JP2553433B2 - Method for removing nitrogen oxides in exhaust gas - Google Patents

Method for removing nitrogen oxides in exhaust gas

Info

Publication number
JP2553433B2
JP2553433B2 JP4070336A JP7033692A JP2553433B2 JP 2553433 B2 JP2553433 B2 JP 2553433B2 JP 4070336 A JP4070336 A JP 4070336A JP 7033692 A JP7033692 A JP 7033692A JP 2553433 B2 JP2553433 B2 JP 2553433B2
Authority
JP
Japan
Prior art keywords
catalyst
sulfate
exhaust gas
oxide
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP4070336A
Other languages
Japanese (ja)
Other versions
JPH05309235A (en
Inventor
嘉昭 金田一
秀昭 浜田
建彦 伊藤
基 佐々木
藤夫 菅沼
章博 北爪
一司 薄井
知博 吉成
光紀 田畑
忠夫 仲辻
宏益 清水
律 安川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Sakai Chemical Industry Co Ltd
Original Assignee
Agency of Industrial Science and Technology
Sakai Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology, Sakai Chemical Industry Co Ltd filed Critical Agency of Industrial Science and Technology
Publication of JPH05309235A publication Critical patent/JPH05309235A/en
Application granted granted Critical
Publication of JP2553433B2 publication Critical patent/JP2553433B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Catalysts (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、排ガスを、少量添加し
た炭化水素類もしくは含酸素化合物、あるいは排ガス中
に存在する炭化水素類もしくは含酸素化合物の存在下
で、特定の触媒と接触させて、排ガス中の窒素酸化物を
除去する方法に関する。
TECHNICAL FIELD The present invention relates to a method in which an exhaust gas is brought into contact with a specific catalyst in the presence of a small amount of added hydrocarbons or oxygen-containing compounds, or hydrocarbons or oxygen-containing compounds present in the exhaust gas. , A method for removing nitrogen oxides in exhaust gas.

【0002】[0002]

【従来の技術】各種の排ガス中の窒素酸化物(以下、
“NOx”)は、健康に有害であり、かつ光化学スモッ
グや酸性雨の発生原因ともなり得るために、その効果的
な除去手段の開発が望まれている。
2. Description of the Related Art Nitrogen oxides in various exhaust gases (hereinafter referred to as
Since "NOx") is harmful to health and may cause photochemical smog and acid rain, development of effective removal means thereof is desired.

【0003】従来、このNOxの除去方法として、触媒
を用いて排ガス中のNOxを低減する方法がすでにいく
つか実用化されている。例えば、(イ)ガソリン自動車
における三元触媒法や、(ロ)ボイラー等の大型設備排
出源からの排ガスについてアンモニアを用いる選択的接
触還元法が挙げられる。また、その他の提案されている
方法としては、(ハ)炭化水素を用いる排ガス中のNO
x除去方法として、銅等の金属を担持させたアルミナ等
の金属酸化物を触媒として炭化水素の存在下でNOxを
含むガスと接触させる方法(特開昭63−100,91
9号公報等)がある。
Conventionally, several methods for reducing NOx in exhaust gas using a catalyst have been put into practical use as methods for removing NOx. For example, (a) a three-way catalytic method in a gasoline vehicle, and (b) a selective catalytic reduction method using ammonia for exhaust gas from a large facility discharge source such as a boiler. Other proposed methods include (c) NO in exhaust gas using hydrocarbons.
As a method for removing x, a method in which a metal oxide such as alumina supporting a metal such as copper is used as a catalyst and brought into contact with a gas containing NOx in the presence of hydrocarbon (JP-A-63-100, 91).
9 publication).

【0004】[0004]

【発明が解決しようとする課題】上記(イ)の方法は、
自動車の燃焼排ガス中に含まれる炭化水素成分と一酸化
炭素を触媒によって水と二酸化炭素とし、同時にNOx
を還元して窒素とするものであるが、NOxに含まれる
酸素量と、炭化水素成分と一酸化炭素成分が酸化される
のに必要とする酸素量とが化学量論的に等しくなるよう
に燃焼を調整する必要があり、ディーゼル機関のように
過剰の酸素が存在する系では、原理的には適用は不可能
である等の重大な問題がある。
SUMMARY OF THE INVENTION The method (a) is
Hydrocarbon components and carbon monoxide contained in automobile flue gas are made into water and carbon dioxide by a catalyst, and at the same time NOx
Is reduced to nitrogen, so that the amount of oxygen contained in NOx and the amount of oxygen required for oxidizing the hydrocarbon component and the carbon monoxide component are stoichiometrically equal to each other. Combustion needs to be adjusted, and in a system such as a diesel engine in which excess oxygen exists, there is a serious problem that it cannot be applied in principle.

【0005】また、(ロ)の方法では、非常に有毒であ
り、しかも多くの場合高圧ガスとして取り扱わねばなら
ないアンモニアを用いるため、その取り扱いが容易でな
く、また設備が巨大化し、小型の排ガス発生源、特に移
動性発生源に適用することは技術的にも極めて困難であ
り、さらに経済性もよくない。
Further, in the method (b), ammonia, which is extremely toxic and has to be handled as a high-pressure gas in many cases, is used, so that the handling is not easy and the equipment becomes huge, and a small exhaust gas is generated. It is technically extremely difficult to apply it to a source, especially a mobile source, and it is not economical.

【0006】一方、(ハ)の方法は、ガソリン自動車を
主な対象としており、ディーゼル機関の排ガス条件下で
は適用が困難であるとともに、触媒の活性も不十分であ
る。すなわち、触媒の成分として銅のような金属を含む
ため、ディーゼル機関から排出される硫黄酸化物により
被毒されるばかりでなく、添加した金属の凝集等により
触媒の活性低下も起こるため、ディーゼル機関からの排
ガス中のNOxを除去するには適さず、実用化には至っ
ていない。
On the other hand, the method (c) is mainly applied to gasoline automobiles, and it is difficult to apply it under the exhaust gas conditions of a diesel engine and the activity of the catalyst is insufficient. That is, since a metal such as copper is contained as a component of the catalyst, it is not only poisoned by sulfur oxides discharged from the diesel engine, but also the activity of the catalyst is deteriorated due to aggregation of the added metal. It is not suitable for the removal of NOx in exhaust gas from automobiles and has not been put to practical use.

【0007】本発明は、以上の(イ)〜(ハ)に存在す
る各種の問題について鋭意検討した結果なされたもので
あって、酸化雰囲気においても、ディーゼル機関の排ガ
スをはじめ、種々の設備から発生する硫黄酸化物を含む
排ガスであっても、該排ガス中のNOxを効率よく除去
する方法を提供することを目的とする。
The present invention has been made as a result of extensive studies on various problems existing in the above (a) to (c). Even in an oxidizing atmosphere, various kinds of equipment including exhaust gas of a diesel engine can be used. It is an object of the present invention to provide a method for efficiently removing NOx in exhaust gas even if the exhaust gas contains sulfur oxides.

【0008】[0008]

【課題を解決するための手段および作用】本発明者等
は、上記の従来法に存在する問題を解決するために、先
に、金属酸化物を硫酸根を有する化合物で処理した触媒
を使用する方法を提案している(特願平2−20410
号、同2−20413号明細書参照)が、さらに研究を
重ねた結果、この触媒に多価金属硫酸塩または第4周期
遷移金属塩を担持等の方法により複合したものからなる
触媒を用いることにより、硫黄酸化物の含まれている排
ガスにおいて、活性の低下を引き起こすことなく、より
効果的にNOxを除去できることを見い出し、本発明を
完成するに至った。
In order to solve the problems existing in the above conventional methods, the present inventors have previously used a catalyst obtained by treating a metal oxide with a compound having a sulfate group. Proposing a method (Japanese Patent Application No. 2-20410)
No. 2-20413), and as a result of further studies, use of a catalyst composed of a complex of a polyvalent metal sulfate or a fourth-period transition metal salt supported on the catalyst. As a result, they have found that NOx can be more effectively removed in exhaust gas containing sulfur oxides without causing a decrease in activity, and have completed the present invention.

【0009】すなわち、本発明の排ガス中の窒素酸化物
を除去する方法は、炭化水素類もしくは含酸素化合物の
存在下において、ゼオライトを除く酸化物に硫酸根を有
する化合物を含浸後焼成してなる硫酸根含有酸化物に
多価金属硫酸塩または第4周期遷移金属塩を担持させた
ものからなる触媒とNOxを含む排ガスとを接触させる
ことを特徴とし、また、上記と同一の条件下において上
記の触媒とNOxを含む排ガスとを接触させ、次いで該
ガスを酸化触媒に接触させることをも特徴とする。
That is, the method for removing nitrogen oxides in exhaust gas according to the present invention is carried out by impregnating oxides other than zeolite with a compound having a sulfate group in the presence of hydrocarbons or oxygen-containing compounds and then calcining. Sulfate-containing oxide ,
A catalyst comprising a polyvalent metal sulfate or a fourth-period transition metal salt supported thereon and an exhaust gas containing NOx are brought into contact with each other, and the catalyst and NOx are contained under the same conditions as above. It is also characterized in that the exhaust gas is brought into contact with the oxidation catalyst and then the gas is brought into contact with the oxidation catalyst.

【0010】以下、本発明方法の詳細を作用と共に説明
する。本発明において、触媒の構成成分の一つである
酸根含有酸化物は、硫酸根を有する化合物で処理(すな
わち、該化合物含浸後焼成)した酸化物(以下、硫酸根
酸化物と記す)であり、この酸化物の具体例としては、
酸化チタン、酸化ジルコニウム、酸化ハフニウム、酸化
鉄、酸化スズ、アルミナ、及びこれらの酸化物の一種以
上を含む複合酸化物、例えばチタニアージルコニア、シ
リカ−アルミナ等を挙げることができる。
Hereinafter, the details of the method of the present invention will be described together with the operation. In the present invention, sulfur which is one of the constituent components of the catalyst is used.
Acid radical-containing oxide, treatment with a compound having a sulfate group (sand
That is, it is an oxide (hereinafter referred to as a sulfate radical oxide ) obtained by baking after impregnating the compound, and specific examples of the oxide include:
Can be exemplified alumina - titanium oxide, zirconium oxide, hafnium oxide, iron oxide, tin oxide, alumina,及 beauty complex oxide containing one or more of these oxides, such as titania-zirconia, silica.

【0011】硫酸根を有する化合物の具体例としては、
硫酸、硫酸アンモニウム等を挙げることができる。その
他に、処理後の乾燥あるいは焼成処理により酸化物上で
硫酸根が生成する化合物であれば用いることができる。
Specific examples of the compound having a sulfate group include:
Examples thereof include sulfuric acid and ammonium sulfate. In addition, any compound can be used as long as it produces a sulfate group on the oxide by the drying or baking treatment after the treatment.

【0012】硫酸根を有する化合物、例えば硫酸、によ
る酸化物の処理は、酸化物を室温で特定の温度の硫酸と
接触させ、乾燥後、特定の温度で空気中焼成することに
より行われるが、一般には、結晶性の酸化物より非晶質
の酸化物あるいは水酸化物や含水酸化物等を硫酸で同様
に処理することにより、より一層高い活性の触媒を得る
ことができる。
Treatment of the oxide with a compound having a sulfate group, for example, sulfuric acid, is carried out by contacting the oxide with sulfuric acid at a specific temperature at room temperature, drying and then calcining in air at a specific temperature. In general, a more active catalyst can be obtained by treating an amorphous oxide, a hydroxide, a hydrous oxide or the like with a sulfuric acid in the same manner as a crystalline oxide.

【0013】処理に利用する硫酸の濃度は、酸化物の種
類によって異なるが、通常約0.01〜10mol/リ
ットル、好ましくは約0.1〜5mol/リットルであ
り、該濃度の硫酸を触媒重量当たり約5〜20倍量使用
し、酸化物と接触させる。また、硫酸アンモニウムを硫
酸根を有する化合物として用いる場合も、上記と同様の
方法によって処理することができる。
The concentration of sulfuric acid used for the treatment varies depending on the kind of oxide, but it is usually about 0.01 to 10 mol / liter, preferably about 0.1 to 5 mol / liter, and the sulfuric acid having the concentration is used as a catalyst weight. About 5 to 20 times the amount is used, and it is brought into contact with the oxide. Further, when ammonium sulfate is used as a compound having a sulfate group, it can be treated in the same manner as above.

【0014】本発明方法における多価金属硫酸塩(以
下、硫酸塩と記すが、特に断らないかぎり、硫酸塩は多
価金属硫酸塩を意味する)の例としては、周期律表で第
I族b亜族、第II族、第III族、第IV族、第V族
a亜族、第VI族a亜族、第VII族a亜族、第VII
I族に属する金属の硫酸塩、具体的には硫酸銅、硫酸マ
グネシウム、硫酸亜鉛、硫酸カドミウム、硫酸バリウ
ム、硫酸アルミニウム、硫酸ジルコニウム、硫酸バナジ
ウム、硫酸クロム、硫酸マンガン、硫酸鉄、硫酸コバル
ト等の金属硫酸塩が例示される。これらの硫酸塩は一種
類のみ使用してもよいが、二種類以上複合させて使用し
てもよい。
Examples of the polyvalent metal sulfate in the method of the present invention (hereinafter referred to as “sulfate”, unless otherwise specified, the sulfate means a polyvalent metal sulfate) include Group I in the periodic table. Group b, Group II, Group III, Group IV, Group V a Subgroup, Group VI a Subgroup, Group VII a Subgroup, Group VII
Sulfates of metals belonging to Group I, such as copper sulfate, magnesium sulfate, zinc sulfate, cadmium sulfate, barium sulfate, aluminum sulfate, zirconium sulfate, vanadium sulfate, chromium sulfate, manganese sulfate, iron sulfate and cobalt sulfate. A metal sulfate is illustrated. These sulfates may be used alone or in combination of two or more.

【0015】また、本発明方法における第4周期遷移金
属塩(以下、金属塩と記すが、特に断らないかぎり、金
属塩は第4周期遷移金属塩を意味する)の例としては、
周期律表で第4周期に属する遷移金属の硝酸塩、アンモ
ニウム塩、リン酸塩、ハロゲン化物等の無機塩、あるい
は酢酸塩、シュウ酸塩等の有機酸塩等がある。具体的に
は、硝酸銅、リン酸亜鉛、塩化チタン、バナジン酸アン
モニウム、硝酸クロム、硝酸マンガン、硝酸鉄、シュウ
酸鉄、Fe(CO)、コバルトアセチルアセトナー
ト、酢酸コバルト、塩化コバルト、臭化コバルト、沃化
コバルト、酢酸ニッケル、硝酸ニッケル等が例示され
る。これらの金属塩は一種類のみ使用してもよいが、二
種類以上複合させて使用してもよい。
Further, examples of the fourth period transition metal salt in the method of the present invention (hereinafter, referred to as a metal salt, unless otherwise specified, the metal salt means a fourth period transition metal salt) include:
There are inorganic salts such as nitrates, ammonium salts, phosphates and halides of transition metals belonging to the 4th period in the periodic table, and organic acid salts such as acetates and oxalates. Specifically, copper nitrate, zinc phosphate, titanium chloride, ammonium vanadate, chromium nitrate, manganese nitrate, iron nitrate, iron oxalate, Fe (CO) 5 , cobalt acetylacetonate, cobalt acetate, cobalt chloride, odor Examples thereof include cobalt iodide, cobalt iodide, nickel acetate and nickel nitrate. These metal salts may be used alone or in combination of two or more.

【0016】硫酸根酸化物に硫酸塩または金属塩を担持
させる方法については、特に制限はなく、従来公知の方
法で行うことができる。すなわち、粉末状、あるいはペ
レット状等に成型した硫酸根酸化物に所望の硫酸塩また
は金属塩の水溶液を含浸させ、余分の水分をロ過または
蒸発により除き、乾燥し、要すれば焼成することによ
り、また、硫酸根酸化物に所望の硫酸塩または金属塩の
水溶液を加え、混練処理等によりよく混合した後、乾燥
し、要すれば焼成する。
The method of supporting the sulfate or metal salt on the sulfate radical oxide is not particularly limited, and any conventionally known method can be used. That is, the sulfate radical oxide molded into powder or pellets is impregnated with an aqueous solution of a desired sulfate or metal salt, excess water is removed by filtration or evaporation, and dried, and if necessary, fired. Further, an aqueous solution of a desired sulfate or metal salt is added to the sulfate radical oxide, mixed well by a kneading treatment and the like, then dried, and baked if necessary.

【0017】なお、例えば、硫酸バリウムのような不溶
性硫酸塩の場合には、水溶性のバリウム塩を選択し、こ
の水溶性の塩の水溶液を硫酸根酸化物に混合し、これに
硫酸あるいは硫酸アンモニウムのような硫酸イオンを含
む溶液を加え、硫酸根酸化物に硫酸塩を沈着させる方
法、硫酸根酸化物と不溶性硫酸塩を混練処理等によりよ
く混合する方法、等により硫酸塩を硫酸根酸化物に担持
させることができる。
For example, in the case of an insoluble sulfate such as barium sulfate, a water-soluble barium salt is selected, an aqueous solution of this water-soluble salt is mixed with a sulfate radical, and this is mixed with sulfuric acid or ammonium sulfate. A solution containing a sulfate ion such as that described above is used to deposit the sulfate salt on the sulfate radical oxide, or a method in which the sulfate radical oxide and the insoluble sulfate salt are mixed well by kneading treatment, etc. Can be supported on the substrate.

【0018】硫酸塩または金属塩の担持量は、特に制限
はないが、多すぎると硫酸根酸化物の効果が発揮され
ず、少なすぎると硫酸塩または金属塩の活性向上効果が
発揮されない。一般には、硫酸塩または金属塩あるいは
硫酸根酸化物の種類によって異なるが、硫酸塩では、約
0.1〜50wt%以下、好ましくは約1〜20wt%
の範囲内、金属塩では、約0.01〜50wt%以下、
好ましくは約0.1〜20wt%の範囲内とすることが
適している。
The amount of the sulfate or metal salt supported is not particularly limited, but if it is too large, the effect of the sulfate radical oxide is not exhibited, and if it is too small, the activity improving effect of the sulfate or metal salt is not exhibited. Generally, it varies depending on the type of sulfate, metal salt or sulfate, but in the case of sulfate, it is about 0.1 to 50 wt% or less, preferably about 1 to 20 wt%.
Within the range of about 0.01 to 50 wt% for metal salts,
Suitably, it is preferably within the range of about 0.1 to 20 wt%.

【0019】上記のようにして調製する硫酸塩または金
属塩担持硫酸根酸化物が高い触媒活性を示すためには、
硫酸根酸化物の調製過程における、硫酸根を有する化合
物による処理を行った以後の過程で焼成処理することが
好ましい。焼成処理は、通常の空気中焼成処理でよく、
空気中焼成温度は、硫酸根酸化物の種類あるいは担持し
て用いる硫酸塩または金属塩の種類によって最適温度が
異なるが、一般には、約200〜800℃、好ましくは
約300〜700℃である。
In order for the sulfate or metal salt-supported sulfate radical oxide prepared as described above to exhibit high catalytic activity,
In the process of preparing the sulfate radical oxide, it is preferable to perform the baking treatment in the process after the treatment with the compound having a sulfate radical. The firing treatment may be a usual firing treatment in air,
The optimum firing temperature in air is generally about 200 to 800 ° C, preferably about 300 to 700 ° C, although the optimum temperature varies depending on the type of sulfate radical oxide or the type of sulfate or metal salt used by supporting.

【0020】また、上記の触媒は、いわゆる担体に担持
して使用することもできる。担体としては、通常よく使
用される無機担体が使用でき、特に制限はないが、一般
に、表面積が大きいものが好ましく、アルカリ性のもの
は好ましくない。具体的には、無機酸化物、すなわち、
Al,La,Ce,Si,Ti,Zr,Th,Nb,T
a,Cr等の酸化物や、これを二種以上複合させたも
の、例えばシリカアルミナ、シリカチタニア、アルミナ
チタニア等が例示され、またカオリン等の粘土類や珪藻
土等の天然物も使用できる。好適なものとしては、アル
ミナ、シリカ、クロミア、シリカアルミナ等が挙げられ
る。これらの担体物質は、一種でも二種以上複合させて
使用してもよい。
Further, the above catalyst can be used by supporting it on a so-called carrier. As the carrier, a commonly used inorganic carrier can be used and is not particularly limited, but in general, a carrier having a large surface area is preferable, and an alkaline carrier is not preferable. Specifically, an inorganic oxide, that is,
Al, La, Ce, Si, Ti, Zr, Th, Nb, T
Examples include oxides such as a and Cr, and composites of two or more thereof, such as silica alumina, silica titania, and alumina titania, and clay, such as kaolin, and natural products such as diatomaceous earth can also be used. Suitable examples include alumina, silica, chromia, silica-alumina and the like. These carrier substances may be used alone or in combination of two or more.

【0021】これらの担体は、硫酸塩または金属塩担持
硫酸根酸化物の触媒特性を阻害せずに硫酸塩または金属
塩担持硫酸根酸化物をよく分散させたり、共働して触媒
活性や選択性を向上させたり、反応熱の除去を助けた
り、成型性を改善したりする効果がある。担体に硫酸塩
または金属塩担持硫酸根酸化物を担持させる方法につい
ては、特に制限はなく、従来公知の方法で行うことがで
きる。
In these carriers, the sulfate or metal salt-supported sulfate radicals are well dispersed or synergized without impairing the catalytic properties of the sulfate or metal salt-supported sulfate radical oxides, and the catalyst activity and selection can be improved. It has the effects of improving the moldability, helping to remove the reaction heat, and improving the moldability. There is no particular limitation on the method for supporting the sulfate or the metal salt-supported sulfate radical oxide on the carrier, and a conventionally known method can be used.

【0022】担体を使用する場合の硫酸塩または金属塩
担持硫酸根酸化物の担持量は、一般には特に制限はない
が、あまり多すぎると上記の担体の効果が発揮されず、
少なすぎると硫酸塩または金属塩担持硫酸根酸化物の触
媒としての性能が発揮されない。一般には、硫酸塩担持
硫酸根酸化物、金属塩担持硫酸根酸化物とも、約1〜8
0wt%、好ましくは約5〜50wt%の範囲内であ
る。
The amount of sulfate or metal salt-supported sulfate radical supported in the case of using a carrier is not particularly limited, but if the amount is too large, the above-mentioned effect of the carrier is not exhibited.
If the amount is too small, the performance of the sulfate or metal salt-supported sulfate radical oxide as a catalyst will not be exhibited. Generally, about 1 to 8 for both sulfate-bearing sulfate radical oxide and metal salt-bearing sulfate radical oxide.
It is in the range of 0 wt%, preferably about 5 to 50 wt%.

【0023】触媒は、粉末状、顆粒状、ペレット状、ハ
ニカム状等の形で使用することができる。その形状、構
造は問わない。また、触媒を成型して使用する場合に
は、成型時に通常使用される粘結剤すなわちベントナイ
ト等の粘土類、シリカゾル、ポリビニルアルコール等、
滑剤すなわち黒鉛、ワックス、脂肪酸塩、カーボワック
ス等を使用することができる。
The catalyst can be used in the form of powder, granules, pellets, honeycombs and the like. Its shape and structure do not matter. Further, when the catalyst is molded and used, a binder usually used at the time of molding, that is, clays such as bentonite, silica sol, polyvinyl alcohol, and the like,
Lubricants, that is, graphite, wax, fatty acid salt, carbowax and the like can be used.

【0024】本発明方法の処理対象となるNOx含有ガ
スとしては、ディーゼル自動車や定置式ディーゼル機関
等のディーゼル機関排ガス、ガソリン自動車のガソリン
機関排ガスをはじめ、硝酸製造設備、各種の燃焼設備等
の排ガスを挙げことができる。これら排ガス中のNOx
の除去は、上記触媒を用いて、該触媒に、炭化水素類も
しくは含酸素化合物の存在下で排ガスを接触させること
により行う。
The NOx-containing gas to be treated by the method of the present invention includes diesel engine exhaust gas from diesel vehicles and stationary diesel engines, gasoline engine exhaust gas from gasoline vehicles, exhaust gas from nitric acid production equipment and various combustion equipment. Can be mentioned. NOx in these exhaust gases
Is removed by bringing the catalyst into contact with exhaust gas in the presence of hydrocarbons or oxygen-containing compounds.

【0025】上記触媒は、酸素があまり存在しないいわ
ゆる還元性雰囲気でもNOxを還元除去分解できるが、
酸化雰囲気下においてNOxをより一層効率的に還元分
解除去できる。ここで、還元性雰囲気とは、排ガス中に
含まれる一酸化炭素、水素及び炭化水素と、本発明方法
において必要に応じて添加される炭化水素類もしくは含
酸素化合物の還元性物質を完全に酸化して水と二酸化炭
素に変換するのに必要な酸素量よりも少ない酸素が含ま
れている雰囲気をいう。
The above catalyst can reduce and decompose NOx even in a so-called reducing atmosphere in which oxygen does not exist so much.
NOx can be reduced and decomposed more efficiently in an oxidizing atmosphere. Here, the reducing atmosphere means that the carbon monoxide, hydrogen and hydrocarbons contained in the exhaust gas and the reducing substances such as hydrocarbons or oxygen-containing compounds added as necessary in the method of the present invention are completely oxidized. Then, it means an atmosphere containing less oxygen than the amount of oxygen necessary for converting into water and carbon dioxide.

【0026】また、酸化雰囲気とは、上記の必要な酸素
量よりも過剰な酸素が含まれている雰囲気をいい、例え
ば、自動車等の内部機関から排出される排ガスの場合に
は空燃比が大きい状態(リーン領域)の雰囲気であり、
通常、過剰酸素率は約20〜200%程度である。この
酸化雰囲気中において、上記の触媒は、炭化水素類もし
くは含酸素化合物と酸素との反応よりも、炭化水素類も
しくは含酸素化合物とNOxとの反応を優先的に促進さ
せて、NOxを除去する。
The oxidizing atmosphere means an atmosphere containing oxygen in excess of the above-mentioned necessary oxygen amount. For example, in the case of exhaust gas discharged from an internal engine such as an automobile, the air-fuel ratio is large. It is a state (lean area) atmosphere,
Usually, the excess oxygen ratio is about 20 to 200%. In the oxidizing atmosphere, the catalyst preferentially promotes the reaction between the hydrocarbons or the oxygen-containing compound and NOx over the reaction between the hydrocarbons or the oxygen-containing compound and oxygen to remove NOx. .

【0027】存在させる炭化水素類もしくは含酸素化合
物、すなわちNOxを還元除去させる還元性物質として
は、排ガス中に残存する炭化水素や燃料等の不完全燃焼
生成物であるパティキュレート等でもよいが、上記反応
を促進させるのに必要な量よりも不足している場合に
は、外部より炭化水素類や含酸素化合物を添加する必要
がある。
The hydrocarbons or oxygen-containing compounds to be present, that is, the reducing substance for reducing and removing NOx may be particulates which are incomplete combustion products of hydrocarbons and fuels remaining in the exhaust gas, When the amount is insufficient to accelerate the above reaction, it is necessary to add hydrocarbons or oxygen-containing compounds from the outside.

【0028】炭化水素類や含酸素化合物の存在量は、特
に制限されず、例えば、要求されるNOx除去率が低い
場合には、NOxの還元分解に必要な理論量より少なく
てよい場合もあるが、必要な理論量より過剰な方がより
還元反応が進むので、一般には過剰に存在させるのが好
ましく、通常は、NOxの還元分解に必要な理論量の約
20〜2,000%、好ましくは約30〜1,500%
過剰とする。
The abundance of hydrocarbons and oxygen-containing compounds is not particularly limited. For example, when the required NOx removal rate is low, it may be smaller than the theoretical amount required for the reductive decomposition of NOx. However, since the reduction reaction proceeds more in excess of the required theoretical amount, it is generally preferable to make it exist in excess. Usually, about 20 to 2,000% of the theoretical amount required for the reductive decomposition of NOx, preferably Is about 30-1,500%
Too much.

【0029】ここで、必要な炭化水素類や含酸素化合物
の理論量とは、反応系内に酸素が存在するので、本発明
においては、二酸化窒素(NO)を還元分解するのに
必要な炭化水素類や含酸素化合物の量と定義するもので
あり、例えば、炭化水素類としてプロパンを用いて1,
000ppmの一酸化窒素(NO)を酸素存在下で還元
分解する際のプロパンの理論量は200ppmとなる。
一般には、排ガス中のNOx量にもよるが、存在させる
炭素水素類や含酸素化合物の量は、メタン換算で約50
〜10,000ppm程度である。
Here, the necessary theoretical amount of hydrocarbons and oxygen-containing compounds means that oxygen is present in the reaction system, so that in the present invention, it is necessary to reduce and decompose nitrogen dioxide (NO 2 ). It is defined as the amount of hydrocarbons and oxygen-containing compounds. For example, using propane as the hydrocarbons
The theoretical amount of propane is 200 ppm when reductively decomposing 000 ppm of nitric oxide (NO) in the presence of oxygen.
Generally, depending on the amount of NOx in the exhaust gas, the amount of carbon hydrogens and oxygen-containing compounds to be present is about 50 in terms of methane.
It is about 10,000 ppm.

【0030】本発明の触媒によってNOxを還元させる
還元性物質としては、可燃性の有機化合物等の含炭素物
質であればいかなる物質も有効であるが、実用性から言
えば、窒素、硫黄、ハロゲン等の化合物は、価格、二次
的な有害性物質の発生、あるいは触媒の損失等の問題が
多く、またカーボンブラック、石炭等の固体物質は、触
媒層への供給、触媒との接触等の点から一般に好ましく
なく、炭化水素類や含酸素化合物が好ましく、触媒層へ
の供給の点からは、気体状または液体状のもの、また反
応の点からは反応温度で気化するものが特に好ましい。
As the reducing substance for reducing NOx by the catalyst of the present invention, any substance is effective as long as it is a carbon-containing substance such as a flammable organic compound, but from the practical point of view, nitrogen, sulfur and halogen are included. Compounds such as the above have many problems such as price, generation of secondary harmful substances, loss of catalyst, etc., and solid substances such as carbon black and coal, such as supply to the catalyst layer, contact with the catalyst, etc. In general, hydrocarbons and oxygen-containing compounds are preferable from the standpoint of point, and those of gas or liquid state from the viewpoint of supply to the catalyst layer, and those of gasification at the reaction temperature from the viewpoint of reaction are particularly preferable.

【0031】本発明における炭化水素類の具体例として
は、気体状のものでは、メタン、エタン、エチレン、プ
ロパン、プロピレン、ブタン、ブチレン等の炭化水素ガ
スが挙げられ、液体状のものとしては、ペンタン、ヘキ
サン、オクタン、ヘプテン、ベンゼン、トルエン、キシ
レン等の単一炭化水素や、ガソリン、灯油、軽油、重油
等の鉱油系炭化水素油が挙げられる。また、本発明にお
ける含酸素化合物とは含酸素有機化合物を意味し、メチ
ルアルコール、エチルアルコール、プロピルアルコー
ル、オクチルアルコール等のアルコール類、ジメチルエ
ーテル、エチルエーテル、プロピルエーテル等のエーテ
ル類、酢酸メチル、酢酸エチル、油脂類等のエステル
類、アセトン、メチルエチルケトン等のケトン類等の含
酸素有機化合物が例示される。これらの炭化水素類や含
酸素有機化合物は、一種類を使用してもよいが、二種類
以上を併用してもよい。
Specific examples of the hydrocarbons in the present invention include gaseous hydrocarbons such as methane, ethane, ethylene, propane, propylene, butane and butylene, and liquid hydrocarbons. Examples include single hydrocarbons such as pentane, hexane, octane, heptene, benzene, toluene and xylene, and mineral oil-based hydrocarbon oils such as gasoline, kerosene, light oil and heavy oil. Further, the oxygen-containing compound in the present invention means an oxygen-containing organic compound, alcohols such as methyl alcohol, ethyl alcohol, propyl alcohol, octyl alcohol, ethers such as dimethyl ether, ethyl ether, propyl ether, methyl acetate, acetic acid. Examples thereof include esters such as ethyl and fats and oils, and oxygen-containing organic compounds such as ketones such as acetone and methyl ethyl ketone. These hydrocarbons and oxygen-containing organic compounds may be used alone or in combination of two or more.

【0032】なお、排ガス中に存在する燃料等の未燃焼
ないしは不完全燃焼生成物、すなわち炭化水素類やパテ
キュレート類等も還元剤として有効であり、本発明にお
ける炭化水素類に含まれる。これは、本発明の触媒は、
排ガス中の炭化水素やパテキュレート等の減少・除去触
媒としての機能をも有することを意味している。
Unburned or incompletely burned products such as fuel existing in the exhaust gas, that is, hydrocarbons and particulates are also effective as the reducing agent and are included in the hydrocarbons of the present invention. This is because the catalyst of the present invention is
This means that it also has a function as a catalyst for reducing / removing hydrocarbons and particulates in exhaust gas.

【0033】本発明方法における脱NOx反応は、上記
の触媒を配置した反応器を用意し、炭化水素類や含酸素
化合物を存在させて、NOx含有排ガスを通過させるこ
とにより行う。このときの反応温度は、触媒及び炭化水
素類や含酸素化合物の種類により最適反応温度が異なる
が、排ガスの温度に近い温度が排ガスの加熱設備等が不
要となり好ましく、一般には約200〜800℃、好ま
しくは約300〜600℃である。反応圧力は、特に制
限されず、加圧下でも、減圧下でも反応は進むが、通常
の排気圧で排ガスを触媒層へ導入して反応を進行させる
のが便利である。空間速度は、触媒の種類、他の反応条
件、必要なNOx除去率等で決まり、従って特に制限は
ないが、概して約500〜100,000hr−1、好
ましくは約1,000〜70,000hr−1の範囲で
ある。なお、本発明方法において、内燃機関からの排ガ
スを処理する場合には、排マニホールドの下流に配置す
るのが好ましい。
The NOx-removing reaction in the method of the present invention is carried out by preparing a reactor in which the above catalyst is arranged, allowing hydrocarbons and oxygen-containing compounds to be present, and passing the NOx-containing exhaust gas. Regarding the reaction temperature at this time, the optimum reaction temperature varies depending on the type of the catalyst and hydrocarbons and oxygen-containing compounds, but a temperature close to the temperature of the exhaust gas is preferable because heating equipment for the exhaust gas is unnecessary, and generally about 200 to 800 ° C. , Preferably about 300-600 ° C. The reaction pressure is not particularly limited, and the reaction proceeds under pressure or under reduced pressure, but it is convenient to introduce the exhaust gas into the catalyst layer at a normal exhaust pressure to proceed the reaction. The space velocity is determined by the type of catalyst, other reaction conditions, the required NOx removal rate, etc., and is not particularly limited, but is generally about 500 to 100,000 hr −1 , preferably about 1,000 to 70,000 hr −. The range is 1 . In the method of the present invention, when treating the exhaust gas from the internal combustion engine, it is preferable to arrange the exhaust gas downstream of the exhaust manifold.

【0034】また、上述の本発明方法で排ガスを処理し
た場合、処理条件によっては、未燃焼の炭化水素類や一
酸化炭素のような公害の原因となる不完全燃焼生成物が
処理ガス中に排出される場合がある。この問題に対して
は、上記の本発明の触媒(還元触媒と称する)で処理し
たガスを、酸化雰囲気下で酸化触媒に接触させることに
より解決することができる。
When the exhaust gas is treated by the above-mentioned method of the present invention, depending on the treatment conditions, incomplete combustion products such as unburned hydrocarbons and carbon monoxide which cause pollution may be present in the treated gas. May be discharged. This problem can be solved by bringing the gas treated with the catalyst of the present invention (referred to as a reduction catalyst) into contact with the oxidation catalyst in an oxidizing atmosphere.

【0035】本発明方法で使用することができる酸化触
媒としては、一般に、上記の不完全燃焼生成物を完全燃
焼させるものであればよく、活性アルミナ,シリカ,ジ
ルコニア等の多孔質担体に、白金,パラジウム,ルテニ
ウム等の貴金属、ランタン,セリウム,銅,鉄,モリブ
デン等の卑金属酸化物、三酸化コバルトランタン,三酸
化鉄ランタン,三酸化コバルトストロンチウム等のペロ
ブスカイト型結晶構造物等の触媒成分を、単独または組
み合わせて担持したものが挙げられる。この場合の触媒
成分の担持量は、貴金属では担体に対して約0.01〜
2wt%程度であり、また卑金属酸化物等では約5〜7
0wt%程度である。勿論、特に卑金属酸化物等では、
担体に担持させないで使用することもできる。酸化触媒
の形状、成型等の目的で添加する添加物については、還
元触媒の場合のそれと同じであり、種々のものを用いる
ことができる。
As the oxidation catalyst that can be used in the method of the present invention, generally, any catalyst that completely burns the above-mentioned incomplete combustion product may be used, and platinum may be added to a porous carrier such as activated alumina, silica or zirconia. , Noble metals such as palladium and ruthenium, base metal oxides such as lanthanum, cerium, copper, iron, molybdenum, and perovskite-type crystal structures such as cobalt lanthanum trioxide, lanthanum iron trioxide, and cobalt strontium trioxide. Examples thereof include those carried alone or in combination. In this case, the loading amount of the catalyst component is about 0.01 to the carrier for the noble metal.
It is about 2 wt% and about 5 to 7 for base metal oxides.
It is about 0 wt%. Of course, especially for base metal oxides,
It can also be used without being carried on a carrier. The additives to be added for the purpose of shape of the oxidation catalyst, molding, etc. are the same as those in the case of the reduction catalyst, and various kinds can be used.

【0036】上記の還元触媒と酸化触媒の使用比率や、
酸化触媒に担持する触媒成分量等は、要求性能に応じて
適宜選択可能であり、特に酸化除去する物質が一酸化炭
素のような炭化水素の中間酸化物である場合には、還元
触媒と酸化触媒とを混合して使用することも可能である
が、一般には、還元触媒を排気上流側に、酸化触媒を排
気下流側に配置する。
The use ratio of the above reduction catalyst and oxidation catalyst,
The amount of the catalyst component supported on the oxidation catalyst can be appropriately selected according to the required performance, and particularly when the substance to be removed by oxidation is an intermediate oxide of a hydrocarbon such as carbon monoxide, the reduction catalyst and the oxidation can be used. Although it is possible to use a mixture with a catalyst, generally, the reduction catalyst is arranged on the exhaust gas upstream side and the oxidation catalyst is arranged on the exhaust gas downstream side.

【0037】これらの触媒を用いて排ガスを浄化する具
体例としては、還元触媒を配置した反応器を排ガス導入
部(前段)に、酸化触媒を配置した反応器を排ガス排出
部(後段)に配置して使用する方法がある。また、1つ
の反応器にそれぞれの触媒を要求性能に応じた比率で配
置して用いることもできる。還元触媒(A)と酸化触媒
(B)の比率は一般には、(A)/(B)で表して約
0.5〜9.5/9.5〜0.5の範囲で用いられる。
酸化触媒の使用温度については、還元触媒の使用温度と
同じでなくてもよいが、一般には前述の還元触媒の使用
温度の範囲内で使用できるものを選択するのが加熱冷却
設備を特に必要とせず好ましい。
As a specific example of purifying exhaust gas by using these catalysts, a reactor in which a reduction catalyst is arranged is arranged in an exhaust gas introduction section (first stage), and a reactor in which an oxidation catalyst is arranged is arranged in an exhaust gas discharge section (second stage). Then there is a method to use. Further, it is also possible to arrange and use each catalyst in one reactor at a ratio according to the required performance. The ratio of the reduction catalyst (A) to the oxidation catalyst (B) is generally expressed by (A) / (B) and used in the range of about 0.5 to 9.5 / 9.5 to 0.5.
The use temperature of the oxidation catalyst does not have to be the same as the use temperature of the reduction catalyst, but in general, it is particularly necessary to select the one that can be used within the range of the use temperature of the above-mentioned reduction catalyst, which requires heating and cooling equipment. Not preferred.

【0038】[0038]

【実施例】次に、本発明方法の実施例を挙げるが、本発
明の方法は、これらの実施例によって制限されるもので
はない。 (1)触媒の調製−1 実施例1〜3、比較例1 (硫酸根処理酸化ジルコニウムの調製)市販の水酸化ジ
ルコニウム10gをロ紙上に採り、0.7mol/リッ
トルの硫酸を100ml流した後、風乾し、次に空気中
550℃で3時間焼成して硫酸根処理酸化ジルコニウム
(以下、*酸化ジルコニウムと記す)を得た。なお、こ
のものを比較例1の触媒とした。
EXAMPLES Next, examples of the method of the present invention will be given, but the method of the present invention is not limited to these examples. (1) Preparation of Catalyst-1 Examples 1 to 3 and Comparative Example 1 (Preparation of sulfate group-treated zirconium oxide) 10 g of commercially available zirconium hydroxide was placed on a paper, and 100 ml of 0.7 mol / liter sulfuric acid was flowed. Then, it was air-dried and then calcined in air at 550 ° C. for 3 hours to obtain sulfate group-treated zirconium oxide (hereinafter referred to as * zirconium oxide). This was used as the catalyst of Comparative Example 1.

【0039】(硫酸ニッケル担持*酸化ジルコニウムの
調製)表1に示す量の*酸化ジルコニウム及び硫酸ニッ
ケルをそれぞれ秤取し、硫酸ニッケルは少量の水に溶解
し、それぞれ*酸化ジルコニウムに含浸させた。次い
で、水分を蒸発・乾燥後、空気中400℃で2時間焼成
してそれぞれの触媒とした。
(Preparation of Nickel Sulfate-Supported * Zirconium Oxide) The amounts of * zirconium oxide and nickel sulfate shown in Table 1 were weighed, and the nickel sulfate was dissolved in a small amount of water and impregnated into * zirconium oxide. Then, after evaporating and drying the water content, it was calcined in air at 400 ° C. for 2 hours to obtain each catalyst.

【0040】[0040]

【表1】 [Table 1]

【0041】実施例4〜14、比較例2 (硫酸根処理酸化チタンの調製)1リットルの水をビー
カーに取り、氷冷しながら、1kgの四塩化チタンを攪
拌しながら、ゆっくり滴下して溶解させた。別に、15
%アンモニア水910gを冷水570gで希釈した液を
作り、これを先の四塩化チタン溶液に攪拌しながら、4
5分かけて滴下した。中和終了のスラリーの温度は90
℃以上で、PHは8〜9、TiO換算濃度は約12.
3%であった。この沈澱をロ別し、よく水洗した後、乾
燥して水酸化チタン(チタン酸)を得た。この水酸化チ
タン10gをロ紙上に採り、0.7mol/リットルの
硫酸100mlを流した後、風乾し、次に空気中550
℃で3時間焼成して硫酸根処理酸化チタン(以下、*酸
化チタンと記す)を得た。なお、このものを比較例2の
触媒とした。
Examples 4 to 14, Comparative Example 2 (Preparation of Sulfuric Acid Root Treated Titanium Oxide) 1 liter of water was placed in a beaker and 1 kg of titanium tetrachloride was slowly dropped and dissolved while cooling with ice while stirring. Let Separately, 15
% 910 g of ammonia water was diluted with 570 g of cold water to prepare a solution, which was stirred with the above titanium tetrachloride solution,
It was added dropwise over 5 minutes. The temperature of the slurry after neutralization is 90
Above 8 ° C, PH is 8-9 and TiO 2 conversion concentration is about 12.
It was 3%. The precipitate was separated by filtration, washed well with water, and dried to obtain titanium hydroxide (titanic acid). 10 g of this titanium hydroxide was placed on a paper filter, 100 ml of 0.7 mol / liter sulfuric acid was flown, and air-dried, and then 550 in air.
It was calcined at 3 ° C. for 3 hours to obtain sulfate-treated titanium oxide (hereinafter referred to as * titanium oxide). This was used as the catalyst of Comparative Example 2.

【0042】(硫酸塩担持*酸化チタンの調製)表2に
示す量の硫酸塩及び*酸化チタンをそれぞれ秤取し、硫
酸塩は少量の水に溶解しそれぞれ*酸化チタンに含浸さ
せた。次いで、水を蒸発・乾燥させ、400℃で3時間
空気中焼成してそれぞれの触媒とした。
(Preparation of Sulfate Supported * Titanium Oxide) The amounts of sulfate and * titanium oxide shown in Table 2 were weighed, and the sulfate was dissolved in a small amount of water and impregnated into * titanium oxide. Next, water was evaporated and dried, and calcined in air at 400 ° C. for 3 hours to obtain each catalyst.

【0043】[0043]

【表2】 [Table 2]

【0044】(2)NOxの除去反応−1 実施例1〜12、比較例1〜2 上記のようにして調製した触媒0.2g(実施例7,8
では0.1g)を常圧流通式反応装置に充填して、10
00ppmの一酸化窒素(以下、NOという)と10%
の酸素と1000ppmのプロピレン(実施例11では
プロピレンの代わりにエチルアルコール600ppm)
を含むヘリウムガス(以下、Heという)を毎分60m
lの流速で送入して反応を行った。反応ガスの分析は、
ガスクロマトグラフを用いて行った。NOの還元分解率
は、生成した窒素の収率から求め、その結果を表3に実
施例1〜12及び比較例1〜2として示した。
(2) NOx Removal Reaction-1 Examples 1-12, Comparative Examples 1-2 0.2 g of the catalyst prepared as described above (Examples 7 and 8)
Then, 0.1 g) was charged into an atmospheric flow type reactor, and 10 g
Nitrogen monoxide (hereinafter referred to as NO) at 00 ppm and 10%
Oxygen and 1000 ppm propylene (in Example 11, ethyl alcohol 600 ppm instead of propylene)
Helium gas (hereinafter called He) containing 60m / min
The reaction was carried out at a flow rate of 1 l. The analysis of the reaction gas is
It was performed using a gas chromatograph. The reductive decomposition rate of NO was determined from the yield of generated nitrogen, and the results are shown in Table 3 as Examples 1-12 and Comparative Examples 1-2.

【0045】[0045]

【表3】 [Table 3]

【0046】実施例13 実施例8の触媒0.1gを常圧流通式反応装置に充填し
て、500℃で、1000ppmのNOと1000pp
mのプロピレンと表4に示す濃度の酸素を含むHeを毎
分60mlの流速で送入して反応を行った。反応ガスの
分析及びNOの還元分解率は、実施例8と同様にして行
い、その結果を表4に実施例13として示した。
Example 13 0.1 g of the catalyst of Example 8 was charged into a normal pressure flow reactor, and at 500 ° C., 1000 ppm NO and 1000 pp were added.
Propylene of m and He containing oxygen at the concentrations shown in Table 4 were fed at a flow rate of 60 ml / min to carry out the reaction. The analysis of the reaction gas and the reduction decomposition rate of NO were carried out in the same manner as in Example 8, and the results are shown in Table 4 as Example 13.

【0047】実施例14 実施例10の触媒0.2gを使用し、実施例13と同様
にしてNOの還元分解率を求め、その結果を表4に実施
例14として示した。
Example 14 Using 0.2 g of the catalyst of Example 10, the reduction decomposition rate of NO was determined in the same manner as in Example 13, and the results are shown in Table 4 as Example 14.

【0048】[0048]

【表4】 [Table 4]

【0049】(3)還元触媒の下流に酸化触媒を配置し
た例 実施例15、参考例 NO還元分解触媒として実施例4の触媒0.2gを反応
器内の上流に、未反応炭化水素類等の酸化触媒として市
販の0.5%パラジウム担持アルミナ触媒0.2gを下
流に、それぞれ充填した以外は、実施例4と同様にし
て、NOの還元分解率を調べた。この結果を、参考のた
めに酸化触媒を充填しなかった場合の結果と合わせて表
5に示した。表5の実施例15及び参考例から明らかな
ように、酸化触媒を充填しなかった場合では、未反応の
プロピレン及び不完全燃焼物である一酸化炭素が流出し
ているが、酸化触媒を充填した場合においては、完全酸
化物である炭酸ガスのみが流出していることが判る。
(3) Example of Disposing Oxidation Catalyst Downstream of Reduction Catalyst Example 15, Reference Example As the NO reduction decomposition catalyst, 0.2 g of the catalyst of Example 4 was placed upstream of the reactor, and unreacted hydrocarbons, etc. The reduction decomposition rate of NO was investigated in the same manner as in Example 4 except that 0.2 g of a commercially available 0.5% palladium-supported alumina catalyst as an oxidation catalyst was charged downstream. The results are shown in Table 5 together with the results when the oxidation catalyst was not filled for reference. As is clear from Example 15 and Reference Example in Table 5, when the oxidation catalyst was not charged, unreacted propylene and carbon monoxide, which is an incomplete combustion product, flowed out, but the oxidation catalyst was charged. In this case, it can be seen that only carbon dioxide, which is a complete oxide, is flowing out.

【0050】[0050]

【表5】 [Table 5]

【0051】(4)触媒の調製−2 実施例16、比較例3 (硫酸根処理酸化ジルコニウムの調製)市販の水酸化ジ
ルコニウム100gをロ紙上に採り、0.5mol/リ
ットルの硫酸を1500ml流した後、風乾し、次に空
気中550℃で3時間焼成して硫酸根処理酸化ジルコニ
ウム(以下、**酸化ジルコニウムと記す)を得た。な
お、このものを比較例3の触媒とした。
(4) Preparation of catalyst-2 Example 16, Comparative example 3 (Preparation of sulfate group-treated zirconium oxide) Commercially available zirconium hydroxide (100 g) was put on a paper, and 0.5 mol / liter of sulfuric acid (1500 ml) was flowed. Then, it was air-dried and then calcined in air at 550 ° C. for 3 hours to obtain sulfate group-treated zirconium oxide (hereinafter referred to as ** zirconium oxide). This was used as the catalyst of Comparative Example 3.

【0052】(金属塩担持**酸化ジルコニウムの調
製)金属塩として10.6gの酢酸コバルト〔Co(O
Ac)・4HO〕を水18mlに溶解し、その溶液
中に上記方法により得た**酸化ジルコニウム50gを
添加し、金属塩を含浸させた。次いで、水分を蒸発・乾
燥した後、空気中500℃で2時間焼成して触媒を得
た。
(Preparation of zirconium oxide supported on metal salt) 10.6 g of cobalt acetate [Co (O
The Ac) 2 · 4H 2 O] was dissolved in water 18 ml, was added ** zirconium oxide 50g was obtained by the above method in the solution, was impregnated with a metal salt. Then, after evaporating and drying the water content, it was calcined in air at 500 ° C. for 2 hours to obtain a catalyst.

【0053】実施例17〜20、比較例4 実施例16で得た**酸化ジルコニウム及び表6に示す
各種の金属塩をそれぞれ秤取し、実施例16と同様にし
てこれらの金属塩を**酸化ジルコニウムに担持させ
て、各種の金属塩担持の触媒を得た。
Examples 17 to 20 and Comparative Example 4 Zirconium oxide obtained in Example 16 and various metal salts shown in Table 6 were weighed, and the metal salts were prepared in the same manner as in Example 16. * Supported on zirconium oxide to obtain various metal salt-supported catalysts.

【0054】[0054]

【表6】 [Table 6]

【0055】実施例21、比較例4 実施例4〜14で得た水酸化チタン100gをロ紙上に
採り、0.5mol/リットルの硫酸1500mlを流
した後、風乾し、次に空気中550℃で3時間焼成して
硫酸根処理酸化チタン)(以下、**酸化チタンと記
す)を得た。なお、このものを比較例4の触媒とした。
Example 21, Comparative Example 4 100 g of the titanium hydroxide obtained in Examples 4 to 14 was placed on a paper roll, and 1500 ml of 0.5 mol / l sulfuric acid was flowed, followed by air drying, and then in air at 550 ° C. It was calcined for 3 hours to obtain sulfate group-treated titanium oxide (hereinafter referred to as ** titanium oxide). This was used as the catalyst of Comparative Example 4.

【0056】(金属塩担持**酸化チタンの調製)金属
塩として酢酸コバルト(4水和物)0.4gを20ml
の水に溶解し、これを**酸化チタン50gに含浸させ
た。次いで、水を蒸発・乾燥させ、500℃で3時間空
気中焼成して触媒を得た。この触媒のコバルト担持量
は、金属換算で0.2wt%であった。
(Preparation of Titanium Oxide Bearing Metal Salt) 0.4 ml of cobalt acetate (tetrahydrate) as a metal salt in 20 ml
Was dissolved in water, and this was impregnated with 50 g of titanium oxide. Then, water was evaporated and dried, and calcined in air at 500 ° C. for 3 hours to obtain a catalyst. The amount of cobalt carried by this catalyst was 0.2 wt% in terms of metal.

【0057】(5)NOxの除去反応−2 実施例16〜21、比較例3〜4 上記のようにして調製した触媒を表7に示す量で常圧流
通式反応装置に充填して、1000ppmのNOと10
%の酸素と1300ppmのプロパンを含むHeを毎分
60mlの流速で送入して反応を行った。反応ガスの分
析は、ガスクロマトグラフを用いて行った。NOの還元
分解率は、生成した窒素の収率から求め、その結果を表
7に実施例16〜21及び比較例3〜4として示した。
(5) NOx removal reaction-2 Examples 16 to 21, Comparative Examples 3 to 4 The catalysts prepared as described above were charged in an atmospheric pressure flow reactor in the amounts shown in Table 7 to obtain 1000 ppm. NO and 10
He containing 100% oxygen and 1300 ppm propane was fed at a flow rate of 60 ml / min to carry out the reaction. Analysis of the reaction gas was performed using a gas chromatograph. The reductive decomposition rate of NO was determined from the yield of generated nitrogen, and the results are shown in Table 7 as Examples 16 to 21 and Comparative Examples 3 to 4.

【0058】[0058]

【表7】 [Table 7]

【0059】[0059]

【発明の効果】以上詳述したように、本発明方法によれ
ば、炭化水素類や含酸素化合物の存在下において、酸素
が過剰に存在する酸化雰囲気においても、また排ガス中
に硫黄酸化物が含まれていても、効率的に排ガス中のN
Oxを除去することができる。これは、本発明にかかる
触媒が、炭化水素類や含酸素化合物の存在下で、炭化水
素類もしくは含酸素化合物と酸素との反応よりも、炭化
水素類もしくは含酸素化合物とNOxとの反応を促進さ
せるためである。
As described above in detail, according to the method of the present invention, in the presence of hydrocarbons and oxygen-containing compounds, sulfur oxides are contained in exhaust gas even in an oxidizing atmosphere in which oxygen is excessively present. Even if it is included, N in the exhaust gas is efficiently
Ox can be removed. This is because the catalyst according to the present invention reacts with NOx in the presence of hydrocarbons or oxygen-containing compounds more than with hydrocarbons or oxygen-containing compounds and oxygen. This is to promote it.

【0060】さらに、本発明にかかる触媒を用いること
により反応条件によっては排出されることがある未反応
あるいは生成する炭化水素、一酸化炭素、あるいはその
他の酸化中間生成物等の公害問題を引き起こす可能性が
ある物質を完全に酸化して二酸化炭素及び水蒸気にする
ことができる。このように、本発明方法は、ディーゼル
機関排ガスをはじめ、種々の設備からの排ガスから、効
率よくNOxを除去することができ、極めて工業的価値
が高いものである。
Further, the use of the catalyst according to the present invention may cause pollution problems such as unreacted or produced hydrocarbons, carbon monoxide, and other oxidation intermediate products which may be discharged depending on the reaction conditions. The volatile substances can be completely oxidized to carbon dioxide and water vapor. As described above, the method of the present invention is capable of efficiently removing NOx from exhaust gas from various facilities, including diesel engine exhaust gas, and has extremely high industrial value.

フロントページの続き (72)発明者 金田一 嘉昭 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 浜田 秀昭 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 伊藤 建彦 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 佐々木 基 茨城県つくば市東1丁目1番地 工業技 術院化学技術研究所内 (72)発明者 菅沼 藤夫 埼玉県北葛飾郡庄和町新宿新田228−16 (72)発明者 北爪 章博 埼玉県北葛飾郡杉戸町杉戸2−15−36 (72)発明者 薄井 一司 千葉県野田市岩名1丁目62番地10 (72)発明者 吉成 知博 埼玉県浦和市元町3−32−25 (72)発明者 田畑 光紀 埼玉県幸手市権現堂1134−2 (72)発明者 仲辻 忠夫 大阪府堺市戎島町5丁1番地 堺化学工 業株式会社中央研究所内 (72)発明者 清水 宏益 大阪府堺市戎島町5丁1番地 堺化学工 業株式会社中央研究所内 (72)発明者 安川 律 大阪府堺市戎島町5丁1番地 堺化学工 業株式会社中央研究所内 審査官 野田 直人 (56)参考文献 特開 平4−371216(JP,A) 特開 昭54−51990(JP,A) 特開 平5−31326(JP,A) 特開 平5−38420(JP,A)Front Page Continuation (72) Inventor Yoshiaki Kaneda, 1-1 Higashi, Tsukuba, Ibaraki Prefecture, Institute of Industrial Science and Technology (72) Inventor Hideaki Hamada, 1-1, East, Tsukuba, Ibaraki Institute of Chemical Technology, Institute of Industrial Technology (72) Inventor, Takehiko Ito, 1-1, Higashi, Tsukuba, Ibaraki, Institute of Chemical Technology, Institute of Industrial Technology (72) Inventor, Motoki Sasaki, 1-1, Higashi, Tsukuba, Ibaraki (72) Invention Suganuma Fujio 228-16 Shinjuku, Shinjuku, Showa-machi, Kita-Katsushika-gun, Saitama 228-16 (72) Inventor Akihiro Kitazume 2-15-36 Sugito, Sugito-cho, Kita-Katsushika-gun, Saitama Kazushi Usui 1-chome Iwana, Noda-shi, Chiba 62 10 (72) Inventor Tomohiro Yoshinari 3-32-25 Motomachi, Urawa-shi, Saitama (72) Inventor Mitsunori Tabata 1134-2, Gongendo, Satte City, Saitama Prefecture Tadao Nakatsuji, Ebisu Sakai, Osaka Prefecture 5-1, Shimamachi, Central Research Institute, Sakai Chemical Industry Co., Ltd. (72) Inventor Hiromasu Shimizu Sakai, Osaka 5-1, Ebishimacho Sakai Chemical Industry Co., Ltd. Central Research Institute (72) Inventor Ritsu Yasukawa 5-1, Ebishimacho Sakai City, Osaka Pref. Sakai Chemical Industry Co., Ltd. Central Researcher Naoto Noda (56) References JP 4-371216 (JP, A) JP 54-51990 (JP, A) JP 5-31326 (JP, A) JP 5-38420 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 炭化水素類もしくは含酸素化合物の存在
下において、ゼオライトを除く酸化物に硫酸根を有する
化合物を含浸後焼成してなる硫酸根含有酸化物に、多価
金属硫酸塩または第4周期遷移金属塩を担持したものか
らなる触媒と窒素酸化物を含む排ガスとを接触させるこ
とを特徴とする排ガス中の窒素酸化物を除去する方法。
1. A sulfate group-containing oxide obtained by impregnating an oxide other than zeolite with a compound having a sulfate group in the presence of a hydrocarbon or an oxygen-containing compound and then calcining the polyvalent metal sulfate. A method for removing nitrogen oxides in exhaust gas, which comprises contacting a catalyst comprising a salt or a fourth-period transition metal salt supported with exhaust gas containing nitrogen oxides.
【請求項2】 上記の条件下において、上記の触媒と窒
素酸化物を含む排ガスとを接触させ、次いで該排ガスを
酸化触媒に接触させることを特徴とする排ガス中の窒素
酸化物を除去する方法。
2. A method for removing nitrogen oxides in exhaust gas, which comprises contacting the catalyst with exhaust gas containing nitrogen oxides under the above conditions, and then contacting the exhaust gas with an oxidation catalyst. .
JP4070336A 1991-10-25 1992-02-20 Method for removing nitrogen oxides in exhaust gas Expired - Lifetime JP2553433B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP3-306791 1991-10-25
JP30679191 1991-10-25

Publications (2)

Publication Number Publication Date
JPH05309235A JPH05309235A (en) 1993-11-22
JP2553433B2 true JP2553433B2 (en) 1996-11-13

Family

ID=17961292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4070336A Expired - Lifetime JP2553433B2 (en) 1991-10-25 1992-02-20 Method for removing nitrogen oxides in exhaust gas

Country Status (1)

Country Link
JP (1) JP2553433B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753192A (en) * 1996-11-29 1998-05-19 Ford Global Technologies, Inc. Zirconia and sulfate in NOx traps to improved trapping and sulfur tolerance
JP3985118B2 (en) * 1998-06-08 2007-10-03 大阪瓦斯株式会社 Exhaust gas purification catalyst and exhaust gas purification method
JP3985119B2 (en) * 1999-06-02 2007-10-03 大阪瓦斯株式会社 Exhaust gas purification catalyst and exhaust gas purification method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5451990A (en) * 1977-09-30 1979-04-24 Seitetsu Kagaku Co Ltd Preparation of catalyst for denitration
JP3242126B2 (en) * 1991-06-17 2001-12-25 日石三菱株式会社 Nitrogen oxide removal method

Also Published As

Publication number Publication date
JPH05309235A (en) 1993-11-22

Similar Documents

Publication Publication Date Title
EP0494388B1 (en) Process for removing nitrogen oxides from exhaust gases
EP0781592B1 (en) Exhaust gas purification method by reduction of nitrogen oxides
JP2645614B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP2691643B2 (en) Exhaust gas purification method
JPH10502020A (en) Catalyst compositions for reducing nitrogen oxides based on tantalum, vanadium, niobium, copper or antimony
JP2553433B2 (en) Method for removing nitrogen oxides in exhaust gas
MXPA97002654A (en) Catalytic compositions for the reduction of nitrogen oxides, based on the tantal, vanadio, niobio, copper or antimo
JP2547124B2 (en) Method for reducing and removing nitrogen oxides
JP2506598B2 (en) Nitrogen oxide removal method
JP2691644B2 (en) Method for removing nitrogen oxides in exhaust gas
JP2506588B2 (en) Nitrogen oxide removal method
JP2506578B2 (en) Method for purifying exhaust gas containing nitrogen oxides
US20200188883A1 (en) Catalyst for low temperature emission control and methods for using same
JP2506589B2 (en) Method for removing nitrogen oxides in exhaust gas
JP3711363B2 (en) Nitrogen oxide catalytic reduction removal catalyst and nitrogen oxide catalytic reduction removal method
JP2506579B2 (en) Method for purifying exhaust gas containing nitrogen oxides
JP2848581B2 (en) How to remove nitrogen oxides
JPH06198132A (en) Purifying method of exhaust gas containing nitrogen oxide
JP3546104B2 (en) Method for reducing and removing nitrogen oxides
JP3316566B2 (en) Reduction and purification method of exhaust gas containing nitrogen oxides
JP2595370B2 (en) Purification method of exhaust gas containing nitrogen oxides
JP3854325B2 (en) Exhaust gas purification material and exhaust gas purification method
JPH11319566A (en) Catalyst for removing nitrogen oxide and method for removing nitrogen oxide
JPH10192706A (en) Catalyst for catalytically reducing and removing nox
JPH08243355A (en) Removing method of nitrogen oxide by catalytic reduction

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term