JP2553059Y2 - Superconducting bearing device - Google Patents

Superconducting bearing device

Info

Publication number
JP2553059Y2
JP2553059Y2 JP1038291U JP1038291U JP2553059Y2 JP 2553059 Y2 JP2553059 Y2 JP 2553059Y2 JP 1038291 U JP1038291 U JP 1038291U JP 1038291 U JP1038291 U JP 1038291U JP 2553059 Y2 JP2553059 Y2 JP 2553059Y2
Authority
JP
Japan
Prior art keywords
superconductor
superconducting
bearing
permanent magnet
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1038291U
Other languages
Japanese (ja)
Other versions
JPH04101017U (en
Inventor
浩年 高田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP1038291U priority Critical patent/JP2553059Y2/en
Publication of JPH04101017U publication Critical patent/JPH04101017U/en
Application granted granted Critical
Publication of JP2553059Y2 publication Critical patent/JP2553059Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】[Detailed description of the invention]

【0001】[0001]

【産業上の利用分野】この考案に係る超電導軸受装置
は、例えば遠心分離器等、超高速で回転する回転軸を支
承する為に利用する。
BACKGROUND OF THE INVENTION The superconducting bearing device according to the present invention is used for supporting a rotating shaft which rotates at a very high speed, such as a centrifuge.

【0002】[0002]

【従来の技術】遠心分離器等に組み込まれる、超高速で
回転する回転軸は、通常の転がり軸受で支承する事が難
しい為、従来から、電磁石により上記回転軸を浮上した
状態で保持する磁気軸受装置が使用されている。
2. Description of the Related Art It is difficult to support a rotating shaft, which is installed in a centrifuge and the like at an ultra-high speed, with a normal rolling bearing. Bearing devices are used.

【0003】磁気軸受装置により回転軸を、浮上状態で
保持する為には、ラジアル方向及びスラスト方向に、そ
れぞれ複数個ずつの電磁石を設け、回転軸の位置を検出
するセンサからの信号に基づいて、各電磁石への通電量
を調節し、上記回転軸のラジアル方向及びスラスト方向
の位置を調節する。
In order to hold the rotating shaft in a floating state by the magnetic bearing device, a plurality of electromagnets are provided in each of the radial direction and the thrust direction, and based on a signal from a sensor for detecting the position of the rotating shaft. The amount of electricity to each electromagnet is adjusted to adjust the position of the rotating shaft in the radial and thrust directions.

【0004】この様な磁気軸受装置は、複数個の電磁石
を設ける事で大型化するだけでなく、回転軸の変位を直
ちに打ち消す必要上、素早く反応する制御回路が必要と
なる為、コストが嵩む事が避けられない。
[0004] Such a magnetic bearing device is not only increased in size by providing a plurality of electromagnets, but also needs to immediately cancel the displacement of the rotating shaft and requires a control circuit that responds quickly, thus increasing the cost. Things are inevitable.

【0005】この為、日経BP社発行の雑誌『日経メカ
ニカル』第331号(1990年9月3日発行)にも記
載されている様に、超電導体のマイスナー効果を利用し
た超電導軸受装置が研究されている。
For this reason, as described in the magazine "Nikkei Mechanical" No. 331 (published on September 3, 1990) published by Nikkei BP, a superconducting bearing device utilizing the Meissner effect of a superconductor has been studied. Have been.

【0006】超電導体のマイスナー効果とは、超電導体
と永久磁石とを対向させた場合、両者が一定距離よりも
近付いた場合には反発し合い、逆に両者が一定距離より
も離れた場合には引っ張り合う現象を言う。この様なマ
イスナー効果によって、上記超電導体と永久磁石とを、
一定距離だけ離したままの状態に保持出来る事から、位
置センサや制御回路を全く必要としない、超電導軸受装
置が出来るものと考えられている。
[0006] The Meissner effect of a superconductor means that when a superconductor and a permanent magnet are opposed to each other, they repel each other when they come closer than a certain distance, and conversely, when they both separate more than a certain distance. Refers to the phenomenon of pulling. By such a Meissner effect, the superconductor and the permanent magnet are
It is considered that a superconducting bearing device which does not require a position sensor or a control circuit at all can be maintained because it can be maintained at a fixed distance.

【0007】上述の様なマイスナー効果を利用して、回
転体をラジアル方向とスラスト方向とに亙って支持する
超電導軸受装置を構成する場合の構造としては、例えば
図3に示す様なものが考えられる。
As a structure for forming a superconducting bearing device for supporting a rotating body in a radial direction and a thrust direction by utilizing the Meissner effect as described above, for example, the structure shown in FIG. Conceivable.

【0008】回転軸1の下端面には短円柱状の永久磁石
2を、回転軸1と同心に固定している。上記永久磁石2
の周囲には、有底円筒状の超電導体5を設けて、上記永
久磁石2並びに回転軸1を浮上した状態で、回転自在に
支承自在としている。即ち、円板6と、上記永久磁石2
の外径dよりも少しだけ大きな内径rを有する円筒7と
を組み合わせて成る超電導体5の内側に、上記永久磁石
2を上方から挿入している。
A short columnar permanent magnet 2 is fixed to the lower end surface of the rotating shaft 1 concentrically with the rotating shaft 1. Permanent magnet 2
Is provided with a cylindrical superconductor 5 having a bottom so that the permanent magnet 2 and the rotating shaft 1 are rotatably supported in a floating state. That is, the disk 6 and the permanent magnet 2
The permanent magnet 2 is inserted from above into a superconductor 5 formed by combining a cylinder 7 having an inner diameter r slightly larger than the outer diameter d.

【0009】この様に永久磁石2を超電導体5内に挿入
した状態で、この永久磁石2の下端面3を円板6の上面
6aに、永久磁石2の外周面4を円筒7の内周面7a
に、それぞれ軸受隙間8a、8bを介して対向させてい
る。即ち、上記下端面3をスラスト側被支承面とし、外
周面4をラジアル側被支承面とし、上面6aをスラスト
側支承面とし、内周面7aをラジアル側支承面としてい
る。
With the permanent magnet 2 inserted into the superconductor 5 in this manner, the lower end surface 3 of the permanent magnet 2 is placed on the upper surface 6a of the disk 6, and the outer peripheral surface 4 of the permanent magnet 2 is placed on the inner periphery of the cylinder 7. Surface 7a
, Respectively, with bearing gaps 8a and 8b interposed therebetween. That is, the lower end surface 3 is a thrust-side supported surface, the outer peripheral surface 4 is a radial-side supported surface, the upper surface 6a is a thrust-side supported surface, and the inner peripheral surface 7a is a radial-side supported surface.

【0010】更に、上記超電導体5の周囲には冷却器9
を設けて、この超電導体5を外側から冷却し、超電導状
態に保持する様にしている。即ち、この冷却器9の内部
には液体ヘリウム、液体窒素等の低温の冷却剤が充填さ
れており、この冷却剤によって、上記超電導体5を冷却
自在としている。
Further, a cooler 9 is provided around the superconductor 5.
Is provided so that the superconductor 5 is cooled from the outside and kept in a superconducting state. That is, the inside of the cooler 9 is filled with a low-temperature coolant such as liquid helium, liquid nitrogen, or the like, and the coolant allows the superconductor 5 to be cooled.

【0011】超電導体5が冷却され、超電導状態を維持
されている間は、前記マイスナー効果によって、上記各
軸受隙間8a、8bの寸法h1 、h2 が一定に保持され
る為、前記永久磁石2並びに回転軸1が浮上状態で、軸
受保持される。
While the superconductor 5 is cooled and maintains the superconducting state, the dimensions h 1 and h 2 of the bearing gaps 8a and 8b are kept constant by the Meissner effect. 2 and the rotating shaft 1 are held in bearings in a floating state.

【0012】[0012]

【考案が解決しようとする課題】上述の様に構成され作
用する超電導軸受装置は、制御回路等、面倒な構成要素
が不要であるにも拘らず、超高速で回転する回転体を支
承出来る効果がある反面、回転体を支持する力として、
マイスナー効果による浮上力のみを利用している為、軸
受装置の負荷容量に限界があり、用途が限られてしま
う。
SUMMARY OF THE INVENTION The superconducting bearing device constructed and operated as described above has an effect of being able to support a rotating body rotating at an extremely high speed despite the fact that complicated components such as a control circuit are unnecessary. On the other hand, as a force to support the rotating body,
Since only the levitation force due to the Meissner effect is used, the load capacity of the bearing device is limited, and the application is limited.

【0013】本考案の超電導軸受装置は、負荷容量の増
大を図る事で、用途を広げる事を目的としている。
The purpose of the superconducting bearing device of the present invention is to widen its use by increasing the load capacity.

【0014】[0014]

【課題を解決するための手段】本考案の超電導軸受装置
は、被支承面を有する磁石と、この磁石の下方に設けら
れ、上記被支承面と軸受隙間を介して対向する支承面を
有する超電導体と、この超電導体を冷却する冷却器と、
上記超電導体の支承面に一端を開口し、上記冷却器を冷
却する冷却剤を上記軸受隙間に吐出させる吐出通路とか
ら構成される。
A superconducting bearing device according to the present invention has a magnet having a supported surface and a superconducting surface provided below the magnet and opposed to the supported surface via a bearing gap. A body, a cooler for cooling the superconductor,
One end is opened on the bearing surface of the superconductor, and a discharge passage for discharging a coolant for cooling the cooler into the bearing gap.

【0015】[0015]

【作用】上述の様に構成される本考案の超電導軸受装置
の場合、冷却剤により冷却され、超電導状態を保持され
る超電導体と磁石との間に働くマイスナー効果による浮
上力により、上記超電導体の支承面と磁石に形成された
被支承面との間に存在する軸受隙間の寸法が一定に保た
れ、上記磁石が浮上状態に保持される。
In the case of the superconducting bearing device of the present invention configured as described above, the superconducting member is cooled by a coolant, and the superconducting member is lifted by the Meissner effect acting between the magnet and the superconducting member which maintains the superconducting state. The dimension of the bearing gap existing between the bearing surface of the magnet and the supported surface formed on the magnet is kept constant, and the magnet is held in a floating state.

【0016】一方、冷却器内に存在する冷却剤は、吐出
通路を通じて軸受隙間に吐出し、この軸受隙間内の圧力
を高める。この結果上記磁石に加わる荷重は、マイスナ
ー効果だけでなく、上記軸受隙間内に存在する圧力流体
によっても支承される。
On the other hand, the coolant present in the cooler is discharged into the bearing gap through the discharge passage, and increases the pressure in the bearing gap. As a result, the load applied to the magnet is supported not only by the Meissner effect but also by the pressure fluid existing in the bearing gap.

【0017】この結果、超電導軸受装置の負荷容量が増
大し、超電導軸受装置の用途拡大を図れる。
As a result, the load capacity of the superconducting bearing device increases, and the use of the superconducting bearing device can be expanded.

【0018】[0018]

【実施例】次に、図示の実施例を説明しつつ、本考案を
更に詳しく説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in more detail with reference to the illustrated embodiment.

【0019】図1は本考案の第一実施例を示している。
回転軸1の下端面には短円柱状の永久磁石2を固定して
おり、この永久磁石2の周囲に有底円筒状の超電導体5
を設け、上記永久磁石2並びに回転軸1を浮上した状態
で、回転自在に支承自在としている。即ち、円板6と、
上記永久磁石2の外径dよりも少しだけ大きな内径rを
有する円筒7とを組み合わせて成る超電導体5の内側
に、上記永久磁石2を上方から挿入している。
FIG. 1 shows a first embodiment of the present invention.
A short columnar permanent magnet 2 is fixed to the lower end face of the rotating shaft 1, and a cylindrical superconductor 5 having a bottom is provided around the permanent magnet 2.
To allow the permanent magnet 2 and the rotating shaft 1 to be rotatably supported in a floating state. That is, the disk 6 and
The permanent magnet 2 is inserted from above into a superconductor 5 formed by combining a cylinder 7 having an inner diameter r slightly larger than the outer diameter d of the permanent magnet 2.

【0020】この様に永久磁石2を超電導体5内に挿入
した状態で、この永久磁石2の下端面3を円板6の上面
6aに、永久磁石2の外周面4を円筒7の内周面7a
に、それぞれ軸受隙間8a、8bを介して対向させてい
る。即ち、上記下端面3をスラスト側被支承面とし、外
周面4をラジアル側被支承面とし、上面6aをスラスト
側支承面とし、内周面7aをラジアル側支承面としてい
る。
With the permanent magnet 2 inserted in the superconductor 5 in this manner, the lower end surface 3 of the permanent magnet 2 is placed on the upper surface 6a of the disk 6, and the outer peripheral surface 4 of the permanent magnet 2 is placed on the inner periphery of the cylinder 7. Surface 7a
, Respectively, with bearing gaps 8a and 8b interposed therebetween. That is, the lower end surface 3 is a thrust-side supported surface, the outer peripheral surface 4 is a radial-side supported surface, the upper surface 6a is a thrust-side supported surface, and the inner peripheral surface 7a is a radial-side supported surface.

【0021】更に、上記超電導体5の周囲には冷却器9
を設けて、この超電導体5を外側から冷却し、超電導状
態に保持する様にしている。即ち、この冷却器9の内部
には、液体ヘリウム、液体窒素等の低温の冷却剤が充填
されており、この冷却剤によって、上記超電導体5を冷
却自在としている。
Further, a cooler 9 is provided around the superconductor 5.
Is provided so that the superconductor 5 is cooled from the outside and is maintained in a superconducting state. That is, the inside of the cooler 9 is filled with a low-temperature coolant such as liquid helium, liquid nitrogen, or the like, and the coolant allows the superconductor 5 to be cooled.

【0022】上述の構成に就いては、前述の従来から考
えられていた超電導軸受装置と同様であるが、更に本考
案の超電導軸受装置に於いては、上記超電導体5の支承
面である上面6aと内周面7aとに、それぞれ吐出通路
10a、10bの一端を開口させている。
The above configuration is the same as the above-described conventional superconducting bearing device, but in the superconducting bearing device of the present invention, the upper surface which is the bearing surface of the superconductor 5 is also provided. One ends of the discharge passages 10a and 10b are opened in the inner peripheral surface 7a and the inner peripheral surface 7a, respectively.

【0023】更に詳しく説明すると、上記上面6aには
ポケット11aを、上記内周面7aにはポケット11b
を、冷却器9の内周面部分にはポケット13を、冷却器
9の底面部分にはポケット14を、それぞれ設けてお
り、上記ポケット11aとポケット14とを吐出通路1
0aにより、上記ポケット11bとポケット13とを吐
出通路10b、10bにより、互いに連通させている。
More specifically, a pocket 11a is provided on the upper surface 6a and a pocket 11b is provided on the inner peripheral surface 7a.
A pocket 13 is provided on an inner peripheral surface portion of the cooler 9, and a pocket 14 is provided on a bottom portion of the cooler 9, and the pocket 11 a and the pocket 14 are connected to the discharge passage 1.
Oa makes the pocket 11b and the pocket 13 communicate with each other through the discharge passages 10b and 10b.

【0024】上記超電導体5を構成する超電導材料とし
ては、従来から提案されている、各種超電導材料を使用
出来るが、液体窒素により超電導状態となる、所謂高温
超電導材料が、好ましく利用出来る。特に、前記した雑
誌『日経メカニカル』に記載されている様に、イットリ
ウム系で、一般に「123」相と呼ばれ、YBa2Cu3On
表わされる組成を有する超電導相中に、「211」相と
呼ばれ、Y2BaCuOnで表わされる常電導相の微細な粉末を
均一に混入した超電導材料は、マイスナー効果により大
きな浮上力を得られ、超電導軸受装置の負荷容量を大き
く出来る事から、好ましく利用出来る。
As the superconducting material constituting the superconductor 5, various superconducting materials that have been conventionally proposed can be used, but a so-called high-temperature superconducting material which is brought into a superconducting state by liquid nitrogen can be preferably used. In particular, as it is described in the magazine "Nikkei Mechanical" mentioned above, yttrium-based, commonly referred to as "123" phase, the superconducting phase having a composition represented by YBa 2 Cu 3 O n, "211" called phase, Y superconducting materials were uniformly mixed fine powder of the normal conductive phase represented by 2 BaCuO n, obtained a greater lifting force by the Meissner effect, since it can increase the load capacity of the superconducting bearing device, It can be used preferably.

【0025】上述の様に構成される本考案の超電導軸受
装置の場合、冷却器9内に充填された冷却剤により冷却
され、超電導状態を保持される超電導体5と永久磁石2
との間に働く、マイスナー効果による浮上力により、上
記永久磁石2並びに回転軸1が浮上状態に保持される。
In the case of the superconducting bearing device of the present invention configured as described above, the superconductor 5 and the permanent magnet 2 which are cooled by the coolant filled in the cooler 9 and are kept in a superconducting state.
The permanent magnet 2 and the rotating shaft 1 are held in a floating state by a floating force due to the Meissner effect that acts between them.

【0026】即ち、超電導体5の円板6の上面6aと永
久磁石2の下端面3との間に存在する、スラスト方向に
亙る軸受隙間8aの寸法と、円筒7の内周面7aと上記
永久磁石2の外周面4との間に存在する、ラジアル方向
に亙る軸受隙間8bの寸法が、上記マイスナー効果によ
り一定に保持される。この結果、上記永久磁石2の位置
決めが、スラスト方向とラジアル方向との両方向に亙っ
て図られ、上記永久磁石2並びに回転軸1が浮上状態に
保持されて、この回転軸1を超高速で回転自在となる。
That is, the size of the bearing gap 8a extending between the upper surface 6a of the disk 6 of the superconductor 5 and the lower end surface 3 of the permanent magnet 2 in the thrust direction, the inner peripheral surface 7a of the cylinder 7, and The dimension of the bearing gap 8b in the radial direction existing between the outer peripheral surface 4 of the permanent magnet 2 and the outer peripheral surface 4 is kept constant by the Meissner effect. As a result, the positioning of the permanent magnet 2 is achieved in both the thrust direction and the radial direction, and the permanent magnet 2 and the rotating shaft 1 are held in a floating state. It becomes rotatable.

【0027】一方、冷却器9内で冷却剤が蒸発する事で
発生した圧力気体は、各吐出通路10a、10bを通じ
て各軸受隙間8a、8bに吐出する。即ち、冷却器9内
に充填された冷却剤(液体ヘリウム、或は液体窒素)が
蒸発する事で発生した圧力気体(ヘリウムガス、或は窒
素ガス)は、冷却器9側に設けられたポケット13、1
4に捕集されてから、各吐出通路10a、10bを通じ
て超電導体5側に設けたポケット11a、11bに送り
込まれ、各ポケット11a、11bから、前記軸受隙間
8a、8bに吐出し、この軸受隙間8a、8b内の圧力
を高める。
On the other hand, the pressure gas generated by the evaporation of the coolant in the cooler 9 is discharged to the bearing gaps 8a and 8b through the discharge passages 10a and 10b. That is, the pressure gas (helium gas or nitrogen gas) generated by evaporating the coolant (liquid helium or liquid nitrogen) filled in the cooler 9 is supplied to the pocket provided on the cooler 9 side. 13,1
After being collected by the cartridge 4, it is fed into the pockets 11 a, 11 b provided on the superconductor 5 side through the respective discharge passages 10 a, 10 b, and discharged from the pockets 11 a, 11 b into the bearing gaps 8 a, 8 b. Increase the pressure in 8a, 8b.

【0028】この結果上記永久磁石2に加わるスラスト
方向並びにラジアル方向の荷重は、マイスナー効果だけ
でなく、上記各軸受隙間8a、8b内に存在する圧力気
体によっても支承される。
As a result, the thrust and radial loads applied to the permanent magnet 2 are supported not only by the Meissner effect but also by the pressurized gas present in the bearing gaps 8a and 8b.

【0029】この結果、超電導軸受装置の負荷容量が増
大し、超電導軸受装置の用途拡大を図れる。又、前記従
来から考えられていた超電導軸受装置の場合、温度上昇
等に伴なって超電導体5の超電導状態が崩れると、この
超電導体5と永久磁石2との間のマイスナー効果が瞬間
的に失われる為、上記永久磁石2が高速で回転していた
場合には、この永久磁石2と上記超電導体5とが強く擦
れ合って、両部材2、5を傷める恐れがあるが、本考案
の超電導軸受装置の場合、マイスナー効果による浮上力
だけでなく、圧力気体によっても永久磁石2を支承して
いる為、この様な場合にも永久磁石2と超電導体5とが
強く擦れ合う事がなくなり、両部材2、5を傷める事が
ない。
As a result, the load capacity of the superconducting bearing device increases, and the use of the superconducting bearing device can be expanded. Further, in the case of the conventional superconducting bearing device, when the superconducting state of the superconductor 5 collapses due to a rise in temperature or the like, the Meissner effect between the superconductor 5 and the permanent magnet 2 instantaneously increases. If the permanent magnet 2 rotates at high speed, the permanent magnet 2 and the superconductor 5 may be strongly rubbed against each other, damaging both members 2 and 5. In the case of a superconducting bearing device, since the permanent magnet 2 is supported not only by the levitation force due to the Meissner effect but also by the pressurized gas, the permanent magnet 2 and the superconductor 5 are not strongly rubbed in such a case, The two members 2 and 5 are not damaged.

【0030】尚、各軸受隙間8a、8bに吐出される圧
力流体は、冷却器9内の冷却剤が蒸発する事で発生した
圧力気体であっても、未蒸発の液状冷却剤であっても良
い。又、この圧力流体により各軸受隙間8a、8b部分
に構成される軸受としては、静圧流体軸受でも、動圧流
体軸受でも、或は両者を組み合わせたものでも良い。静
圧流体軸受を構成する場合に於いて、超電導体5の円板
6の上面6aと円筒7の内周面7aとの全部又は一部を
多孔質材により構成し、この多孔質材から圧力流体を噴
出させる事も出来る。又、動圧流体軸受を構成する場
合、永久磁石2と超電導体5との互いに対向する面の少
なくとも一方に、動圧溝を形成する。
The pressure fluid discharged into each of the bearing gaps 8a and 8b may be a pressure gas generated by evaporating the coolant in the cooler 9 or an unevaporated liquid coolant. good. The bearing formed in the bearing gaps 8a and 8b by the pressure fluid may be a hydrostatic bearing, a hydrodynamic bearing, or a combination of both. In forming the hydrostatic bearing, all or a part of the upper surface 6a of the disk 6 of the superconductor 5 and the inner peripheral surface 7a of the cylinder 7 are formed of a porous material, and the pressure is reduced from the porous material. Fluid can also be ejected. When a hydrodynamic bearing is formed, a hydrodynamic groove is formed on at least one of the opposing surfaces of the permanent magnet 2 and the superconductor 5.

【0031】次に、図2は本考案の第二実施例を示して
いる。本実施例の場合、冷却器9に設けた供給口15、
16を通じて、この冷却器9の内周面及び底面に設けた
ポケット13、14に冷却剤を送り込み自在としてい
る。又、冷却器9には、上記両ポケット13、14以外
の部分にも冷却剤を送り込む為の供給口17も、併せて
設けている。
FIG. 2 shows a second embodiment of the present invention. In the case of this embodiment, the supply port 15 provided in the cooler 9,
The coolant can be sent through pockets 16 into pockets 13 and 14 provided on the inner peripheral surface and the bottom surface of the cooler 9. The cooler 9 is also provided with a supply port 17 for sending the coolant to portions other than the two pockets 13 and 14.

【0032】本実施例の場合、供給口15、16から送
り込まれる冷却剤が、冷却器9を冷却してからポケット
13、14に送り込まれ、更に吐出通路10a、10
b、ポケット11a、11bから各軸受隙間8a、8b
に吹き出す。この結果、各軸受隙間8a、8bに送り込
まれる圧力流体の量が、十分且つ安定したものとなる。
In the case of the present embodiment, the coolant sent from the supply ports 15 and 16 cools the cooler 9 and then is sent to the pockets 13 and 14 and further the discharge passages 10a and 10a.
b, each bearing gap 8a, 8b from the pocket 11a, 11b
Blow out. As a result, the amount of the pressurized fluid fed into each of the bearing gaps 8a and 8b becomes sufficient and stable.

【0033】尚、供給口15、16から冷却器9内に送
り込む冷却剤と、供給口17から冷却器9内に送り込む
冷却剤とを、同質若しくは混合自在なものとすれば、各
供給口15、16、17に冷却剤を送り込む為の供給手
段を共通化出来、且つ、冷却器9内で冷却剤が蒸発する
事で発生した圧力気体も、供給口15、16から送り込
まれる冷却剤と共に、上記各軸受隙間8a、8bに送り
込む事が出来る。
If the coolant sent from the supply ports 15 and 16 into the cooler 9 and the coolant sent from the supply port 17 into the cooler 9 are made to be the same or free to mix, the respective supply ports 15 , 16, and 17, a common supply means for sending the coolant, and the pressure gas generated by the evaporation of the coolant in the cooler 9, together with the coolant sent from the supply ports 15 and 16, It can be fed into the bearing gaps 8a and 8b.

【0034】その他の構成及び作用は、前述した第一実
施例の場合と同様である。
The other constructions and operations are the same as those of the first embodiment.

【0035】尚、各実施例に於いて、冷却剤を溜める為
のポケット13、14は、冷却器9の内周面及び底面に
代えて、又は冷却器9の内周面及び底面と共に、超電導
体5の外周面及び下面に設ける事も出来る。
In each of the embodiments, the pockets 13 and 14 for storing the coolant are replaced with the inner peripheral surface and the bottom surface of the cooler 9 or together with the inner peripheral surface and the bottom surface of the cooler 9. It can be provided on the outer peripheral surface and the lower surface of the body 5.

【0036】又、本考案の超電導軸受装置は、図示の様
な回転運動用の軸受だけでなく、直線運動用の軸受とし
ても利用可能である。
The superconducting bearing device of the present invention can be used not only as a bearing for rotational movement as shown in the figure, but also as a bearing for linear movement.

【0037】[0037]

【考案の効果】本考案の超電導軸受装置は、以上に述べ
た通り構成され作用する為、大きな負荷容量を得る事が
出来、超電導軸受装置の用途拡大を図れる。
The superconducting bearing device of the present invention is constructed and operates as described above, so that a large load capacity can be obtained and the use of the superconducting bearing device can be expanded.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本考案の第一実施例を示す断面図である。FIG. 1 is a sectional view showing a first embodiment of the present invention.

【図2】同じく第二実施例を示す断面図である。FIG. 2 is a sectional view showing a second embodiment.

【図3】従来例を示す断面図である。FIG. 3 is a sectional view showing a conventional example.

【符号の説明】[Explanation of symbols]

1 回転軸 2 永久磁石 3 下端面 4 外周面 5 超電導体 6 円板 6a 上面 7 円筒 7a 内周面 8a 軸受隙間 8b 軸受隙間 9 冷却器 10a 吐出通路 10b 吐出通路 11a ポケット 11b ポケット 13 ポケット 14 ポケット 15 供給口 16 供給口 17 供給口 Reference Signs List 1 rotating shaft 2 permanent magnet 3 lower end surface 4 outer peripheral surface 5 superconductor 6 disk 6a upper surface 7 cylinder 7a inner peripheral surface 8a bearing gap 8b bearing gap 9 cooler 10a discharge passage 10b discharge passage 11a pocket 11b pocket 13 pocket 14 pocket 15 Supply port 16 Supply port 17 Supply port

Claims (1)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】 被支承面を有する磁石と、この磁石の下
方に設けられ、上記被支承面と軸受隙間を介して対向す
る支承面を有する超電導体と、この超電導体を冷却する
冷却器と、上記超電導体の支承面に一端を開口し、上記
冷却器内に存在する冷却剤を上記軸受隙間に吐出させる
吐出通路とから成る超電導軸受装置。
1. A magnet having a supported surface, a superconductor provided below the magnet and having a bearing surface facing the supported surface via a bearing gap, and a cooler for cooling the superconductor. A discharge passage that opens one end to the bearing surface of the superconductor and discharges the coolant present in the cooler into the bearing gap.
JP1038291U 1991-02-05 1991-02-05 Superconducting bearing device Expired - Lifetime JP2553059Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1038291U JP2553059Y2 (en) 1991-02-05 1991-02-05 Superconducting bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1038291U JP2553059Y2 (en) 1991-02-05 1991-02-05 Superconducting bearing device

Publications (2)

Publication Number Publication Date
JPH04101017U JPH04101017U (en) 1992-09-01
JP2553059Y2 true JP2553059Y2 (en) 1997-11-05

Family

ID=31743387

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1038291U Expired - Lifetime JP2553059Y2 (en) 1991-02-05 1991-02-05 Superconducting bearing device

Country Status (1)

Country Link
JP (1) JP2553059Y2 (en)

Also Published As

Publication number Publication date
JPH04101017U (en) 1992-09-01

Similar Documents

Publication Publication Date Title
US5710469A (en) Magnetic bearing element for a rotor shaft using high-TC superconducting materials
US5196748A (en) Laminated magnetic structure for superconducting bearings
EP0585351B1 (en) Magnet-superconductor systems having high thrust and high stability
US5177387A (en) High temperature superconducting magnetic bearings
EP0467341B1 (en) Superconducting bearing device
DE10042962C1 (en) Magnetic bearing to support a rotatable shaft using high-T¶c¶ superconductor material
JP2999607B2 (en) Superconducting bearing device and its operation method
US5256638A (en) Magnetically leviated superconducting bearing
US4956571A (en) Superconducting magnetic bearing
JP2002528342A (en) Angular momentum control system for satellite using flywheel supported by superconductor magnetic bearing
JPH11507710A (en) High performance magnetic bearing system using high temperature superconductor
JPH06323334A (en) Superconductive bearing device
JP3206044B2 (en) Composite superconducting bearing device
JP2553059Y2 (en) Superconducting bearing device
JP3168596B2 (en) Superconducting bearing device
Fukuyama et al. Superconducting magnetic bearing using MPMG YBaCuO
JP3324319B2 (en) Magnetic bearing device
JP3385771B2 (en) Superconducting magnetic bearing device
JP3174877B2 (en) Superconducting bearing device
JPH04355104A (en) Surface processing method of oxide superconductive material
JPH04165119A (en) Superconductive bearing device
JPH0510329A (en) Superconducting bearing device
JP3577559B2 (en) Flywheel equipment
JP3174876B2 (en) Superconducting bearing device
JP3149461B2 (en) Superconducting bearing device