The temperature rise limit of the unit is 65 degrees, and when combined with the upper limit of the ambient temperature of 40 degrees Celsius, a total of 105 degrees Celsius is obtained. Practically speaking, the temperature of the insulating gas 9 does not rise as much as the contact area, so if the temperature of the insulating gas 9 rises by 20 to 60°C,
〜100℃, assuming the reference temperature is 20℃, absolute pressure is proportional to absolute temperature, so the normal pressure P is P
=2×(273+20)/{273+(60~100)
}-1=0.76 to 0.57 kgf/cm2. From this, the normal pressure at 20℃ is 0.8 to 0.5
If it is set within the range of kgf/cm2, the most economical design of the airtight container 22 is possible.

【0012】0012

【発明の効果】密閉容器は三相の真空バルブに対し1個
でよいので少ない部材で構成することが出来、三相の遮
断器本体間を連結する連結機構を風雨から遮蔽するカバ
ーが不要となる。又、貫通ブッシングを密閉容器に直接
植設出来るので構造が簡単である。したがって短期間で
製作することが出来、経済的である。又、部材数量の減
少とともに、ガスシール箇所が削減されるのでガス漏れ
要因が減り、信頼性も向上する。さらに三相間を連結す
るガス配管も不要となって一層経済的である上、強度上
の弱点も排除される。
[Effects of the invention] Only one sealed container is required for each three-phase vacuum valve, so it can be configured with fewer parts, and there is no need for a cover to shield the connection mechanism that connects the three-phase circuit breaker bodies from wind and rain. Become. Furthermore, the structure is simple because the through bushing can be directly planted in the closed container. Therefore, it can be manufactured in a short period of time and is economical. In addition, as the number of parts is reduced, the number of gas sealing points is also reduced, which reduces the number of gas leakage factors and improves reliability. Furthermore, there is no need for gas piping to connect the three phases, making it even more economical and eliminating weak points in terms of strength.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の三相一括形真空遮断器の全体構造図で
ある。
FIG. 1 is an overall structural diagram of a three-phase vacuum circuit breaker of the present invention.

【図2】本発明の三相一括形真空遮断器の本体部分の断
面構造図である。
FIG. 2 is a cross-sectional structural diagram of the main body portion of the three-phase vacuum circuit breaker of the present invention.

【図3】従来構造の三相用タンク形真空遮断器の全体構
造図例である。
FIG. 3 is an example of the overall structure of a conventional three-phase tank-type vacuum circuit breaker.

【図4】従来構造の三相用タンク形真空遮断器の本体部
分の断面構造図例である。
FIG. 4 is an example of a cross-sectional structural diagram of a main body portion of a conventional three-phase tank-type vacuum circuit breaker.

【符号の説明】[Explanation of symbols]

3      真空バルブ 5a    第1の貫通ブッシング 5b    第2の貫通ブッシング 9      絶縁ガス 12    操作装置 18    絶縁ロッド 21    遮断器本体 22    密閉容器 23    絶縁スペーサ 25a  第1の導体 25b  第2の導体 28    駆動ロッド 29    連結機構 31    密封装置 3 Vacuum valve 5a First through bushing 5b Second through bushing 9 Insulating gas 12 Operation device 18 Insulating rod 21 Breaker body 22 Sealed container 23 Insulating spacer 25a First conductor 25b Second conductor 28 Driving rod 29 Connecting mechanism 31 Sealing device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】  直方体状の密閉容器と、該密閉容器に
封入した絶縁ガスと、前記密閉容器内に所定の間隔を離
間し絶縁スペーサを介して固定した三相の真空バルブと
、前記密閉容器の上面の一方の端部の、三相の真空バル
ブとそれぞれ対応する位置に所定の空間を離間して設置
した、密閉容器の内外を連通する第1の導体を備えた三
相の第1の貫通ブッシングと、第1の貫通ブッシングと
は反対側の密閉容器の上面の端部に設置した、密閉容器
の内外を連通する第2の導体を備えた三相の第2の貫通
ブッシングを備え、第1の貫通ブッシング側から真空バ
ルブを介して第2の貫通ブッシング側へ、三相それぞれ
に接続するとともに、三相の遮断器本体間を連結し操作
力を伝達する連結機構を、前記の密閉容器内に配置した
ことを特徴とする三相一括形真空遮断器。
1. A rectangular parallelepiped sealed container, an insulating gas sealed in the sealed container, a three-phase vacuum valve fixed at a predetermined distance in the sealed container via an insulating spacer, and the sealed container. A three-phase first vacuum valve is provided with a first conductor that communicates between the inside and outside of the sealed container, which is installed at one end of the top surface at a position corresponding to the three-phase vacuum valve with a predetermined space apart. A three-phase second through bushing including a through bushing and a second conductor installed at the end of the upper surface of the closed container opposite to the first through bushing and communicating between the inside and outside of the closed container, The connection mechanism that connects each of the three phases from the first through-through bushing side to the second through-through bushing side via the vacuum valve, and connects the three-phase circuit breaker bodies and transmits the operating force is connected to the above-mentioned sealing mechanism. A three-phase bulk vacuum circuit breaker characterized by being placed inside a container.
JP15616391A 1991-05-31 1991-05-31 Three-phase collective type vacuum breaker Pending JPH04355020A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15616391A JPH04355020A (en) 1991-05-31 1991-05-31 Three-phase collective type vacuum breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15616391A JPH04355020A (en) 1991-05-31 1991-05-31 Three-phase collective type vacuum breaker

Publications (1)

Publication Number Publication Date
JPH04355020A true JPH04355020A (en) 1992-12-09

Family

ID=15621731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15616391A Pending JPH04355020A (en) 1991-05-31 1991-05-31 Three-phase collective type vacuum breaker

Country Status (1)

Country Link
JP (1) JPH04355020A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176834A (en) * 1982-04-12 1983-10-17 株式会社日立製作所 Vacuum breaker
JPS61211924A (en) * 1985-03-15 1986-09-20 株式会社東芝 Multi-polar 1 tank type gas breaker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58176834A (en) * 1982-04-12 1983-10-17 株式会社日立製作所 Vacuum breaker
JPS61211924A (en) * 1985-03-15 1986-09-20 株式会社東芝 Multi-polar 1 tank type gas breaker

Similar Documents

Publication Publication Date Title
US8946581B2 (en) Switchgear
CN100442615C (en) Gas insulation switch device
JP4073623B2 (en) Switchgear
YU41268B (en) Hermetically sealed electric medium-voltage switching -off arrangements
WO2001035431A1 (en) Switch gear
WO2000069041A1 (en) Vacuum switch gear
JP2013055738A (en) Switching device
JPH04355020A (en) Three-phase collective type vacuum breaker
JP2004064955A (en) Gas insulated switchgear
JPH0583978U (en) Three-phase batch type vacuum circuit breaker
JPH04349321A (en) Three phase package type vacuum circuit breaker
JP2560374Y2 (en) Three-phase batch vacuum circuit breaker
JP2692437B2 (en) Three-phase batch vacuum circuit breaker
KR20040068157A (en) Vacuum beaker
JPH099431A (en) Gas insulated switchgear
JP4394938B2 (en) Gas insulated switchgear
JP2000228806A (en) Gas-insulated metal-enclosed switchgear
JPH02260345A (en) Disconnector of switch device
JP2610291B2 (en) Gas insulated electrical equipment
JP4333076B2 (en) Disconnector and circuit breaker connection device
KR820001667B1 (en) Electric switch pannel
JP3317009B2 (en) Gas insulated switchgear
JP2000270416A (en) Bus connector for switchgear
JPH0351908Y2 (en)
JPS6062806A (en) Sealed switching device