JP2553656Y2 - Optical semiconductor device - Google Patents

Optical semiconductor device

Info

Publication number
JP2553656Y2
JP2553656Y2 JP8644491U JP8644491U JP2553656Y2 JP 2553656 Y2 JP2553656 Y2 JP 2553656Y2 JP 8644491 U JP8644491 U JP 8644491U JP 8644491 U JP8644491 U JP 8644491U JP 2553656 Y2 JP2553656 Y2 JP 2553656Y2
Authority
JP
Japan
Prior art keywords
lens
light
resin
optical semiconductor
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8644491U
Other languages
Japanese (ja)
Other versions
JPH0538917U (en
Inventor
亮一 正木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP8644491U priority Critical patent/JP2553656Y2/en
Publication of JPH0538917U publication Critical patent/JPH0538917U/en
Application granted granted Critical
Publication of JP2553656Y2 publication Critical patent/JP2553656Y2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】本考案は、各種電子機器に用いら
れる光半導体装置に関し、特に指向性が広く、高感度お
よび耐外乱光特性が要求されるリモートコントロール用
受光装置である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical semiconductor device used for various electronic devices, and more particularly to a light receiving device for a remote control which requires a wide directivity, high sensitivity and resistance to disturbance light.

【0002】[0002]

【従来の技術】従来の光半導体装置は、図3の如く、I
C回路と一体となった受光チップ(光半導体素子)1の
全体を可視光カット樹脂(赤外透過黒樹脂)でモールド
し、そのフォトダイオード部に光を集光させるために、
モールド体2の上部にレンズ3を設けた構造になってい
る。
2. Description of the Related Art As shown in FIG.
The entire light receiving chip (optical semiconductor element) 1 integrated with the C circuit is molded with a visible light cut resin (infrared transmitting black resin), and the light is focused on the photodiode portion.
The lens 3 is provided on the upper part of the mold body 2.

【0003】最近、光を利用したリモートコントロール
装置(以下、リモコンという)が各種電子機器に用いら
れるようになったが、用途が雑多であり、例えばVT
R,TV,CD(ラジカセ、コンポ)エアコン、カメラ
等であり、使用される環境がさまざまである。これらの
環境では、外乱光として、屋内では、50/60Hz蛍
光灯、インバータ蛍光灯、白熱灯があり、屋外では太陽
光があり、リモコンを取りまく環境には外乱光が氾濫し
ている。
Recently, a remote control device using light (hereinafter referred to as a remote control) has been used for various electronic devices.
R, TV, CD (boombox, component) air conditioner, camera, etc., and the environment in which it is used is various. In these environments, as ambient light, there are 50/60 Hz fluorescent lamps, inverter fluorescent lamps, and incandescent lamps indoors, and there is sunlight outdoors, and the ambient environment surrounding the remote control is flooded with ambient light.

【0004】これらの外乱光の下で、大型TV、ビデオ
カメラ等の普及により、受信距離の遠距離化、および広
指向角化の要望が高まってきている。
[0004] Under these disturbance lights, with the widespread use of large-sized TVs, video cameras, and the like, there is an increasing demand for a longer reception distance and a wider directional angle.

【0005】[0005]

【考案が解決しようとする課題】従来の光半導体素子を
使用した受光装置では、その受信距離を向上させるため
に、レンズ径を大きくし、集光すべき信号光を受ける面
積を大きくすることにより、受光チップに入射する信号
光の量を多くして、受信距離をのばそうとしているが、
レンズ径を大きくすればする程、樹脂による光の透過率
が低減し、期待通りの入射光量が得られず、受信距離の
アップが困難である。
In a conventional light receiving device using an optical semiconductor element, in order to improve the receiving distance, a lens diameter is increased and an area for receiving signal light to be condensed is increased. , To increase the receiving distance by increasing the amount of signal light incident on the light receiving chip,
As the lens diameter is increased, the transmittance of light by the resin is reduced, the expected amount of incident light cannot be obtained, and it is difficult to increase the receiving distance.

【0006】集光性を向上させるために、レンズの径を
大きくしたモデルの概略を図3に示す。この図3では、
内容を簡略化するためにレンズに入射した光は全て受光
チップ1に集光されると仮定する。
FIG. 3 schematically shows a model in which the diameter of the lens is increased in order to improve the light collecting property. In this FIG.
For simplicity, it is assumed that all light incident on the lens is collected on the light receiving chip 1.

【0007】集光のためにレンズ径をa倍にする。図3
では、Aのレンズ半径がrであったものを、Bのように
arとする。また、可視光カット樹脂の1mm当たりの
減衰率をαOとする。
[0007] The lens diameter is increased by a times for light collection. FIG.
Then, the lens radius of A is r, and ar is B as in B. Further, the attenuation rate per 1 mm of the visible light cut resin is represented by α O.

【0008】受光チツプを、全て可視光カット樹脂でモ
ールドした場合、 (d1,d2はレンズセンターから受光チップまでの距
離)である。
When all the light receiving chips are molded with visible light cutting resin, (D 1 and d 2 are distances from the lens center to the light receiving chip).

【0009】受光チップへの入射光は、 The incident light on the light receiving chip is

【0010】[0010]

【数1】 (Equation 1)

【0011】以上のように、受光チップに入射する信号
光は、αOr(a−1)/1−αO(r+d1)の項分だけ
モールド樹脂により減衰する。
[0011] As described above, the signal light incident on the light receiving chip is attenuated by α O r (a-1) / 1-α term an amount corresponding mold resin O (r + d 1).

【0012】 として入射光量を計算すると、[0012] Calculating the incident light amount as

【0013】[0013]

【数2】 (Equation 2)

【0014】このように、レンズ径を大きくすることに
より、入射面積が大きくなった分の55%しか受光チッ
プに達しないことがわかる。
Thus, it can be seen that by increasing the lens diameter, only 55% of the increased incident area reaches the light receiving chip.

【0015】また、広指向角特性を得るため、非球面レ
ンズを使用した場合、レンズ径が大きくなれば、信号光
が光軸上と、入射角(指向角)がついた場合とで、樹脂
の厚みが変わることにより、透過率の違いが出て、入射
角(指向角)がついた入射光の透過率が低減する。その
ために、広指向角特性の改善が図れない場合があった。
Further, when an aspherical lens is used to obtain a wide directivity angle characteristic, if the lens diameter is large, the signal light on the optical axis and the case where the incident angle (directivity angle) is applied to the resin are different. When the thickness changes, the transmittance differs, and the transmittance of incident light having an incident angle (directivity angle) decreases. For this reason, wide directivity angle characteristics may not be improved in some cases.

【0016】本考案は、上記に鑑み、透過率の低減をコ
ントロールし、受信距離特性の改善および広指向特性が
得られる光半導体装置の提供を目的とする。
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide an optical semiconductor device capable of controlling a reduction in transmittance, improving a receiving distance characteristic and obtaining a wide directivity characteristic.

【0017】[0017]

【課題を解決するための手段】本考案による課題解決手
段は、モールド樹脂でレンズを形成するときに可視光カ
ット樹脂部分の厚みを均一にし、不必要な厚みにならな
いように、光半導体素子(受光チップ)を透明の透光性
樹脂でモールドした第一モールド体10にレンズ11を
形成し、この第一モールド体10全体を包み込むよう
に、かつ、第一モールド体10のレンズ11に均一な厚
みに、可視光カットの透光性樹脂で第二モールド体13
を形成するものである。
Means for Solving the Problems According to the present invention, when a lens is formed with a mold resin, the thickness of a visible light cut resin portion is made uniform so that an unnecessary thickness is prevented. A lens 11 is formed on a first molded body 10 in which the light receiving chip is molded with a transparent light-transmitting resin, and is uniformly formed on the lens 11 of the first molded body 10 so as to surround the entire first molded body 10. The thickness of the second molded body 13 is made of a transparent resin that cuts visible light.
Is formed.

【0018】[0018]

【作用】上記課題解決手段において、図2のように、レ
ンズ表面から可視光カット樹脂の厚みを均一にした受光
デバイスの場合、 入射光の減衰の影響が出る可視光カット樹脂部の厚みを
3とし、透明樹脂部分は理想的な透明として減衰はな
いと仮定する。
In the above-mentioned means for solving the above problems, as shown in FIG. 2, in the case of a light receiving device in which the thickness of the visible light cutting resin is made uniform from the lens surface, The thickness of the visible light cut resin portion effects of attenuation of the incident light exits and D 3, the transparent resin portion is assumed that there is no attenuation as an ideal transparent.

【0019】受光チップへの入射光は The light incident on the light receiving chip is

【0020】[0020]

【数3】 (Equation 3)

【0021】以上のように、可視光カット樹脂による減
衰が一定になるため、信号光の光量を見込み通り得ら
れ、受信距離特性の改善が可能になる。
As described above, since the attenuation by the visible light cut resin is constant, the amount of signal light can be obtained as expected, and the reception distance characteristics can be improved.

【0022】また、広指向角化のため、非球面レンズ
(例えば楕円レンズ)の場合、光軸上の光路と指向角を
もった光路では、モールド樹脂部の厚みが変わるため、
広指向角化のための楕円レンズでは入射角が大きくなる
と、樹脂の厚みが厚くなり、その分、減衰量が多くな
り、かえって受光チップに入射する光量がダウンする可
能性があり、可視光カット樹脂でのモールド体13を均
一な厚みにすることにより、指向角による減衰量の変化
が改善されるため、指向角特性が向上する。
Also, in order to increase the directivity angle, in the case of an aspherical lens (for example, an elliptical lens), the thickness of the mold resin portion changes between the optical path on the optical axis and the optical path having the directivity angle.
In the case of an elliptical lens for widening the directivity angle, if the angle of incidence increases, the thickness of the resin increases, the amount of attenuation increases, and the amount of light incident on the light-receiving chip may be reduced. By making the thickness of the resin molded body 13 uniform, the change in the attenuation due to the directional angle is improved, and the directional angle characteristics are improved.

【0023】[0023]

【実施例】図1は本考案の実施例を示す光半導体装置の
断面図、図2は本考案に係る光半導体装置のレンズ集光
特性を示す概念図である。
FIG. 1 is a sectional view of an optical semiconductor device showing an embodiment of the present invention, and FIG. 2 is a conceptual diagram showing a lens focusing characteristic of the optical semiconductor device according to the present invention.

【0024】図1の如く、光半導体装置としての受光デ
バイスは、リードフレーム8上にダイレクトボントした
受光素子9を、透明な透光性樹脂でトランスファモール
ドして一次モールド体10を形成する。そのモールド体
10の上部に第一レンズ11を形成する。さらに、これ
らの上に可視光カットの透光性樹脂で再度トランスファ
モールドを行い、第二モールド体13を形成する。この
第二モールド体13には、透明樹脂のレンズ11の上面
に可視光カット樹脂で均一な厚みになるように同一光軸
をもった第二レンズ14を形成する。
As shown in FIG. 1, in a light receiving device as an optical semiconductor device, a light receiving element 9 directly bonded on a lead frame 8 is transfer-molded with a transparent light transmitting resin to form a primary molded body 10. The first lens 11 is formed on the upper part of the mold body 10. Further, transfer molding is performed again on these with a transparent resin that cuts off visible light to form a second molded body 13. In the second mold body 13, a second lens 14 having the same optical axis is formed on the upper surface of the transparent resin lens 11 with a visible light cut resin so as to have a uniform thickness.

【0025】上記2重トランスファモールドを行うこと
により、可視光カット樹脂の厚みをコントロールし、均
一に構成すれば、リモコンの周囲にある外乱光に対し
て、可視光カット樹脂によりノイズを低減させる。
If the thickness of the visible light cut resin is controlled by performing the above-mentioned double transfer molding so that the visible light cut resin is made uniform, noise is reduced by the visible light cut resin against disturbance light around the remote controller.

【0026】また、第二レンズ14は、不必要な厚みが
ないため、信号光の減衰が制限され、集光性を向上させ
ることが可能になる。さらに、指向角に対しても厚みを
均一にできるため、広指向角化が可能になる。
Further, since the second lens 14 does not have an unnecessary thickness, the attenuation of the signal light is limited, and the light collecting property can be improved. Further, since the thickness can be made uniform with respect to the directional angle, a wider directional angle can be obtained.

【0027】なお、本考案は、上記実施例に限定される
ものではなく、本考案の範囲内で上記実施例に多くの修
正および変更を加え得ることは勿論である。
It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that many modifications and changes can be made to the above-described embodiment within the scope of the present invention.

【0028】例えば、上記実施例では受光デバイスにつ
いて説明したが、これに限らず、その他の光半導体装置
であつても本考案を適用できることは勿論である。
For example, in the above embodiment, the light receiving device has been described. However, the present invention is not limited to this, and it is needless to say that the present invention can be applied to other optical semiconductor devices.

【0029】[0029]

【考案の効果】以上の説明から明らかな通り、本考案に
よると、可視光カット樹脂の厚みをコントロールし、均
一に構成しているので、リモコンの周囲にある外乱光に
対して、可視光カット樹脂によりノイズを低減でき、ま
た、第二レンズは不必要な厚みがないため、信号光の減
衰が制限され、集光性を向上させることができ、指向角
に対しても厚みを均一にできるため、広指向角化が可能
となるといった優れた効果がある。
[Effects of the Invention] As is clear from the above description, according to the present invention, the thickness of the visible light cut resin is controlled and uniform, so that the visible light can be cut against disturbance light around the remote controller. The noise can be reduced by the resin, and since the second lens does not have an unnecessary thickness, the attenuation of the signal light is limited, the light collecting property can be improved, and the thickness can be made uniform with respect to the directional angle. Therefore, there is an excellent effect that a wide directivity angle can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】図1は本考案の実施例を示す光半導体装置の断
面図である。
FIG. 1 is a sectional view of an optical semiconductor device showing an embodiment of the present invention.

【図2】図2は本考案に係る光半導体装置のレンズ集光
特性を示す概念図である。
FIG. 2 is a conceptual diagram showing a lens focusing property of the optical semiconductor device according to the present invention.

【図3】図3はレンズ集光特性について、レンズ径と集
光性と樹脂による減衰特性を示した従来の光半導体装置
の概略図である。
FIG. 3 is a schematic view of a conventional optical semiconductor device showing a lens diameter, a light collecting property, and an attenuation property due to a resin with respect to a lens light collecting property.

【符号の説明】[Explanation of symbols]

1 受光チツプ 2 モールド体 3 レンズ 8 リードフレーム 9 受光素子 10 第一モールド体 11 第一レンズ 13 第二モールド体 14 第二レンズ REFERENCE SIGNS LIST 1 light receiving chip 2 molded body 3 lens 8 lead frame 9 light receiving element 10 first molded body 11 first lens 13 second molded body 14 second lens

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 光半導体素子が透光性樹脂でモールドさ
れて一次モールド体が形成され、 該一次モールド体の上部に第一レンズが形成され、 前記一次モールド体が可視光カット樹脂でモールドされ
て二次モールド体が形成され、 該二次モールド体に、前記一次モールド体と同一光軸上
に均等な厚みで、第一レンズの外側を被う第二レンズが
形成されたことを特徴とする光半導体装置。
An optical semiconductor device is molded with a translucent resin to form a primary molded body, a first lens is formed on the primary molded body, and the primary molded body is molded with a visible light cut resin. A second lens body is formed on the secondary mold body, the second lens covering the outside of the first lens with a uniform thickness on the same optical axis as the primary mold body. Optical semiconductor device.
JP8644491U 1991-10-23 1991-10-23 Optical semiconductor device Expired - Fee Related JP2553656Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8644491U JP2553656Y2 (en) 1991-10-23 1991-10-23 Optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8644491U JP2553656Y2 (en) 1991-10-23 1991-10-23 Optical semiconductor device

Publications (2)

Publication Number Publication Date
JPH0538917U JPH0538917U (en) 1993-05-25
JP2553656Y2 true JP2553656Y2 (en) 1997-11-12

Family

ID=13887094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8644491U Expired - Fee Related JP2553656Y2 (en) 1991-10-23 1991-10-23 Optical semiconductor device

Country Status (1)

Country Link
JP (1) JP2553656Y2 (en)

Also Published As

Publication number Publication date
JPH0538917U (en) 1993-05-25

Similar Documents

Publication Publication Date Title
US4792685A (en) Photoelectric sensor
US4638343A (en) Optical radiation source or detector device having plural radiating or receiving characteristics
JP3092276B2 (en) Omnidirectional light receiver
JP3057432B2 (en) Lens for light receiving element
KR100381677B1 (en) Receiver
CN208127212U (en) A kind of encapsulating structure of image sensing chip
JP2553656Y2 (en) Optical semiconductor device
JP4485567B2 (en) Optical angle detection device, manufacturing method thereof, and electronic apparatus using the same
JPH0360080A (en) Photodetector
JP3240752B2 (en) Solid-state imaging device
JP2636048B2 (en) Optical semiconductor device
JPH0716017B2 (en) Optical semiconductor device
US20200357842A1 (en) Image sensor module having protective structure that blocks incident light to arrive at bonding wires and pads
JPH08264826A (en) Photodetector and light incident angle detector
JPH06326284A (en) Color sold-state imaging device
JPH10307237A (en) Integrated type semiconductor device for optical communication
CN211741700U (en) Lens module of doorbell camera
JP2576383Y2 (en) Optical semiconductor device
JP2556799Y2 (en) Optical semiconductor device
CN218039223U (en) Photoelectric detector TO packaging structure
JPH07111342A (en) Light transmission module
JPS59148372A (en) Photosensitive device
JPS6047472A (en) Solid-state image-pickup element
JPH01305789A (en) White balance device
KR200396339Y1 (en) rotate reception module lens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees