JP2555714B2 - Semiconductor single crystal growth equipment - Google Patents
Semiconductor single crystal growth equipmentInfo
- Publication number
- JP2555714B2 JP2555714B2 JP63267884A JP26788488A JP2555714B2 JP 2555714 B2 JP2555714 B2 JP 2555714B2 JP 63267884 A JP63267884 A JP 63267884A JP 26788488 A JP26788488 A JP 26788488A JP 2555714 B2 JP2555714 B2 JP 2555714B2
- Authority
- JP
- Japan
- Prior art keywords
- single crystal
- crucible body
- gas
- melt
- inner crucible
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Description
【発明の詳細な説明】 「産業上の利用分野」 本発明は、2重構造のルツボを用いて単結晶を育成さ
せる半導体単結晶育成装置に係わり、特に融液近傍にお
ける炭素化合物の排出性を高める改良に関する。TECHNICAL FIELD The present invention relates to a semiconductor single crystal growth apparatus for growing a single crystal by using a double-structured crucible, and particularly, it relates to a carbon compound discharge property in the vicinity of a melt. Concerning improvements to enhance.
「従来の技術」 CZ法によってB,P,Sb等のドーパントを添加したシリコ
ン単結晶を製造する場合には、これらドーパント原子の
偏析係数が1でないため、育成された単結晶中のドーパ
ント濃度が長手方向に不均一になり、その一部分しか所
望の品質にならない問題があった。[Prior Art] When a silicon single crystal to which a dopant such as B, P, Sb, etc. is added by the CZ method is manufactured, the segregation coefficient of these dopant atoms is not 1, so that the dopant concentration in the grown single crystal is low. There is a problem in that it becomes non-uniform in the longitudinal direction, and only a part thereof has a desired quality.
その改善策として、特開昭49−10664号公報やUSP4352
784号では、外ルツボ体と内ルツボ体とからなる2重ル
ツボを用い、各ルツボで区画された原料溶融のドーパン
ト濃度差を利用して、実質的に単結晶中のドーパント濃
度を均一にし、収率を向上させる技術が開示されてい
る。第9図はその装置例を示し、符号1は炉体、2は外
ルツボ体2Aに円筒系の内ルツボ体2Bを収めた2重ルツ
ボ、3は黒鉛サセプタ、4はヒーター、5は保温筒で、
炉体1内にはガス導入口6からアルゴンガスが供給さ
れ、原料溶融Yから発生する不純物とともにガス排出口
7から排出される。As measures for improving it, JP 49-10664 A and USP 4352
In No. 784, a double crucible composed of an outer crucible body and an inner crucible body is used, and the dopant concentration difference in the raw material melt divided by each crucible is utilized to substantially uniformize the dopant concentration in the single crystal, Techniques for improving yield have been disclosed. FIG. 9 shows an example of the apparatus. Reference numeral 1 is a furnace body, 2 is a double crucible in which a cylindrical inner crucible body 2B is housed in an outer crucible body 2A, 3 is a graphite susceptor, 4 is a heater, and 5 is a heat retaining cylinder. so,
Argon gas is supplied into the furnace body 1 from the gas introduction port 6, and is discharged from the gas discharge port 7 together with impurities generated from the raw material melt Y.
「発明が解決しようとする課題」 ところが、この種の2重ルツボを備えた装置でシリコ
ン単結晶を実際に製造すると、得られた単結晶中の炭素
濃度が育成開始側から終了側にかけて漸次増大し、部分
的に半導体素子として使用可能な炭素濃度の規格の越え
てしまい、単結晶の収率を悪化させる現象がしばしば確
認された。[Problems to be solved by the invention] However, when a silicon single crystal is actually manufactured by an apparatus equipped with this kind of double crucible, the carbon concentration in the obtained single crystal gradually increases from the growth start side to the end side. However, it has been often confirmed that the carbon concentration that can be used as a semiconductor element partially exceeds the standard, which deteriorates the yield of single crystals.
この種の炭素汚染は、炉体内に使用されている種々の
グラファイト部品(ヒータ4,保温筒5,サセプタ3,内ルツ
ボ体2Bの支持体等)に由来するもので、まず原料融液Y
と石英ルツボ2との反応により揮発性のSiOが発生し、
このSiOが高温のグラファイト部品の表面で次式の通りC
Oを発生する。This kind of carbon contamination originates from various graphite parts (heater 4, heat retaining cylinder 5, susceptor 3, support for inner crucible body 2B, etc.) used in the furnace.
And quartz crucible 2 generate volatile SiO,
This SiO is on the surface of the graphite component at high temperature as follows:
Generate O.
SiO+2C→SiO+CO したがって、1重ルツボよりも2重ルツボにおいて炭
素汚染が顕著であるとすれば、2重ルツボの場合には、
発生するCOを原料融液Y中により多く溶け込ませる何等
かの機構が存在することが予想される。SiO + 2C → SiO + CO Therefore, if carbon contamination is more remarkable in the double crucible than in the single crucible, in the case of the double crucible,
It is expected that there is some mechanism for dissolving more generated CO in the raw material melt Y.
そこで本発明者らはCOガスの挙動について詳細な検討
を試み、次のような知見を得るに至った。すなわち、ガ
ス導入口6から供給されたアルゴンガスは、単結晶Tに
沿って下方に流れ、内ルツボ体2Bと単結晶Tの間隙を通
った後、内ルツボ体2Bおよび外ルツボ体2Aの上方を通過
してガス排出口7から排出される。その際、内ルツボ体
2Bと外ルツボ体2Aとの間隙において図示のようにガスが
比較的長時間滞留し、このガス中のCO濃度が上昇すると
ともに、そのCOが継続的に融液Yに接触するため、効率
良く融液Y中に溶け込み、融液Yひいては単結晶TのCO
濃度を高めてしまうのである。Therefore, the present inventors have made detailed studies on the behavior of CO gas, and have obtained the following findings. That is, the argon gas supplied from the gas introduction port 6 flows downward along the single crystal T, passes through the gap between the inner crucible body 2B and the single crystal T, and then rises above the inner crucible body 2B and the outer crucible body 2A. And is discharged from the gas discharge port 7. At that time, the inner crucible body
As shown in the figure, the gas stays in the gap between the 2B and the outer crucible body 2A for a relatively long time, the CO concentration in the gas rises, and the CO continuously contacts the melt Y, so that the CO can be efficiently contacted. It melts into the melt Y, and the melt Y and eventually the CO of the single crystal T
It increases the concentration.
この現象の改善策としては、まず炉体1内に供給する
アルゴンガス流量を増すことが考えられるが、その場合
にはガス供給に要するコストが著しく高くなるうえ、単
結晶Tの育成条件に与える悪影響も無視できなくなる。As a measure for remedying this phenomenon, it is conceivable to first increase the flow rate of argon gas supplied into the furnace body 1. In this case, the cost required for gas supply is significantly increased, and the growth condition of the single crystal T is affected. The negative effects cannot be ignored.
「課題を解決するための手段」 本発明は上記課題を解決するためになされたもので、
2重ルツボの上方に、これと同軸に円筒状のガス整流筒
を設け、このガス整流筒の下端部を内ルツボ体と外ルツ
ボ体の間隙に配置し、この下端部と、内ルツボ体、外ル
ツボ体、原料融液との間にそれぞれ間隔を空けたことを
特徴とする。"Means for solving the problems" The present invention has been made to solve the above problems,
A cylindrical gas rectifying cylinder is provided above the double crucible coaxially with the double crucible, and a lower end portion of the gas rectifying cylinder is arranged in a gap between the inner crucible body and the outer crucible body. It is characterized in that a space is provided between the outer crucible and the raw material melt.
なお、ガス整流筒の下端部の最大肉厚は、内ルツボ体
と外ルツボ体の離間距離の0.3〜0.8倍とされ、ガス整流
筒の下端部の表面は、なだらかな曲面であることが望ま
しい。また、ガス整流筒の下端と原料融液との距離は5m
mより大きく、かつこの下端は外ルツボ体の上端よりも
低い位置にあることが望ましい。The maximum thickness of the lower end portion of the gas flow straightening cylinder is 0.3 to 0.8 times the distance between the inner crucible body and the outer crucible body, and the surface of the lower end portion of the gas flow straightening cylinder is preferably a gently curved surface. . Also, the distance between the lower end of the gas flow straightener and the raw material melt is 5 m.
It is desirable that the lower end is larger than m and the lower end is lower than the upper end of the outer crucible body.
さらに、内ルツボ体と単結晶との間に、その下端部が
内ルツボ体、融液、単結晶のそれぞれから離間するよう
に円筒状の筒体を同軸に配置し、この筒体を通して上か
ら不活性ガスが供給されるように構成してもよい。Further, between the inner crucible body and the single crystal, a cylindrical cylindrical body is coaxially arranged so that the lower end of the inner crucible body is separated from the inner crucible body, the melt, and the single crystal. You may comprise so that an inert gas may be supplied.
「作 用」 この半導体単結晶育成装置では、内ルツボ体と外ルツ
ボ体との間隙いにガス整流筒を配置することにより、炉
体上方から炉体内に供給されたアルゴンガスが、内ルツ
ボ体とガス整流筒との間隙、ガス整流筒と原料融液との
間隙、外ルツボ体とガス整流筒との間隙を経て層流状に
流れるようにし、内ルツボ体と外ルツボ体との間隙にお
けるガスの滞留を防ぎ、原料融液へのCO溶入を低減す
る。[Operation] In this semiconductor single crystal growth system, by arranging a gas rectifying tube in the gap between the inner crucible body and the outer crucible body, the argon gas supplied from above the furnace body into the furnace crucible And the gas flow straightening tube, the gas flow straightening tube and the raw material melt, and the gap between the outer crucible body and the gas flow straightening tube so as to flow in a laminar flow, in the gap between the inner crucible body and the outer crucible body. Prevents gas retention and reduces CO penetration into the raw material melt.
また、内ルツボ体と単結晶の間に円筒状の筒体を同軸
に配置した場合には、単結晶と内ルツボ体との間隙での
ガス滞留も防止することができる。Further, when a cylindrical tubular body is coaxially arranged between the inner crucible body and the single crystal, it is possible to prevent gas retention in the gap between the single crystal and the inner crucible body.
「実施例」 第1図および第2図は、本発明に係わる半導体単結晶
育成装置の一実施例を示している。Embodiments FIGS. 1 and 2 show one embodiment of a semiconductor single crystal growing apparatus according to the present invention.
図中符号10は上体10Aおよび下体10Bからなる炉体で、
この炉体10の中央には昇降および回転する下軸11が配置
され、この下軸11の上端には黒鉛サセプタ12を介して石
英製の2重ルツボ13が固定されている。また、サセプタ
12の外周を取り巻いてヒーター14、保温筒15が順に配置
されている。Reference numeral 10 in the figure is a furnace body composed of an upper body 10A and a lower body 10B,
A lower shaft 11 that moves up and down and rotates is disposed at the center of the furnace body 10. A double crucible 13 made of quartz is fixed to the upper end of the lower shaft 11 via a graphite susceptor 12. Also, the susceptor
A heater 14 and a heat insulating cylinder 15 are arranged in this order around the outer circumference of 12.
前記2重ルツボ13は、有底円筒状の外ルツボ体13A
と、その中に同軸に配置された円筒形の内ルツボ体13B
とからなり、この内ルツボ体13Bの下端には透孔(図示
略)が形成されている。さらに炉体10の上方には、種結
晶16を保持するワイヤ17を昇降・回転させ、内ルツボ体
13Bの内側から単結晶Tを育成させる引上機構(図示
略)が設けられている。The double crucible 13 has a bottomed cylindrical outer crucible body 13A.
And a cylindrical inner crucible body 13B coaxially disposed therein.
A through hole (not shown) is formed at the lower end of the inner crucible body 13B. Further, above the furnace body 10, a wire 17 holding the seed crystal 16 is moved up and down to rotate, and the inner crucible body is
A pulling mechanism (not shown) for growing the single crystal T from the inside of 13B is provided.
前記保温筒15の上端には、円環板形の取付板18を介し
て、円筒部19Aとその上端に一体に形成された円環板部1
9Bとからなるガス整流筒19が固定されている。このガス
整流筒19の円筒部19Aの下端は、内ルツボ体13Bと外ルツ
ボ体13Aとの間隙に差し入れられ、その下端と内ルツボ1
3B、原料融液Y、外ルツボ体13Aとの間にはそれぞれ略
同じ間隙が空けられている。具体的には、第2図に示す
ように、ガス整流筒19の下端と融液Yとの距離は5mmよ
り大きく、かつ下端は外ルツボ体13Aの上端よりも低い
位置に設定されている。融液Yからの距離が5mm未満だ
と、この間隙を通るアルゴンガスの流速が過大となり、
融液Yに不要な振動を引き起こすおそれが生じるうえ、
ガス整流筒19が融液Yに接触するおそれもある。また、
ガス整流筒19の下端が外ルツボ体13Aの上端よりも高い
位置にあると整流効果が得られず、融液YへのCO溶入が
低減できない。また、第2図に示すように、ガス整流筒
19の下端部の肉厚Pは、内ルツボ体13Bと外ルツボ体13
との離間距離Qの0.3〜0.8であることが望ましい。0.3
倍未満だと内ルツボ体13Bと外ルツボ体13Aの近傍でガス
が滞留しやすく、整流効果が弱くなる。他方0.8倍より
大きいと、各ルツボ体13A,13Bと干渉するおそれが生じ
る。A cylindrical portion 19A and an annular plate portion 1 formed integrally with the upper end of the cylindrical portion 19A are attached to the upper end of the heat insulating cylinder 15 via an annular plate-shaped mounting plate 18.
A gas rectifying cylinder 19 including 9B is fixed. The lower end of the cylindrical portion 19A of the gas flow straightening cylinder 19 is inserted into the gap between the inner crucible body 13B and the outer crucible body 13A, and the lower end and the inner crucible 1
3B, the raw material melt Y, and the outer crucible body 13A are provided with substantially the same gaps. Specifically, as shown in FIG. 2, the distance between the lower end of the gas rectifying cylinder 19 and the melt Y is larger than 5 mm, and the lower end is set lower than the upper end of the outer crucible body 13A. If the distance from the melt Y is less than 5 mm, the flow rate of the argon gas passing through this gap becomes excessive,
In addition to causing unnecessary vibration in the melt Y,
The gas rectifying cylinder 19 may come into contact with the melt Y. Also,
If the lower end of the gas rectifying cylinder 19 is located at a position higher than the upper end of the outer crucible body 13A, the rectifying effect cannot be obtained and CO infiltration into the melt Y cannot be reduced. Moreover, as shown in FIG.
The wall thickness P of the lower end portion of 19 is the inner crucible body 13B and the outer crucible body 13B.
It is desirable that the distance Q from the distance is 0.3 to 0.8. 0.3
If it is less than twice, the gas tends to stay near the inner crucible body 13B and the outer crucible body 13A, and the rectifying effect is weakened. On the other hand, if it is greater than 0.8 times, there is a risk of interference with the crucible bodies 13A and 13B.
ガス整流筒19の材質としては、Mo,Ta,W,C,SiC等の高
耐熱材料の単体または複合材料が適し、必要に応じては
SiC等の被覆層をさらに形成してもよい。さらに炉体10
内には、内ルツボ体13Bと外ルツボ体13Aとの間隙に原料
を供給する原料供給管20が、ガス整流筒19の円環板部19
Bを貫通し円筒部19Aの外面に沿って固定されている。な
お、この原料供給管20は、円筒部19Aにスリットを形成
してその中に固定してもよいし、円筒部19Aの内面に沿
って配置してもよい。また、21はガス導入口、22はガス
排出口である。As the material of the gas rectifying cylinder 19, a single material or a composite material of high heat resistant material such as Mo, Ta, W, C, or SiC is suitable, and if necessary,
A coating layer such as SiC may be further formed. Furnace body 10
A raw material supply pipe 20 for supplying a raw material to the gap between the inner crucible body 13B and the outer crucible body 13A is provided inside the annular plate portion 19 of the gas rectifying cylinder 19.
It penetrates B and is fixed along the outer surface of the cylindrical portion 19A. The raw material supply pipe 20 may be formed by forming a slit in the cylindrical portion 19A and fixing the slit therein, or may be arranged along the inner surface of the cylindrical portion 19A. Further, 21 is a gas inlet, and 22 is a gas outlet.
この半導体単結晶育成装置を使用するには、まず2重
ルツボ13内にシリコン原料を充填して、ヒーター14に通
電するとともにガス導入口21からアルゴンガスを供給
し、原料を溶解する。次いで、2重ルツボ13を上昇させ
てガス整流筒19との距離を最適値に合わせ、種結晶16を
融液Yに浸漬して単結晶Tを育成しつつ、原料供給管20
を通じて原料をルツボ13に供給し、融液の減少分を補
う。この時、融液とルツボとが反応してSiOが生成し、
さらにこのSiOが一部が炉体10内のグラファイト部品と
反応してCOを生じる。In order to use this semiconductor single crystal growing apparatus, first, the silicon crucible 13 is filled with silicon raw material, the heater 14 is energized, and argon gas is supplied from the gas inlet 21 to melt the raw material. Then, the double crucible 13 is raised to adjust the distance to the gas rectifying cylinder 19 to an optimum value, the seed crystal 16 is immersed in the melt Y to grow the single crystal T, and the raw material supply pipe 20
The raw material is supplied to the crucible 13 through to compensate for the decrease in the melt. At this time, the melt and the crucible react to generate SiO,
Further, a part of this SiO reacts with the graphite parts in the furnace body 10 to generate CO.
一方、ガス導入口21から供給されたアルゴンガスは、
ガス整流筒19の円環板部19Bによって円筒部19Aに全て集
束され、単結晶Tに沿って下降し、内ルツボ体13Bと円
筒部19Aの間、円筒部19Aと融液Yの間、円筒部19Aと外
ルツボ体13Aの間を、滞ることなく速やかに通過してガ
ス排出口22から排出される。これにより、前記SiOやCO
は外ルツボ体13Aと内ルツボ体13Bとの間隙で滞留するこ
となく排出されるから、従来装置に比して融液に溶け込
むCO総量が著しく減少し、炭素濃度の小さい良質の単結
晶Tを製造することが可能である。On the other hand, the argon gas supplied from the gas inlet 21 is
All are focused on the cylindrical portion 19A by the annular plate portion 19B of the gas rectifying cylinder 19 and descend along the single crystal T, between the inner crucible body 13B and the cylindrical portion 19A, between the cylindrical portion 19A and the melt Y, and between the cylindrical portion 19A. The gas is discharged from the gas discharge port 22 by rapidly passing between the portion 19A and the outer crucible body 13A without any delay. As a result, the SiO and CO
Since it is discharged without staying in the gap between the outer crucible body 13A and the inner crucible body 13B, the total amount of CO dissolved in the melt is remarkably reduced as compared with the conventional apparatus, and a high-quality single crystal T with a low carbon concentration is produced. It is possible to manufacture.
なお、上記実施例では、ガス整流筒19の下端が角張っ
ていたが、第3図のように角を丸く面取り加工したり、
第4図のように下端に厚肉の膨出部23を形成し、その表
面全面を曲面としてもよい。各部の寸法等は前記実施例
に準じる。このようにすれば、円筒部19Aの下端近傍を
通るガス気流に渦が生じにくく、前記の効果をより高め
ることができる。また、原料供給管20を設けない構成
(バッチ式)も可能で、その場合には融液Yの減少とと
もにルツボを上昇させ、融液Yとガス整流筒19との間隔
を一定に保つ。In addition, in the above embodiment, the lower end of the gas flow straightening cylinder 19 is square, but as shown in FIG.
As shown in FIG. 4, a thick bulge portion 23 may be formed at the lower end, and the entire surface thereof may be curved. The dimensions and the like of each part are the same as those in the above embodiment. With this configuration, the gas flow passing near the lower end of the cylindrical portion 19A is less likely to have a vortex, and the above effect can be further enhanced. In addition, a configuration (batch type) in which the raw material supply pipe 20 is not provided is also possible. In that case, the crucible is raised as the melt Y decreases and the gap between the melt Y and the gas rectifying cylinder 19 is kept constant.
次に、第5図は本発明の他の実施例を示し、この例で
は前記実施例の構成に加え、ガス整流筒19の円環板部19
Bを半径方向内方に延長し、この延長部30の内縁から垂
下する筒体31を同軸に設けたことを特徴とする。この筒
体31の下端は単結晶Tと内ルツボ体13Bの間隙に挿入さ
れ、この下端部と、単結晶T、融液Y、内ルツボ体13B
との間にはそれぞれ略同等の間隔が形成されている。な
お、下端部と融液Yの間は5mm以上で、かつ下端の位置
は内ルツボ体13Bの上端よりも低く設定されている。こ
れは前記ガス整流筒19の場合と同じ理由による。Next, FIG. 5 shows another embodiment of the present invention. In this embodiment, in addition to the configuration of the above embodiment, the annular plate portion 19 of the gas rectifying cylinder 19 is added.
It is characterized in that B is extended inward in the radial direction, and a cylindrical body 31 that hangs down from the inner edge of the extension portion 30 is coaxially provided. The lower end of the cylindrical body 31 is inserted into the gap between the single crystal T and the inner crucible body 13B, and the lower end portion, the single crystal T, the melt Y, and the inner crucible body 13B.
And substantially the same interval is formed between the two. The distance between the lower end and the melt Y is 5 mm or more, and the position of the lower end is set lower than the upper end of the inner crucible body 13B. This is for the same reason as in the case of the gas flow straightening cylinder 19.
この例によれば、供給されるアルゴンガスがまず、筒
体31の下端部と単結晶Tの間、筒体31と融液Yの間、筒
体31と内ルツボ体13Bの間を順次層流となって流れるの
で、内ルツボ体13Bと外ルツボ体13Aの間隙に加えて、単
結晶Tと内ルツボ体13Bの間隙での滞留をも防止するこ
とができ、単結晶Tの炭素濃度を一層低減することがで
きる。According to this example, first, the supplied argon gas is sequentially layered between the lower end of the tubular body 31 and the single crystal T, between the tubular body 31 and the melt Y, and between the tubular body 31 and the inner crucible body 13B. Since it flows as a flow, in addition to the gap between the inner crucible body 13B and the outer crucible body 13A, retention in the gap between the single crystal T and the inner crucible body 13B can be prevented, and the carbon concentration of the single crystal T can be reduced. It can be further reduced.
なお、筒体31の下端を、ガス整流筒の場合と同様に丸
く面取り加工すれば、層流効果をさらに増大させること
ができる。また、延長部30を設けずに第5図中二点鎖線
(イ)のように筒体31を下に向けて窄まる円錘状とした
り、二点鎖線(ロ)のように延長部30を下方に移し、筒
体31を短縮した構成も可能であるし、延長部30に通気口
を形成しガス整流筒19と筒体31の間にアルゴンガスの一
部を通して、この部分でのガス滞留を防いでもよい。さ
らにまた、第6図に示すように、ガス導入口21から直
接、内ルツボ体13Bの内側まで筒体31を延設することも
可能である。The laminar flow effect can be further increased by rounding the lower end of the cylindrical body 31 into a round shape, as in the case of the gas rectifying cylinder. Further, without providing the extension portion 30, the cylindrical body 31 may be formed into a conical shape so as to be constricted downward as shown by the two-dot chain line (a) in FIG. 5, or as shown by the two-dot chain line (b). It is also possible to move the cylinder downward to shorten the cylinder 31, or to form a ventilation hole in the extension portion 30 so that a part of the argon gas is passed between the gas rectifying cylinder 19 and the cylinder 31 and the gas in this portion is You may prevent retention. Furthermore, as shown in FIG. 6, it is possible to extend the cylinder body 31 directly from the gas introduction port 21 to the inside of the inner crucible body 13B.
「実験例」 次に、実施例を挙げて本発明の効果を実証する。"Experimental Example" Next, the effects of the present invention will be demonstrated with reference to Examples.
第1図に示した装置を用い、次の育成条件において全
長700mmの単結晶を作成した。Using the apparatus shown in FIG. 1, a single crystal having a total length of 700 mm was prepared under the following growth conditions.
外ルツボ体の内径:334mm 内ルツボ体の外径:252mm 原料の初期充填量:20kg 初期融液の深さ:110mm 単結晶の外径:104mm 外ルツボ体、内ルツボ体の融液からの高さ:共に120mm ガス整流筒の外径:320mm ガス整流筒の肉厚(一定):20mm ガス整流筒の融液からの高さ:10mm ガス整流筒の内ルツボ体からの距離:14mm ガス整流筒の外ルツボ体からの距離:7mm アルゴンガスの供給量:50/分(常圧) ルツボへの原料供給:なし(バッチ法) 一方、上記装置からガス整流筒を取り外した構成によ
り、全く同じ育成条件で単結晶引き上げを行なった。Inner diameter of outer crucible: 334 mm Outer diameter of inner crucible: 252 mm Initial filling amount of raw material: 20 kg Depth of initial melt: 110 mm Outer diameter of single crystal: 104 mm Height of outer crucible and inner crucible from melt Both: 120mm Gas rectifier outer diameter: 320mm Gas rectifier wall thickness (constant): 20mm Height of gas rectifier from melt: 10mm Distance from inner crucible of gas rectifier: 14mm Gas rectifier Distance from the outer crucible: 7 mm Argon gas supply rate: 50 / min (normal pressure) Raw material supply to the crucible: None (batch method) On the other hand, the gas rectifier was removed from the above equipment to produce exactly the same growth The single crystal was pulled up under the conditions.
また同様に、原料供給管を用いて原料供給を行ないつ
つ、ガス整流筒を用いた場合とガス整流筒を用いない場
合において、前記と同じ条件でそれぞれ単結晶を作成し
た。ただし単結晶の長さはいずれも1000mmとした。Similarly, while supplying the raw material using the raw material supply pipe, a single crystal was produced under the same conditions as described above in the case of using the gas rectifying cylinder and the case of not using the gas rectifying cylinder. However, the length of each single crystal was 1000 mm.
こうして得られた4本の単結晶について、IR測定装置
(炭素検出限界0.1×1017atoms/cm3)を用い、その炭素
濃度を長手方向に多点測定した。With respect to the four single crystals thus obtained, the carbon concentration was measured at multiple points in the longitudinal direction using an IR measurement device (carbon detection limit: 0.1 × 10 17 atoms / cm 3 ).
その結果を第7図(バッチ法の場合)および第8図
(原料を追加供給した場合)にそれぞれ示す。これらの
グラフから明らかなように、ガス整流筒がない場合には
育成に伴い炭素濃度が漸次増加するのに比して、ガス整
流筒を用いた場合には、全長の大部分において炭素濃度
が検出限界以下に抑えられた。The results are shown in FIG. 7 (in the case of the batch method) and FIG. 8 (in the case of additionally supplying the raw material). As is clear from these graphs, the carbon concentration gradually increases with the growth when there is no gas rectifying cylinder, whereas the carbon concentration in most of the entire length increases when the gas rectifying cylinder is used. It was suppressed below the detection limit.
「発明の効果」 以上説明したように、本発明に係わる半導体単結晶育
成装置によれば、炉体上方から炉体内に供給されたアル
ゴンガスが、内ルツボ体とガス整流筒との間隙、ガス整
流筒と原料融液との間隙、外ルツボ体とガス整流筒との
間隙を経て層流状に速やかに流れるため、内ルツボ体と
外ルツボ体との間隙でガス滞留が生じず、原料融液への
CO溶入を低減することができる。これにより、SiOやCO
等の不純物が外ルツボ体と内ルツボ体の間隙で滞留する
ことなく排出されるから、従来装置に比して融液に溶け
込むCO総量が著しく減少し、炭素濃度の小さい良質の単
結晶を製造することが可能である。"Effects of the Invention" As described above, according to the semiconductor single crystal growth apparatus of the present invention, the argon gas supplied into the furnace body from above the furnace body is the gap between the inner crucible body and the gas rectifying cylinder, and the gas. Since it flows quickly in a laminar flow through the gap between the flow straightening cylinder and the raw material melt, and the gap between the outer crucible body and the gas flow straightening cylinder, gas retention does not occur in the gap between the inner crucible body and the outer crucible body, and the raw material melt To liquid
CO penetration can be reduced. This allows SiO and CO
Since impurities such as are discharged without staying in the gap between the outer crucible body and the inner crucible body, the total amount of CO that dissolves in the melt is significantly reduced compared to conventional equipment, and high-quality single crystals with low carbon concentration are manufactured. It is possible to
また、内ルツボ体と単結晶の間に筒体を配置した場合
には、単結晶と内ルツボ体との間隙でのガス滞留も防止
し、一層の炭素濃度低下が図れる。Further, when the cylindrical body is arranged between the inner crucible body and the single crystal, gas retention in the gap between the single crystal and the inner crucible body is prevented, and the carbon concentration can be further reduced.
第1図は、本発明に係わる半導体単結晶育成装置の一実
施例の縦断面図、第2図は同装置の要部の縦断面図、第
3図および第4図は本発明の他の実施例の要部の縦断面
図、第5図および第6図は、さらに他の実施例の縦断面
図、第7図および第8図は本発明の実験例の効果を示す
グラフである。 一方、第9図は従来の半導体単結晶育成装置の縦断面図
である。 T……単結晶、Y……原料融液、10……炉体、13……2
重ルツボ、13A……外ルツボ体、13B……内ルツボ体、19
……ガス整流筒、20……原料供給管、21……ガス導入
口、22……ガス排出口、31……筒体。FIG. 1 is a vertical sectional view of an embodiment of a semiconductor single crystal growing apparatus according to the present invention, FIG. 2 is a vertical sectional view of a main part of the apparatus, and FIGS. 3 and 4 show other portions of the present invention. FIGS. 5 and 6 are longitudinal sectional views of a main part of the embodiment, FIGS. 5 and 6 are longitudinal sectional views of still another embodiment, and FIGS. 7 and 8 are graphs showing the effects of the experimental examples of the present invention. On the other hand, FIG. 9 is a vertical sectional view of a conventional semiconductor single crystal growing apparatus. T: single crystal, Y: raw material melt, 10: furnace body, 13: 2
Heavy crucible, 13A …… Outer crucible body, 13B …… Inner crucible body, 19
...... Gas rectifying cylinder, 20 …… Raw material supply pipe, 21 …… Gas inlet, 22 …… Gas outlet, 31 …… Cylinder.
Claims (5)
ルツボを炉体内に備え、前記内ルツボ体の内側から単結
晶を引き上げ育成する半導体単結晶育成装置において、 前記2重ルツボの上方に、これと同軸に円筒状のガス整
流筒を設け、このガス整流筒の下端部を前記内ルツボ体
と外ルツボ体の間隙に配置し、この下端部と、内ルツボ
体、外ルツボ体、原料融液との間にそれぞれ間隔を空け
たことを特徴とする半導体単結晶育成装置。1. A semiconductor single crystal growing apparatus for providing a double crucible composed of an inner crucible body and an outer crucible body in a furnace body and pulling and growing a single crystal from the inner side of the inner crucible body. , A cylindrical gas rectifying cylinder is provided coaxially therewith, the lower end of the gas rectifying cylinder is disposed in the gap between the inner crucible body and the outer crucible body, and the lower end portion, the inner crucible body, the outer crucible body, and the raw material An apparatus for growing a semiconductor single crystal, characterized in that a space is provided between the melt and the melt.
ルツボ体と外ルツボ体の離間距離の0.3〜0.8倍であるこ
とを特徴とする第1項記載の半導体単結晶育成装置。2. The semiconductor single crystal growing apparatus according to claim 1, wherein the maximum thickness of the lower end portion of the gas flow straightening cylinder is 0.3 to 0.8 times the distance between the inner crucible body and the outer crucible body. .
かな曲面であることを特徴とする第1項または第2項記
載の半導体単結晶育成装置。3. The semiconductor single crystal growing apparatus according to claim 1 or 2, wherein the surface of the lower end portion of the gas rectifying cylinder has a gentle curved surface.
は5mmより大きく、かつこの下端は外ルツボ体の上端よ
りも低い位置にあることを特徴とする第1項または第2
項または第3項記載の半導体単結晶育成装置。4. The first or second aspect, wherein the distance between the lower end of the gas flow straightening cylinder and the raw material melt is greater than 5 mm, and the lower end is lower than the upper end of the outer crucible body.
Item 6. A semiconductor single crystal growth device according to item 3 or item 3.
端部が内ルツボ体、融液、単結晶のそれぞれから離間す
るように円筒状の筒体を同軸に配置し、この筒体を通し
て上から不活性ガスが供給されるように構成したことを
特徴とする第1項または第2項または第3項または第4
項記載の半導体単結晶育成装置。5. A cylindrical tubular body is coaxially arranged between the inner crucible body and the single crystal such that the lower end portions thereof are separated from the inner crucible body, the melt and the single crystal, respectively. An inert gas is supplied from above through the body, so that the first, second, third, or fourth term
The semiconductor single crystal growth apparatus according to the item.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63267884A JP2555714B2 (en) | 1988-10-24 | 1988-10-24 | Semiconductor single crystal growth equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63267884A JP2555714B2 (en) | 1988-10-24 | 1988-10-24 | Semiconductor single crystal growth equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH02116697A JPH02116697A (en) | 1990-05-01 |
JP2555714B2 true JP2555714B2 (en) | 1996-11-20 |
Family
ID=17450968
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63267884A Expired - Lifetime JP2555714B2 (en) | 1988-10-24 | 1988-10-24 | Semiconductor single crystal growth equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2555714B2 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2795036B2 (en) * | 1992-02-04 | 1998-09-10 | 信越半導体株式会社 | Single crystal pulling device |
US9376762B2 (en) * | 2012-11-29 | 2016-06-28 | Solaicx | Weir for improved crystal growth in a continuous Czochralski process |
CN111962140A (en) | 2020-08-28 | 2020-11-20 | 晶科绿能(上海)管理有限公司 | Continuous crystal pulling apparatus and method for continuously pulling crystal rod |
-
1988
- 1988-10-24 JP JP63267884A patent/JP2555714B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH02116697A (en) | 1990-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100220613B1 (en) | Semiconductor single-crystal growth system | |
JP5413354B2 (en) | Silicon single crystal pulling apparatus and silicon single crystal manufacturing method | |
US5270020A (en) | Apparatus for manufacturing silicon single crystals | |
EP1722014A1 (en) | Method for manufacturing nitrogen-doped silicon single crystal | |
JP2555714B2 (en) | Semiconductor single crystal growth equipment | |
US5788718A (en) | Apparatus and a method for growing a single crystal | |
JPH03115188A (en) | Production of single crystal | |
JP3220542B2 (en) | Semiconductor single crystal rod manufacturing equipment | |
JP2937109B2 (en) | Single crystal manufacturing apparatus and manufacturing method | |
JPH08751B2 (en) | Method for producing silicon ingot with high oxygen content by crucible-free zone tension method | |
JP2007261868A (en) | Apparatus for and method of growing single crystal | |
JP2002321997A (en) | Apparatuses for making silicon single crystal and method for making silicon single crystal using the same | |
JP2004123516A (en) | Device for pulling up single crystal | |
WO1999037833A1 (en) | Single crystal pull-up apparatus | |
JPH0523580Y2 (en) | ||
JPH07277875A (en) | Method for growing crystal | |
JP2504875B2 (en) | Single crystal manufacturing equipment | |
JP2595693B2 (en) | Semiconductor single crystal growth equipment | |
JPH0718764Y2 (en) | Semiconductor single crystal growth equipment | |
JPS61158897A (en) | Method for pulling up compound semiconductor single crystal and apparatus therefor | |
JP2755452B2 (en) | Silicon single crystal pulling equipment | |
JPH06345585A (en) | Method for pulling up single crystal | |
JP2500875B2 (en) | Single crystal manufacturing equipment | |
JPH0543381A (en) | Apparatus for growing single crystal by molten layer process and method for controlling oxygen concentration in single crystal using the apparatus | |
JPH10167891A (en) | Device for producing single crystal silicon and production of single crystal silicon, using the same |