JPH04349321A - Three phase package type vacuum circuit breaker - Google Patents

Three phase package type vacuum circuit breaker

Info

Publication number
JPH04349321A
JPH04349321A JP14820691A JP14820691A JPH04349321A JP H04349321 A JPH04349321 A JP H04349321A JP 14820691 A JP14820691 A JP 14820691A JP 14820691 A JP14820691 A JP 14820691A JP H04349321 A JPH04349321 A JP H04349321A
Authority
JP
Japan
Prior art keywords
phase
circuit breaker
bushing
vacuum circuit
sealed container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14820691A
Other languages
Japanese (ja)
Inventor
Tadayoshi Iida
飯田 忠義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takaoka Toko Co Ltd
Original Assignee
Takaoka Electric Mfg Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takaoka Electric Mfg Co Ltd filed Critical Takaoka Electric Mfg Co Ltd
Priority to JP14820691A priority Critical patent/JPH04349321A/en
Publication of JPH04349321A publication Critical patent/JPH04349321A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To make a simple structure and improve economy and reliability by connecting a three phase from a first through-bushing to a second through- bushing respectively through a three phase vacuum valve, and making insulation gas have a prescribed characteristic. CONSTITUTION:Insulation gas 9 is sealed into a rectangular parallelepiped sealed vessel 22, in which three phase vacuum valves 3 are installed at prescribed intervals. At positions facing the respective valves 3 at one end of the upper face of the vessel 22, three phase first through-bushings 5a are installed which are respectively fitted with first conductors 25a communicating the inside of the vessel 22 with the outside. At the other end of the upper face of the vessel 22 on the opposite side to the bushings 5a, three phase second through-bushings 5b are installed which are respectively fitted with second conductors 25b communicating the inside of the vessel 22 with the outside. The three phase first through-bushings 5a are then connected to the bushings 5b respectively through the valves 3, and the gas 9 is pressurized at a maximum pressure of 2kgf/cm<2> or lower. This enables a vacuum circuit breaker to consist of fewer members in a simple structure and to improve in economy and reliability.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、送、変電所などの電力
用回路に使用される三相一括形真空遮断器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a three-phase vacuum circuit breaker used in power circuits such as transmission lines and substations.

【0002】0002

【従来の技術】真空遮断器は遮断性能が優れ、かつ信頼
性も高いことから、広く用いられている。又、電流遮断
点となる真空バルブを一相づつSF6 ガスなどの絶縁
ガスを封入した円筒状の接地容器に収納し、電流遮断と
真空バルブ内の絶縁を真空に負担させるとともに、真空
バルブの外沿面の絶縁を絶縁ガスに分担させ、コンパク
ト化を図ったタンク形真空遮断器が使用されている。図
3に従来構造の三相用タンク形真空遮断器の全体構造の
一例を、図4に図3の遮断器本体1の1相分の断面構造
を示す。図3、図4において、2は円筒断面を有する密
閉容器、3は真空バルブで、絶縁スペーサ4によって接
地電位である密閉容器2に対し、絶縁を保持した状態で
固定されている。5aは第1の貫通ブッシングで、密閉
容器2の一方の端部に植設された第1の枝管部6aに固
定されている。7aは外部電線8aと接続する端子台で
、第1の貫通ブッシング5aの上端部で、第1の貫通ブ
ッシング5a及び密閉容器2内に封入された絶縁ガス9
を封止するとともに、第1の貫通ブッシング5a内を貫
通し真空バルブ3の一端と電気的に接続する第1の導体
10aに接続されている。密閉容器2の前記の枝管部6
aの反対側の端部には、第2の枝管部6bがあって、第
1の枝管部6a側と同様に外部電線8bと接続する端子
台7b、第2の導体10b、第2の貫通ブッシング5b
が設置されている。前記の絶縁ガス9にはSF6 など
の高絶縁性能を有する媒体を用いるのが適当で、密閉容
器2及び第1と第2の貫通ブッシング5a、5b内に一
括して充填されている。図4には遮断器本体1の1相分
だけの構造を示したが、他の2相も略々同一構造である
。11は三相の密閉容器2の絶縁ガス9を連通させるガ
ス配管である。すなわち絶縁ガス9を経済的に監視する
ため、三相の絶縁ガス9をガス配管11によって共通化
している。
2. Description of the Related Art Vacuum circuit breakers are widely used because of their excellent breaking performance and high reliability. In addition, each phase of the vacuum valve, which serves as a current cutoff point, is housed in a cylindrical grounded container filled with an insulating gas such as SF6 gas, and the vacuum is responsible for current cutoff and insulation inside the vacuum valve. A tank-type vacuum circuit breaker is used, which uses an insulating gas to perform creeping insulation and is more compact. FIG. 3 shows an example of the overall structure of a conventional three-phase tank-type vacuum circuit breaker, and FIG. 4 shows a cross-sectional structure of one phase of the circuit breaker body 1 shown in FIG. 3. In FIGS. 3 and 4, 2 is a closed container having a cylindrical cross section, and 3 is a vacuum valve, which is fixed to the closed container 2 which is at ground potential by an insulating spacer 4 while maintaining insulation. Reference numeral 5a denotes a first through bushing, which is fixed to a first branch pipe section 6a implanted at one end of the closed container 2. 7a is a terminal block connected to an external electric wire 8a, and an insulating gas 9 sealed in the first through bushing 5a and the airtight container 2 is connected to the upper end of the first through bushing 5a.
It is connected to a first conductor 10a that passes through the first through bushing 5a and is electrically connected to one end of the vacuum valve 3. The branch pipe section 6 of the closed container 2
At the end opposite to a, there is a second branch pipe part 6b, which has a terminal block 7b connected to an external electric wire 8b, a second conductor 10b, a second through bushing 5b
is installed. As the insulating gas 9, it is appropriate to use a medium having high insulating performance such as SF6, which is filled in the closed container 2 and the first and second through bushings 5a and 5b all at once. Although FIG. 4 shows the structure of only one phase of the circuit breaker main body 1, the other two phases also have substantially the same structure. Reference numeral 11 denotes a gas pipe that communicates the insulating gas 9 of the three-phase hermetic container 2. That is, in order to economically monitor the insulating gas 9, the three-phase insulating gas 9 is shared by the gas pipe 11.

【0003】12は当該遮断器の開閉操作を行う操作装
置で、架台13に装着されている。14は駆動機構で、
操作装置12と遮断器本体1の第1相を連結する駆動ロ
ッド15、遮断器本体1の第一相と第二相、遮断器本体
1の第二相と第三相をそれぞれ連結するロッド16a、
16b、操作力の向き変換するレバー17等で構成され
ている。18は絶縁ロッドでレバー17と真空バルブ3
の間を絶縁するとともに、駆動ロッド15及びロッド1
6a、16bの操作力を真空バルブ3に伝達する。絶縁
ガス9はレバー17部に設けた密封装置19によって可
回転的に大気側と封止されている。20は駆動ロッド1
5やロッド16a、16bなどを風雨から遮蔽するカバ
ーである。この遮断器は、操作装置12によって三相の
遮断器本体1が一括して動作する三相用タンク形真空遮
断器となっている。
Reference numeral 12 denotes an operating device for opening and closing the circuit breaker, which is mounted on a pedestal 13. 14 is a drive mechanism;
A drive rod 15 that connects the operating device 12 and the first phase of the circuit breaker body 1, a rod 16a that connects the first and second phases of the circuit breaker body 1, and the second and third phases of the circuit breaker body 1, respectively. ,
16b, a lever 17 for changing the direction of the operating force, and the like. 18 is an insulated rod that connects lever 17 and vacuum valve 3.
Insulating between the drive rod 15 and the rod 1
The operating forces of 6a and 16b are transmitted to the vacuum valve 3. The insulating gas 9 is rotatably sealed from the atmosphere by a sealing device 19 provided at the lever 17 portion. 20 is the drive rod 1
5, the rods 16a, 16b, etc., from wind and rain. This circuit breaker is a three-phase tank-type vacuum circuit breaker in which the three-phase circuit breaker main body 1 is operated all at once by an operating device 12.

【0004】0004

【発明が解決しようとする課題】本発明は従来機器にお
けるつぎの問題点を解決する、三相一括形真空遮断器を
提供することを目的としている。 (1)従来のガス絶縁と組み合わせた三相用タンク形真
空遮断器は、三相のそれぞれが独立した円筒状の密閉容
器に収納されているので、部品点数が多く、かつ円筒状
の密閉容器に略々直交するように碍管を植設するための
枝管部が必要になるなど、構造が複雑であるため高価で
ある。 (2)部品点数及び、ガスシール箇所が多く信頼性を減
殺する要因が多い。 (3)各々の密閉容器間を接続するガス配管が強度上の
弱点になり易い。
SUMMARY OF THE INVENTION An object of the present invention is to provide a three-phase vacuum circuit breaker which solves the following problems in conventional equipment. (1) A three-phase tank-type vacuum circuit breaker combined with conventional gas insulation has a large number of parts because each of the three phases is housed in an independent cylindrical sealed container. The structure is complicated and expensive, as it requires a branch pipe section for installing the insulator pipe so as to be approximately perpendicular to the pipe. (2) The number of parts and gas seals are large, and there are many factors that reduce reliability. (3) Gas piping that connects each sealed container tends to be a weak point in terms of strength.

【0005】[0005]

【課題を解決するための手段】請求項1の発明において
は、直方体状の密閉容器と、該密閉容器に封入した絶縁
ガスと、前記密閉容器内に所定の間隔を離間して設置し
た三相の真空バルブと、前記密閉容器の上面の一方の端
部の、三相の真空バルブとそれぞれ対応する位置に設置
した、密閉容器の内外を連通する第1の導体を備えた三
相の第1の貫通ブッシングと、第1の貫通ブッシングと
は反対側の密閉容器の上面の端部に設置した、密閉容器
の内外を連通する第2の導体を備えた三相の第2の貫通
ブッシングを備え、第1の貫通ブッシング側から真空バ
ルブを介して第2の貫通ブッシング側へ、三相それぞれ
に接続する構造とする。請求項2の発明においては、請
求項1の発明において、絶縁ガスの最高圧力を2kgf
/cm2 以下とする。請求項3の発明においては、請
求項1の発明において、絶縁ガスの最高圧力を1kgf
/cm2 とする。請求項4の発明においては、請求項
1、2又は3の発明において、絶縁ガスを、ほぼ90%
のSF6 と、ほぼ10%の乾燥空気又は窒素の混合体
で構成する。
[Means for Solving the Problems] In the invention of claim 1, there is provided a rectangular parallelepiped sealed container, an insulating gas sealed in the sealed container, and a three-phase gas installed at a predetermined interval in the sealed container. a three-phase vacuum valve, and a first conductor that communicates between the inside and outside of the sealed container, which is installed at one end of the top surface of the sealed container at a position corresponding to each of the three-phase vacuum valves. a three-phase second through bushing that is installed at the end of the upper surface of the closed container on the opposite side of the first through bushing and is equipped with a second conductor that communicates between the inside and outside of the closed container. , the three phases are connected from the first through bushing side to the second through bushing side via the vacuum valve. In the invention of claim 2, in the invention of claim 1, the maximum pressure of the insulating gas is 2 kgf.
/cm2 or less. In the invention of claim 3, in the invention of claim 1, the maximum pressure of the insulating gas is 1 kgf.
/cm2. In the invention of claim 4, in the invention of claim 1, 2 or 3, the insulating gas is approximately 90%
of SF6 and approximately 10% dry air or nitrogen.

【0006】[0006]

【作用】上記のように構成された請求項1の発明によれ
ば、密閉容器は三相の遮断器本体に対し1個で構成する
ことが出来る。又、貫通ブッシングを密閉容器に直接植
設出来るので、部品数量の減少とともに、ガスシール箇
所が削減される。さらに三相間を連結するガス配管も不
要となる。請求項2の発明によれば、請求項1の発明の
作用に加えて、圧力容器構造規格の適用対象外となる安
全性の高い密閉容器が適用できる。請求項3の発明によ
れば、請求項1の発明の作用に加えて、密閉容器の最経
済設計が可能となる。又、請求項4の発明によれば、請
求項1、2又は3の発明の作用に加えて、ほぼ90%の
SF6 と、ほぼ10%の乾燥空気又は窒素の混合体を
適用することによって、純粋なSF6 ガスよりも絶縁
特性に優れた遮断器の提供が可能となる。
According to the invention constructed as described above, only one sealed container can be provided for the three-phase circuit breaker main body. Furthermore, since the through bushing can be directly implanted into the closed container, the number of parts and gas sealing locations are reduced. Furthermore, gas piping connecting the three phases becomes unnecessary. According to the invention of claim 2, in addition to the effect of the invention of claim 1, a highly safe sealed container that is not subject to pressure vessel structural standards can be applied. According to the invention of claim 3, in addition to the effect of the invention of claim 1, the most economical design of the airtight container is possible. According to the invention of claim 4, in addition to the effects of the invention of claims 1, 2, or 3, by applying a mixture of approximately 90% SF6 and approximately 10% dry air or nitrogen, It becomes possible to provide a circuit breaker with better insulation properties than pure SF6 gas.

【0007】[0007]

【実施例】図1に本発明になる三相一括形真空遮断器の
全体構造を、図2に図1の遮断器本体21の1相分の断
面構造を示す。図3、図4に示す従来品と同一部分につ
いては照合の便宜上同一番号を付す。図1、図2におい
て、22は直方体状の6面体の密閉容器、3は真空バル
ブで三相が所定の間隔を離間され、密閉容器22の底面
に平行に、絶縁スペーサ23によって接地電位である密
閉容器22に対し、絶縁を保持した状態で固定されてい
る。5aは第1の貫通ブッシングで、密閉容器22の上
面の一方の端部24aの、真空バルブ3と対応する位置
に固定されている。7aは外部電線8aと接続する端子
台で、第1の貫通ブッシング5aの上端部で、第1の貫
通ブッシング5a及び密閉容器22内に封入された絶縁
ガス9を封止するとともに、第1の貫通ブッシング5a
内を貫通し真空バルブ3の一端と電気的に接続する第1
の導体25aに接続されている。密閉容器22の前記端
部24aの反対側の端部24bには、端部24a側と同
様に、外部電線8bと接続する端子台7b、第2の導体
25b、第2の貫通ブッシング5bが設置されている。 当該構造においては、第1と第2の貫通ブッシング5a
、5bを植設する端部24a、24bは、第1と第2の
貫通ブッシング5a、5bを固定するに際して使用する
ボルトなどの締結材26を装着しても、密閉容器22の
密封を損なわないだけの厚みさえあればよいので、密閉
容器22を厚めの部材で構成するとか、端部24a、2
4b部をフランジ27を付加した厚肉構造とするだけで
よく、構造がきわめて簡単である。図2には遮断器本体
21の1相分だけの構造を示したが、他の2相も略々同
一構造である。なお真空バルブ3を密閉容器22の底面
に平行に配置したことによって三相の構造が略々同一と
なるため、絶縁スペーサ23をはじめ、第1と第2の導
体25a、25bなどが統一され製作し易いという利点
がある。又、三相の遮断器本体21を一括操作するため
の連結も容易である。製作が容易ということは経済性、
信頼性の高い機器を提供するのに好都合である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 shows the overall structure of a three-phase vacuum circuit breaker according to the present invention, and FIG. 2 shows a cross-sectional structure of one phase of the circuit breaker body 21 shown in FIG. Parts that are the same as those of the conventional product shown in FIGS. 3 and 4 are given the same numbers for convenience of reference. In FIGS. 1 and 2, 22 is a rectangular parallelepiped hexahedral sealed container, 3 is a vacuum valve, and the three phases are separated by a predetermined interval, and the ground potential is set parallel to the bottom surface of the sealed container 22 by an insulating spacer 23. It is fixed to the closed container 22 while maintaining insulation. Reference numeral 5a denotes a first through bushing, which is fixed at one end 24a of the upper surface of the closed container 22 at a position corresponding to the vacuum valve 3. 7a is a terminal block connected to an external electric wire 8a, and at the upper end of the first through bushing 5a, the insulating gas 9 sealed in the first through bushing 5a and the sealed container 22 is sealed, and the first through bushing 5a is sealed. Penetration bushing 5a
A first penetrating the inside of the vacuum valve and electrically connecting with one end of the vacuum valve 3.
is connected to the conductor 25a. At the end 24b of the airtight container 22 opposite to the end 24a, a terminal block 7b connected to the external electric wire 8b, a second conductor 25b, and a second through bushing 5b are installed, similarly to the end 24a side. has been done. In this structure, the first and second through bushings 5a
, 5b are installed, so that the sealing of the airtight container 22 is not impaired even when a fastening material 26 such as a bolt used for fixing the first and second through bushings 5a, 5b is attached. Therefore, the airtight container 22 may be made of a thicker material, or the ends 24a, 2
The structure is extremely simple, as it is only necessary to add the flange 27 to the portion 4b. Although FIG. 2 shows the structure of only one phase of the circuit breaker main body 21, the other two phases also have substantially the same structure. Since the vacuum valve 3 is arranged parallel to the bottom of the sealed container 22, the three-phase structure is almost the same, so the insulating spacer 23, first and second conductors 25a, 25b, etc. are unified and manufactured. It has the advantage of being easy to do. Furthermore, connection for collectively operating the three-phase circuit breaker main body 21 is easy. Easy production means economic efficiency,
This is convenient for providing highly reliable equipment.

【0008】12は当該遮断器の開閉操作を行う操作装
置で、架台13に装着されている。28は駆動機構で、
操作装置12と遮断器本体21の第1相を連結する駆動
ロッド29、遮断器本体21の第一相と第二相、遮断器
本体21の第二相と第三相をそれぞれ連結するロッド1
6a、16b、操作力の向き変換するレバー17等で構
成されている。18は絶縁ロッドでレバー17と真空バ
ルブ3の間を絶縁するとともに、駆動ロッド29及びロ
ッド16a、16bの操作力を真空バルブ3に伝達する
。絶縁ガス9はレバー17部に設けた密封装置19によ
って可回転的に大気側と封止されている。  30は駆
動ロッド29やロッド16a、16bなどを風雨から遮
蔽するカバーである。この遮断器は、操作装置12によ
って三相の遮断器本体21が一括して動作する三相一括
形真空遮断器となっている。
Reference numeral 12 denotes an operating device for opening and closing the circuit breaker, which is mounted on a pedestal 13. 28 is a drive mechanism;
A drive rod 29 that connects the operating device 12 and the first phase of the circuit breaker body 21, a rod 1 that connects the first and second phases of the circuit breaker body 21, and the second and third phases of the circuit breaker body 21, respectively.
6a, 16b, a lever 17 for changing the direction of the operating force, and the like. 18 is an insulating rod that insulates between the lever 17 and the vacuum valve 3 and transmits the operating force of the drive rod 29 and the rods 16a and 16b to the vacuum valve 3. The insulating gas 9 is rotatably sealed from the atmosphere by a sealing device 19 provided at the lever 17 portion. 30 is a cover that shields the drive rod 29, rods 16a, 16b, etc. from wind and rain. This circuit breaker is a three-phase vacuum circuit breaker in which three-phase circuit breaker main bodies 21 are operated simultaneously by an operating device 12.

【0009】さて、密閉容器22及び、第1と第2の貫
通ブッシング5a、5bの内部を満たす絶縁ガス9は、
SF6 などの高絶縁性能を有する気体が遮断器のコン
パクト化に有効であるが、非平等電界構造の場合には、
ほぼ90%のSF6 とほぼ10%の乾燥空気又は窒素
の混合ガスが、純粋なSF6 ガスよりも絶縁特性が優
れていることが知られている。(例えば、電学誌・第1
07巻、第2号、’87年)本発明の真空遮断器は、直
方体状の密閉容器22の中に三相の真空バルブ3を一括
収納しており、同芯円構造で平等電界設計の容易な円筒
容器を使用した、例えば図3、図4の従来構造の真空遮
断器に比べ、平等電界構造とすることが困難であるので
、前記の、ほぼ90%のSF6 とほぼ10%の乾燥空
気又は窒素の混合ガスを使用することによって一層、絶
縁性能の優れた三相一括形真空遮断器となる。
Now, the insulating gas 9 filling the inside of the closed container 22 and the first and second through bushings 5a and 5b is as follows.
Gases with high insulation performance such as SF6 are effective in making circuit breakers more compact, but in the case of non-uniform electric field structures,
It is known that a gas mixture of approximately 90% SF6 and approximately 10% dry air or nitrogen has better insulating properties than pure SF6 gas. (For example, electronic journal, 1st
(Vol. 07, No. 2, '87) The vacuum circuit breaker of the present invention houses a three-phase vacuum valve 3 in a rectangular parallelepiped sealed container 22, and has a concentric circular structure with an equal electric field design. Compared to the conventional vacuum circuit breakers shown in Figs. 3 and 4, which use a simple cylindrical container, it is difficult to create an equal electric field structure, so the above-mentioned approximately 90% SF6 and approximately 10% dryness is required. By using a mixed gas of air or nitrogen, a three-phase vacuum circuit breaker with even better insulation performance can be obtained.

【0010】なお、これらの純粋なSF6 やSF6 
の混合ガスなどの絶縁ガス9は高い絶縁性能を有してい
るので、低圧力でも真空バルブ3の外沿面絶縁が十分確
保できる。  一方6面の平面で構成された密閉容器2
2は、圧力により平面に曲げ応力が作用し、たわみが発
生し易いので、高い圧力で使用することに適していない
。円筒状の容器であれば内圧力による応力は引張応力と
なって変形は軽微である。結果として直方体状のように
平面構造を有する密閉容器22に封入する絶縁ガス9は
低圧であることが望ましい。この場合、圧力を2kgf
/cm2 以下とすれば、労働省告示によるところの圧
力容器構造規格の適用対象外の安全性の高い低圧力構造
物となる。
[0010] Furthermore, these pure SF6 and SF6
Since the insulating gas 9 such as the mixed gas has high insulating performance, sufficient insulation on the outer surface of the vacuum valve 3 can be ensured even at low pressure. On the other hand, a closed container 2 composed of six flat surfaces
No. 2 is not suitable for use under high pressure because bending stress acts on the plane due to pressure and bending is likely to occur. If the container is cylindrical, stress due to internal pressure becomes tensile stress and deformation is slight. As a result, it is desirable that the insulating gas 9 sealed in the airtight container 22, which has a planar structure like a rectangular parallelepiped, has a low pressure. In this case, the pressure is 2kgf
/cm2 or less, the structure becomes a highly safe low-pressure structure that is not subject to the pressure vessel structural standards according to the Ministry of Labor's notification.

【0011】又、密閉容器22内を真空曳き、つまり外
気圧0kgf/cm2 に対し、密閉容器22内の圧力
−1kgf/cm2 で、密閉容器22の内外の圧力差
を1kgf/cm2 としてから、密閉容器22に絶縁
ガス9の封入を行う場合は、絶縁ガス9の最高使用圧力
を1kgf/cm2 に設定すれば、内圧と真空曵きし
たときに密閉容器22に作用する外圧では、圧力の作用
する方向に差があるにしても、密閉容器22を構成する
平面の強度に及ぼす効果はほぼ同等であり、密閉容器2
2の強度設計上最経済設計となる。最高使用圧力が1k
gf/cm2 になる条件は、使用温度の上限を、遮断
器に適用される代表的な規格である電気学会  電気規
格調査会標準規格JEC−2300−1985 を適用
すれば、銀接続の場合、接触部の温度上昇限度=65度
で、周囲温度の上限値40℃と合わせ105℃を得る。 実用的には絶縁ガス9の温度は接触部ほどには上昇しな
いので、仮に絶縁ガスの温度が20〜60℃上昇し60
〜100℃になったとすれば、基準温度を20℃として
、絶対圧力は絶対温度に比例するから、常用圧力Pは   P=2×(273+20)/{273+(60〜1
00)}−1    =0.76〜0.57kgf/c
m2 を得る。このことから20℃における常用圧力を
0.8〜0.5kgf/cm2の範囲に設定すれば密閉
容器22の最経済設計が可能となる。
[0011] Also, the inside of the sealed container 22 is vacuumed, that is, the pressure inside the sealed container 22 is -1 kgf/cm2 with respect to the external pressure of 0 kgf/cm2, and the pressure difference between the inside and outside of the sealed container 22 is set to 1 kgf/cm2, and then the sealed container 22 is sealed. When filling the container 22 with the insulating gas 9, if the maximum working pressure of the insulating gas 9 is set to 1 kgf/cm2, the direction in which the pressure acts will differ between the internal pressure and the external pressure that acts on the sealed container 22 when vacuumed. Even if there is a difference in
This is the most economical design in terms of strength design. Maximum working pressure is 1k
gf/cm2, if the upper limit of the operating temperature is applied to the IEEJ Electrical Standards Committee standard JEC-2300-1985, which is a typical standard applied to circuit breakers, in the case of silver connections, contact The temperature rise limit of the unit is 65 degrees, and when combined with the upper limit of the ambient temperature of 40 degrees Celsius, a total of 105 degrees Celsius is obtained. Practically speaking, the temperature of the insulating gas 9 does not rise as much as the contact area, so if the temperature of the insulating gas 9 rises by 20 to 60°C,
If the temperature reaches ~100℃, the reference temperature is 20℃, and absolute pressure is proportional to absolute temperature, so the normal pressure P is P=2×(273+20)/{273+(60~1
00)}-1 =0.76~0.57kgf/c
Get m2. Therefore, if the normal pressure at 20° C. is set in the range of 0.8 to 0.5 kgf/cm 2 , the most economical design of the closed container 22 is possible.

【0012】0012

【発明の効果】密閉容器は三相の真空バルブに対し1個
でよいので少ない部材で構成することが出来る。又、貫
通ブッシングを密閉容器に直接植設出来るので構造が簡
単である。したがって短期間で製作することが出来、経
済的である。又、部材数量の減少とともに、ガスシール
箇所が削減されるのでガス漏れ要因が減り、信頼性も向
上する。さらに三相間を連結するガス配管も不要となっ
て一層経済的である上、強度上の弱点も排除される。
Effects of the Invention: Since only one sealed container is required for each three-phase vacuum valve, it can be constructed with fewer members. Furthermore, the structure is simple because the through bushing can be directly planted in the closed container. Therefore, it can be manufactured in a short period of time and is economical. In addition, as the number of parts is reduced, the number of gas sealing points is also reduced, which reduces the number of gas leakage factors and improves reliability. Furthermore, there is no need for gas piping to connect the three phases, making it even more economical and eliminating weak points in terms of strength.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の三相一括形真空遮断器の全体構造図で
ある。
FIG. 1 is an overall structural diagram of a three-phase vacuum circuit breaker of the present invention.

【図2】本発明の三相一括形真空遮断器の本体部分の断
面構造図である。
FIG. 2 is a cross-sectional structural diagram of the main body portion of the three-phase vacuum circuit breaker of the present invention.

【図3】従来構造の三相用タンク形真空遮断器の全体構
造図例である。
FIG. 3 is an example of the overall structure of a conventional three-phase tank-type vacuum circuit breaker.

【図4】従来構造の三相用タンク形真空遮断器の本体部
分の断面構造図例である。
FIG. 4 is an example of a cross-sectional structural diagram of a main body portion of a conventional three-phase tank-type vacuum circuit breaker.

【符号の説明】[Explanation of symbols]

3      真空バルブ 5a    第1の貫通ブッシング 5b    第2の貫通ブッシング 9      絶縁ガス 12    操作装置 18    絶縁ロッド 19    密封装置 21    遮断器本体 22    密閉容器 23    絶縁スペーサ 25a  第1の導体 25b  第2の導体 28    駆動機構 3 Vacuum valve 5a First through bushing 5b Second through bushing 9 Insulating gas 12 Operation device 18 Insulating rod 19 Sealing device 21 Breaker body 22 Sealed container 23 Insulating spacer 25a First conductor 25b Second conductor 28 Drive mechanism

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  直方体状の密閉容器と、該密閉容器に
封入した絶縁ガスと、前記密閉容器内に所定の間隔を離
間し絶縁スペーサを介して固定した三相の真空バルブと
、前記密閉容器の上面の一方の端部の、三相の真空バル
ブとそれぞれ対応する位置に所定の空間を離間して設置
した、密閉容器の内外を連通する第1の導体を備えた三
相の第1の貫通ブッシングと、第1の貫通ブッシングと
は反対側の密閉容器の上面の端部に設置した、密閉容器
の内外を連通する第2の導体を備えた三相の第2の貫通
ブッシングを備え、第1の貫通ブッシング側から真空バ
ルブを介して第2の貫通ブッシング側へ、三相それぞれ
に接続したことを特徴とする三相一括形真空遮断器。
1. A rectangular parallelepiped sealed container, an insulating gas sealed in the sealed container, a three-phase vacuum valve fixed at a predetermined distance in the sealed container via an insulating spacer, and the sealed container. A three-phase first vacuum valve is provided with a first conductor that communicates between the inside and outside of the sealed container, which is installed at one end of the top surface at a position corresponding to the three-phase vacuum valve with a predetermined space apart. A three-phase second through bushing including a through bushing and a second conductor installed at the end of the upper surface of the closed container opposite to the first through bushing and communicating between the inside and outside of the closed container, A three-phase vacuum circuit breaker characterized in that each of three phases is connected from a first through-through bushing side to a second through-through bushing side via a vacuum valve.
【請求項2】  絶縁ガスの最高使用圧力が、2kgf
/cm2 以下であることを特徴とする請求項1記載の
三相一括形真空遮断器。
[Claim 2] The maximum working pressure of the insulating gas is 2 kgf.
2. The three-phase vacuum circuit breaker according to claim 1, wherein the vacuum is less than /cm2.
【請求項3】  絶縁ガスの最高使用圧力が、ほぼ1k
gf/cm2であることを特徴とする請求項1記載の三
相一括形真空遮断器。
[Claim 3] The maximum working pressure of the insulating gas is approximately 1k.
2. The three-phase vacuum circuit breaker according to claim 1, wherein the three-phase vacuum circuit breaker is gf/cm2.
【請求項4】  絶縁ガスは、ほぼ90%のSF6 と
、ほぼ10%の乾燥空気又は、窒素の混合体で構成され
たことを特徴とする請求項1、2又は3記載の三相一括
形真空遮断器。
4. The three-phase integrated type according to claim 1, wherein the insulating gas is composed of a mixture of approximately 90% SF6 and approximately 10% dry air or nitrogen. Vacuum circuit breaker.
JP14820691A 1991-05-24 1991-05-24 Three phase package type vacuum circuit breaker Pending JPH04349321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14820691A JPH04349321A (en) 1991-05-24 1991-05-24 Three phase package type vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14820691A JPH04349321A (en) 1991-05-24 1991-05-24 Three phase package type vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JPH04349321A true JPH04349321A (en) 1992-12-03

Family

ID=15447636

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14820691A Pending JPH04349321A (en) 1991-05-24 1991-05-24 Three phase package type vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JPH04349321A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220321A (en) * 1988-02-29 1989-09-04 Hitachi Ltd Three-phase batch operation type gas-blasted circuit breaker
JPH01231230A (en) * 1988-03-10 1989-09-14 Hitachi Ltd Gas-blasted circuit breaker operated with electrical spring
JPH02257536A (en) * 1989-03-29 1990-10-18 Mitsubishi Electric Corp Gas insulated vacuum switch

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01220321A (en) * 1988-02-29 1989-09-04 Hitachi Ltd Three-phase batch operation type gas-blasted circuit breaker
JPH01231230A (en) * 1988-03-10 1989-09-14 Hitachi Ltd Gas-blasted circuit breaker operated with electrical spring
JPH02257536A (en) * 1989-03-29 1990-10-18 Mitsubishi Electric Corp Gas insulated vacuum switch

Similar Documents

Publication Publication Date Title
AU2010349157B2 (en) Vacuum-circuit breaker
CN207910352U (en) A kind of environment-friendly type nitrogen insulation metal enclosed switch device
JP4073623B2 (en) Switchgear
YU41268B (en) Hermetically sealed electric medium-voltage switching -off arrangements
CN101521360A (en) Insulation mode for metal closed combined electrical appliance
WO2000069041A1 (en) Vacuum switch gear
CN209804536U (en) Miniaturized vacuum type gas insulated metal enclosed switchgear
JPH04349321A (en) Three phase package type vacuum circuit breaker
US20020134757A1 (en) Vacuum circuit breaker
JP2936946B2 (en) Insulation test equipment
JPH04355020A (en) Three-phase collective type vacuum breaker
JP2560374Y2 (en) Three-phase batch vacuum circuit breaker
JP2004064955A (en) Gas insulated switchgear
JPH0583978U (en) Three-phase batch type vacuum circuit breaker
JP2692437B2 (en) Three-phase batch vacuum circuit breaker
JPH099431A (en) Gas insulated switchgear
JPS6130487B2 (en)
JPS596589Y2 (en) shredder
JPH0351908Y2 (en)
JP3317009B2 (en) Gas insulated switchgear
JP4333076B2 (en) Disconnector and circuit breaker connection device
JP2000270416A (en) Bus connector for switchgear
JPS6062806A (en) Sealed switching device
JPS59185107A (en) Gas insulated switching device
JPS61247203A (en) Cubicle type gas insulated switchgear