JP2552553B2 - Simultaneous injection method and equipment from multiple injection lines - Google Patents

Simultaneous injection method and equipment from multiple injection lines

Info

Publication number
JP2552553B2
JP2552553B2 JP1230981A JP23098189A JP2552553B2 JP 2552553 B2 JP2552553 B2 JP 2552553B2 JP 1230981 A JP1230981 A JP 1230981A JP 23098189 A JP23098189 A JP 23098189A JP 2552553 B2 JP2552553 B2 JP 2552553B2
Authority
JP
Japan
Prior art keywords
injection
liquid
pressure
ground
injecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1230981A
Other languages
Japanese (ja)
Other versions
JPH0393916A (en
Inventor
俊介 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyokado Engineering Co Ltd
Original Assignee
Kyokado Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyokado Engineering Co Ltd filed Critical Kyokado Engineering Co Ltd
Priority to JP1230981A priority Critical patent/JP2552553B2/en
Publication of JPH0393916A publication Critical patent/JPH0393916A/en
Application granted granted Critical
Publication of JP2552553B2 publication Critical patent/JP2552553B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は一つの注入液送液部から分枝された複数の
注入管路を通じて注入液を地盤内の複数の注入孔に同時
注入する注入工法および装置に係り、特に各注入孔にお
ける地盤の注入抵抗圧の違いあるいは注入中における地
盤の注入抵抗圧の変化にもかかわらず、前記各注入管路
に注入液を所定の注入速度で送液して各注入孔から所望
の注入を達成し得、これにより地盤を極めて迅速かつ確
実に固結し得る地盤注入工法および装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial application] The present invention is an injection method for simultaneously injecting an injecting solution into a plurality of injecting holes in the ground through a plurality of injecting conduits branched from one injecting solution sending section. Related to the construction method and device, in particular, regardless of the difference in the injection resistance pressure of the ground in each injection hole or the change of the injection resistance pressure of the ground during injection, the injection liquid is sent to each injection pipe line at a predetermined injection speed. Therefore, the present invention relates to a ground injection method and apparatus capable of achieving desired injection from each injection hole and thereby solidifying the ground extremely quickly and reliably.

〔従来の技術〕[Conventional technology]

特に市街地の道路工事のように道路の延長に沿って広
範囲な注入を必要とする時、あるいはトンネルのように
狭い作業空間で注入する時、一つの注入液送液部から多
数の注入孔に注入液を同時に送液し、注入して短時間の
うちに広範囲な地盤を急速にかつ、最少の作業空間をも
って固結する事はこの分野の技術者にとって大きな夢で
あった。
Especially when a wide range of injection is required along the length of a road such as road construction in an urban area, or when injection is performed in a narrow work space such as a tunnel, injection from one injection liquid delivery part into multiple injection holes It was a big dream for engineers in this field to simultaneously send and inject liquids to rapidly solidify a wide range of ground in a short time with a minimum working space.

しかし、実際には一般に、地盤は粒度や透水性の異な
った層が互層になって形成されており、かつ各注入孔が
位置する地盤は勿論一つの注入孔の部分でも深度毎に土
層の特性が異なるため、地盤に複数の注入管を挿入し、
この複数の注入管に一つのポンプから注入液を同時に通
して地盤を固結せんとしても、注入液は透水性の大きな
層に位置した特定の注入孔に集中して送液されて他の注
入孔には殆ど送液されず、全体を均質に固結することが
できない。
However, in general, the ground is generally formed by alternating layers of different grain size and water permeability, and not only the ground where each injection hole is located, but also one injection hole, the soil layer at each depth. Since the characteristics are different, insert multiple injection pipes in the ground,
Even if the injection liquid is passed from one pump to these multiple injection pipes at the same time to consolidate the ground, the injection liquid is concentrated and sent to specific injection holes located in a large permeable layer, and other injection liquids are injected. Almost no liquid is sent to the holes, and the whole cannot be uniformly consolidated.

このため、一本の注入管路に一つの注入ポンプを通し
て注入し、全注入ステージを完了してから他の注入管に
移動するというのが従来の方法であって、極めて時間の
かかる注入工程が取られてきた。
Therefore, the conventional method is to inject into one infusion line through one infusion pump, complete all infusion stages, and then move to another infusion line. It has been taken.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

そこで本発明の目的は、一つの送液部から複数の注入
孔に注入液を送液して同時に注入するとともに各注入孔
あるいは、毎注入ステージにおける透水性が異なるにも
かかわらず各注入孔毎に所定量の注入がなされ、これに
より極めて迅速かつ確実に地盤を固結し得る地盤注入工
法および装置を提供することにある。
Therefore, an object of the present invention is to supply the injection liquid from one liquid supply unit to a plurality of injection holes and simultaneously inject the injection liquid, and at the same time for each injection hole or for each injection hole although the water permeability at each injection stage is different. It is an object of the present invention to provide a ground pouring method and apparatus capable of consolidating the ground extremely quickly and surely by injecting a predetermined amount into the ground.

〔問題点を解決するための手段〕[Means for solving problems]

前述の目的を達成するため、本発明工法によれば、注
入液を送液する一つの送液部から複数分枝され、かつそ
れぞれの内部に噴射ノズルが備えられた複数の注入管路
をそれぞれ地盤内の各注入孔に別々に設置し、次いで、
前記送液部を通じて注入液を前記複数の注入管路に同時
に送液して各注入孔から地盤内に同時注入することを特
徴とし、前記送液部の内圧が前記各注入管路の噴射ノズ
ルよりも下流の内圧よりも高く保持されてなり、これに
より前記各注入孔における地盤の注入抵抗圧の違いある
いは注入中における地盤の注入抵抗圧の変化にもかかわ
らず、前記各注入管路に注入液を所定の注入速度で送液
することを特徴とし、さらに本発明装置によれば、注入
液を送液する一つの送液部と、こ送液部から複数分枝さ
れ、それぞれ地盤内の各注入孔に別々に設置される複数
の注入管路と、前記複数の注入管路内にそれぞれ設置さ
れた噴射ノズルとを備え、前記送液部の内圧を、前記各
注入管路の噴射ノズルよりも下流の内圧よりも高く保持
したことを特徴とする。
In order to achieve the above-mentioned object, according to the method of the present invention, a plurality of injection pipes each branched from one liquid sending part for sending an injection liquid and provided with an injection nozzle inside are respectively provided. Installed separately for each injection hole in the ground, then
The injection liquid is simultaneously sent to the plurality of injection pipes through the liquid supply unit and simultaneously injected into the ground through the respective injection holes, and the internal pressure of the liquid supply unit is the injection nozzle of each of the injection pipes. Is maintained higher than the internal pressure at the downstream side of the injection hole, so that the injection pressure is injected into each of the injection pipes despite the difference in the injection resistance pressure of the ground in each injection hole or the change of the injection resistance pressure of the ground during the injection. The liquid is sent at a predetermined injection speed, and further, according to the device of the present invention, one liquid sending part for sending the injecting liquid, and a plurality of branches from the liquid sending part are provided in the ground. A plurality of injection pipes separately installed in each injection hole and an injection nozzle installed in each of the plurality of injection pipes are provided, and the internal pressure of the liquid feeding unit is set to the injection nozzle of each injection pipe. It is characterized by holding higher than the internal pressure of the downstream That.

以下、本発明を添付図面を用いて詳述する。 Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

第1図は本発明装置の一具体例の説明図であって、1
は地盤固結用の注入液を送液する送液部である。この送
液部1は第1図示のように一つの導管からなり、一端1a
が地盤固結用の注入液を貯蔵する注入液槽2と連結さ
れ、かつ他端1bがバルブ3と連結される。さらにバルブ
3は管路4を介して注入液槽2に連結され、送液部1、
バルブ3、管路4および注入液層4によりそれぞれ循環
系路5を形成する。なお、送液部1の注入液槽2と後述
の注入管路9との間にはそれぞれポンプ6、一次圧力計
7および一次流量計8が、注入液槽2の側から順次に設
けられる。
FIG. 1 is an explanatory view of a specific example of the device of the present invention.
Is a liquid feeding part for feeding an injection liquid for soil consolidation. As shown in the first drawing, the liquid feeding section 1 is composed of one conduit and has one end 1a.
Is connected to an injection liquid tank 2 that stores an injection liquid for soil consolidation, and the other end 1b is connected to a valve 3. Furthermore, the valve 3 is connected to the injection liquid tank 2 via the pipe line 4,
A circulation system passage 5 is formed by the valve 3, the pipe passage 4, and the injection liquid layer 4. A pump 6, a primary pressure gauge 7 and a primary flow meter 8 are provided in this order from the injection liquid tank 2 side between the injection liquid tank 2 of the liquid feeding section 1 and an injection pipe line 9 described later.

さらに第1図示のように送液部1の一次流量計8とバ
ルブ3との間には複数の注入管路9、9・・・9がそれ
ぞれ送液部1から分枝して設けられる。これら各注入管
路9、9・・・9の内部の任意の個所には噴射ノズル1
0、10・・10を設けるとともに、各噴射ノズル10、10・
・10の上流側にはバルブ11、11・・11を設け、さらに下
流側には二次流量計12および二次圧力計13をそれぞれ、
噴射ノズル10側から順次に設け、先端に吐出部9bを有す
る端部9a、9a・・9aをそれぞれ別々に、地盤14内の各注
入孔15、15・・15に挿入して設置する。
Further, as shown in the first drawing, a plurality of injection pipe lines 9, 9 ... 9 are provided between the primary flow meter 8 of the liquid sending part 1 and the valve 3 so as to branch from the liquid sending part 1. The injection nozzle 1 is provided at an arbitrary position inside each of the injection pipes 9, 9 ...
0, 10 ... 10 and each injection nozzle 10, 10 ...
・ Valves 11, 11 ・ ・ 11 are provided on the upstream side of 10, and a secondary flow meter 12 and a secondary pressure gauge 13 are provided on the downstream side.
The end portions 9a, 9a ··· 9a, which are sequentially provided from the injection nozzle 10 side and have a discharge portion 9b at the tip, are separately inserted into the injection holes 15, 15, · · 15 in the ground 14 and installed.

噴射ノズル10は例えば第3図に示されるように注入管
路9の流路9cを漏斗状の遮蔽板16で遮蔽して流路方向に
テーパー状に細めることにより形成されるが、オリフイ
スノズル等、他の任意のものを用いることができる。第
4図は第3図の平面図である。なお、注入管路9の吐出
部9bは噴射ノズルにより形成されてもよく、この場合、
注入液は注入管路9を回転しながら注入される。また、
注入管路9内に複数の管路を設け、一つの管路から空気
を噴射しながら吐出部9bの噴射口から注入液を噴射注入
することもできる。
The injection nozzle 10 is formed, for example, by shielding the flow passage 9c of the injection pipe 9 with a funnel-shaped shielding plate 16 and tapering it in the flow passage direction as shown in FIG. , Any other can be used. FIG. 4 is a plan view of FIG. In addition, the discharge part 9b of the injection conduit 9 may be formed by an injection nozzle. In this case,
The injection liquid is injected while rotating the injection pipe line 9. Also,
It is also possible to provide a plurality of pipe lines in the injection pipe line 9 and inject the injection liquid from the injection port of the discharge part 9b while ejecting air from one pipe line.

上述の本発明装置を用い、まずバルブ3を閉じるとと
もに注入管路9、9・・9の各バルブ11、11・・11を開
き、さらにポンプ6を稼働して注入液槽2内の注入液を
一つの送液部1を通じて複数の注入管路9、9・・9に
同時に送液し、各注入孔15、15・・15から地盤14内に同
時注入する。このとき送液部の内圧(噴射ノズル10、10
・・10の上流側の内圧)はポンプ6の圧力を調整するこ
とにより、各注入管路9、9・・9内の噴射ノズル10、
10・・10よりも下流側の内圧よりも高く保持される。こ
の圧力差は5kg f/cm2以上であることが好ましい。
Using the above-described device of the present invention, first, the valve 3 is closed and the valves 11, 11 ... 11 of the injection pipe lines 9, 9 ... 9 are opened, and the pump 6 is operated to inject the injection liquid in the injection liquid tank 2. Is simultaneously sent to a plurality of injection pipes 9, 9 ... 9 through one solution sending unit 1, and is simultaneously injected into the ground 14 through the respective injection holes 15, 15. At this time, the internal pressure of the liquid sending part (the injection nozzles 10, 10
.. (internal pressure on the upstream side of 10) is adjusted by adjusting the pressure of the pump 6, so that the injection nozzles 10 in the injection pipes 9, 9 ...
It is kept higher than the internal pressure on the downstream side of 10. This pressure difference is preferably 5 kg f / cm 2 or more.

上述の本発明は各注入孔15、15・・15における地盤14
の注入抵抗圧の違いあるいは注入中における地盤14の注
入抵抗圧の変化にもかかわらず、各注入管路9、9・・
9に注入液を所定の注入速度で送液することができる。
The present invention described above is applied to the ground 14 in each of the injection holes 15, 15 ...
Despite the difference in the injection resistance pressure of each of them or the change of the injection resistance pressure of the ground 14 during the injection, each injection pipe line 9, 9 ...
The injection liquid can be sent to the injection liquid 9 at a predetermined injection speed.

なお、本発明において、送液部1の内圧を一定に保
ち、かつ各注入管路9、9・・9の噴射ノズル10、10・
・10の口径を同一に設定して各注入管路9、9・・9に
それぞれ同量の注入液(一定の注入速度)を送液するこ
ともでき、また、送液部1の内圧を一定に保ち、かつ各
噴射ノズル10、10・・10の口径をそれぞれ適宜に選定し
て各注入管路9、9・・9への注入液の注入量を地盤の
注入抵抗圧に応じてそれぞれ所望の量に調整することも
でき、さらに、送液部1の内圧と、各噴射ノズルの口径
を適宜に選定して吐出部9bからの注入液の吐出速度を地
盤14の透水性に対応した最も適当な速度に設定すること
もできる。
In the present invention, the internal pressure of the liquid feeding section 1 is kept constant, and the injection nozzles 10, 10 ...
・ It is also possible to set the diameter of 10 to be the same and to send the same amount of injection liquid (constant injection speed) to each of the injection pipes 9, 9 ... 9 respectively. Keeping it constant, and selecting the diameter of each injection nozzle 10, 10 ... 10 appropriately, the injection amount of the injection liquid into each injection pipe line 9, 9 ... 9 is respectively according to the injection resistance pressure of the ground. It can be adjusted to a desired amount, and the discharge speed of the injection liquid from the discharge portion 9b corresponds to the water permeability of the ground 14 by appropriately selecting the internal pressure of the liquid supply portion 1 and the diameter of each injection nozzle. It can also be set to the most suitable speed.

第12図に変換システムの一例を示す。 Fig. 12 shows an example of the conversion system.

第12図において、噴射ノズル10、10、10の孔径を例え
ばn1、n2、n3と異なるものに設定しておき、バルブ11、
11、11の選択的に開閉することにより、注入中に噴射ノ
ズル10、10、10の変換が可能になる。これはあらかじめ
コンピューターにプログラミングしておいて、自動的に
行うこともできる。
In FIG. 12, the nozzle diameters of the injection nozzles 10, 10, 10 are set to be different from, for example, n1, n2, and n3, and the valve 11,
The selective opening and closing of 11, 11 allows the conversion of the injection nozzles 10, 10, 10 during injection. This can also be done automatically by programming the computer beforehand.

なお、送液部1は第1図示の他に第13図に示されるよ
うに、ポンプ6と併用することもできる。この場合、複
数の注入管路9、9・・9はポンプ6から導管xを介し
て並列的に分枝される。
The liquid feeding section 1 can be used together with the pump 6 as shown in FIG. 13 in addition to the first drawing. .. 9 are branched from the pump 6 in parallel via the conduit x.

第2図は本発明の変形例を示した説明図であって、第
1図と同様な装置を二組併せて構成されるので詳細な説
明は省略する。この第2図装置を用いて、主剤A液と反
応剤B液をそれぞれ別々の送液部1から複数の注入管路
9、9・・9に送液し、これらA、B両液を注入管路9
の端部9aで合流し、この合流液を吐出部9bから地盤中に
注入する。
FIG. 2 is an explanatory view showing a modified example of the present invention, and since it is configured by combining two sets of the same devices as in FIG. 1, detailed description thereof will be omitted. By using this apparatus shown in FIG. 2, the main agent liquid A and the reactive agent liquid B are sent to the plurality of injection conduits 9, 9 ... Pipeline 9
At the end 9a, the combined liquid is injected into the ground from the discharge part 9b.

さらにまた、第2図装置は、ゲル化時間の短いグラウ
トを複数の注入管から同時に注入する場合にも利用され
る。
Furthermore, the apparatus of FIG. 2 is also used when simultaneously injecting grout having a short gelation time from a plurality of injection tubes.

また、本発明は第10図に示されるように、三軸ボーリ
ングマシン17を用いて三本の注入管路9、9、9でボー
リングしてのち一度に注入しながら引き上げる注入工法
にも適用され、さらに第11図に示されるようにあらかじ
め排水管18を埋め込んでおいて複数の注入孔間から一度
に注入して地下水を排水孔に追い込みながら、地下水の
ポケットが固結地盤中に生じないようにして一気に所定
の注入領域20に注入する注入工法にも適用される。第11
図において、19はマンシエットチューブであって、これ
ら多数のマンシエットチューブ19、19・・19中に多数の
内管を挿入して全注入領域20を極めて短期間に注入固結
することができる。なお、排水孔には最終的には注入材
が注入されて周辺部が固化される。また、注入中に排水
管からポンプ排水し、注入液が浸透しやすい条件をつく
ることもできる。
Further, as shown in FIG. 10, the present invention is also applied to an injection method in which a three-axis boring machine 17 is used to perform boring in three injection pipe lines 9, 9, 9 and then pull up while simultaneously injecting. , Furthermore, as shown in Fig. 11, the drainage pipe 18 is embedded in advance, and it is injected from a plurality of injection holes at one time to drive groundwater into the drainage hole so that pockets of groundwater do not occur in the consolidated ground. Then, it is also applied to an injection method in which a predetermined injection region 20 is injected all at once. 11th
In the figure, 19 is a Mansiette tube, and many inner tubes can be inserted into these many Mansiette tubes 19, 19, ... 19 to inject and consolidate the entire injection region 20 in an extremely short time. . It should be noted that, finally, the injection material is injected into the drain holes to solidify the peripheral portion. It is also possible to drain the pump from the drainage pipe during injection to create a condition in which the injectate can easily penetrate.

〔作用〕[Action]

本発明は管内噴射に着目したものであって、噴射口
径、すなわち、噴射ノズルの径を小さくし、かつノズル
の上流側の圧力をポンプ圧で充分に高く保つことによ
り、ノズルの下流側の圧力に関係なく一定の流量が流れ
る特性を利用したものである。
The present invention focuses on in-pipe injection, in which the injection port diameter, that is, the diameter of the injection nozzle is made small, and the pressure on the upstream side of the nozzle is kept sufficiently high by the pump pressure to reduce the pressure on the downstream side of the nozzle. It utilizes the characteristic that a constant flow rate flows regardless of.

第6図および第7図のグラフはそれぞれ、一次圧力を
一定に保ち、噴射口の口径を変えたときの二次圧力(kg
f/cm2)と流量との関係を示したグラフである。この実
験は第5図に示される実験装置を用いて行った。第5図
において、注入液槽aの注入液をポンプbの稼働によっ
て上流側管路cに送液し、噴射ノズルnを経て下流側管
路dに送液されたときにニードルバルブeの操作によっ
て下流側管路dの内の圧力を変化させる。上流側圧力お
よび流量は一次圧力計P1および一次流量計F1で測定し、
下流側圧力および流量は二次圧力計P2および二次流量計
F2でそれぞれ測定し、結果を第6図および第7図に示し
た。
The graphs in Fig. 6 and Fig. 7 show the secondary pressure (kg) when the primary pressure is kept constant and the diameter of the injection port is changed.
5 is a graph showing the relationship between f / cm 2 ) and flow rate. This experiment was conducted using the experimental apparatus shown in FIG. In FIG. 5, the injection liquid in the injection liquid tank a is sent to the upstream pipe line c by the operation of the pump b, and when the liquid is sent to the downstream pipe line d via the injection nozzle n, operation of the needle valve e. The pressure in the downstream pipe line d is changed by. The upstream pressure and flow rate are measured with a primary pressure gauge P1 and a primary flow meter F1.
The downstream pressure and flow rate are the secondary pressure gauge P2 and the secondary flow meter.
Each measurement was carried out with F2, and the results are shown in FIGS. 6 and 7.

第6図は第5図において噴射ノズルnの口径をそれぞ
れ1.5、1.0、0.5mmの三種類に変化させ、一次圧力側の
液圧をポンプbにより80kg f/cm2に保ち、かつ二次圧力
側の液圧をニードルバルブeにより0〜80kg f/cm2に変
化させて二次圧力に対応した流量を測定したグラフであ
る。第7図は一次圧力を50kg f/cm2としたことを除いて
第6図の同じ条件で測定したグラフである。なお、液体
としてはこの場合水を使用した。
FIG. 6 shows that, in FIG. 5, the diameter of the injection nozzle n is changed to three types of 1.5, 1.0 and 0.5 mm respectively, the hydraulic pressure on the primary pressure side is kept at 80 kg f / cm 2 by the pump b, and the secondary pressure is maintained. It is the graph which measured the flow rate corresponding to the secondary pressure by changing the liquid pressure on the side by the needle valve e to 0-80 kgf / cm < 2 >. FIG. 7 is a graph measured under the same conditions as in FIG. 6 except that the primary pressure was 50 kg f / cm 2 . In this case, water was used as the liquid.

第6図および第7図から次のことがわかる。 The following can be seen from FIGS. 6 and 7.

(1)注入管の管径に比べて極小径の噴射ノズルをを介
してポンプ圧により上流側の圧力を下流側の圧力に比べ
て充分大きく保つと、下流側の広範囲な圧力変化にもか
かわらず、ノズル口径に対応して一定の流量を保つこと
ができる。
(1) If the upstream pressure is kept sufficiently higher than the downstream pressure by the pump pressure through the injection nozzle having a diameter extremely smaller than the diameter of the injection pipe, it may be affected by a wide range of pressure changes on the downstream side. Instead, a constant flow rate can be maintained according to the nozzle diameter.

(2)二次圧力に対応する流量がほぼ一定値を保つ領域
(C)と暫減する領域(D)に分けることができる。
(2) It can be divided into a region (C) in which the flow rate corresponding to the secondary pressure maintains a substantially constant value and a region (D) in which the flow rate temporarily decreases.

(3)一次圧力が同じ場合、噴射ノズル口径が大きいほ
ど流量は大きく、噴射ノズル口径が小さいほど流量が小
さい。
(3) When the primary pressure is the same, the larger the injection nozzle diameter, the larger the flow rate, and the smaller the injection nozzle diameter, the smaller the flow rate.

(4)同一ノズル口径でも一次圧力が大きいほど流量は
大きい。
(4) The flow rate increases as the primary pressure increases even with the same nozzle diameter.

(5)以上のことから、注入中に地盤の抵抗圧力が変化
しても、あるいは地盤の抵抗圧が異なっても、これがあ
る範囲内であれば一次圧力とノズル口径に対応した所定
の流量を保つことがわかる。
(5) From the above, even if the resistance pressure of the ground changes during the injection or the resistance pressure of the ground is different, if the value is within a certain range, a predetermined flow rate corresponding to the primary pressure and the nozzle diameter is obtained. I know I will keep it.

(6)例えばΦ0.5mmのノズル口径で注入している間に
二次圧力が上昇して流量の暫減する領域(D)に達した
場合、噴射ノズルをΦ1.0あるいはΦ1.5mmのものに変換
すれば流量を再び所定の流量に保つことができる。
(6) For example, if the secondary pressure rises and reaches the region (D) where the flow rate temporarily decreases while injecting with a nozzle diameter of Φ0.5 mm, the injection nozzle is Φ1.0 or Φ1.5 mm If converted to, the flow rate can be maintained at the predetermined flow rate again.

第8図は他の実験装置を示す。第8図において第5図
と同様、注入液槽aの注入液をポンプbの稼働によって
上流側管路cに送液し、複数の注入管路g、g・・gか
ら分枝バルブf、f・・fおよび噴射ノズルn、n・・
nを経て下流側管路d、d・・dに送液されたときにニ
ードルバルブe、e・・eの操作によってそれぞれ下流
側管路d、d・・d内の圧力を変化させる。上流側圧力
および流量は一次圧力計P1および一次流量計F1で測定
し、下流側圧力および流量はそれぞれ、二次圧力計P2、
P2・・P2および二次流量計F2、F2・・F2で測定し、結果
を第9図のグラフに示した。
FIG. 8 shows another experimental apparatus. In FIG. 8, as in FIG. 5, the injection liquid in the injection liquid tank a is sent to the upstream pipe line c by the operation of the pump b, and the plurality of injection pipe lines g, g. f ... F and injection nozzles n, n ...
When the liquid is sent to the downstream side pipelines d, d ... D via n, the pressures in the downstream pipelines d, d ... D are changed by operating the needle valves e, e. The upstream pressure and flow rate are measured by the primary pressure gauge P1 and the primary flow meter F1, and the downstream pressure and flow rate are measured by the secondary pressure gauge P2 and
P2 ... P2 and secondary flow meters F2, F2 ... F2 were measured and the results are shown in the graph of FIG.

第9図において、曲線(a)は一次圧力50kg f/cm2
し、噴射ノズル口径φ1.5mm10個を用い、注入管路g、
g・・gから分枝バルブf、f・・f、噴射バルブn、
n・・nを介して下流側流路d、d・・dに注入液を送
液し、ニードルバルブe、e・・eを操作して二次圧力
を変化させて流量を測定したものである。曲線(b)は
一次圧力80kg f/cm2とし、噴射ノズル口径φ1.5mm5個を
用い、前述と同様にして流量を測定したものであり、曲
線(c)は一次圧力50kg f/cm2とし、噴射ノズル口径φ
1.0mm10個を用い、前述と同様にして流量を測定したも
のであり、曲線(d)は一次圧力80kg f/cm2とし、噴射
ノズル口径φ0.5mm10個を用い、前述と同様にして流量
を測定したものである。
In FIG. 9, the curve (a) has a primary pressure of 50 kg f / cm 2 , 10 injection nozzles with a diameter of 1.5 mm, the injection pipe line g,
g ·· g to branch valve f, f ·· f, injection valve n,
The flow rate is measured by sending the injection liquid to the downstream flow paths d, d ... D via n ... N and operating the needle valves e, e ... E to change the secondary pressure. is there. The curve (b) is a primary pressure of 80 kg f / cm 2 , the flow rate was measured in the same manner as above using 5 injection nozzles with a diameter of φ1.5 mm, and the curve (c) was a primary pressure of 50 kg f / cm 2. , Jet nozzle diameter φ
The flow rate was measured in the same manner as described above using 10 pieces of 1.0 mm, and the curve (d) shows the flow rate in the same manner as described above using a primary pressure of 80 kg f / cm 2 and 10 injection nozzles with a diameter of φ0.5 mm. It was measured.

第9図から、一つの送液部から噴射ノズルを介して多
数の管路に分枝して送液した場合、注入中における地盤
の注入抵抗圧力が変動しても、あるいは注入ステージの
変化により地盤の抵抗圧が変化しても、さらには各注入
管路の位置する地盤の違いにより各注入孔における抵抗
圧力が異なっても、その圧力がある範囲内にある場合に
は一次圧力、噴射ノズル口径に対応した一定の流量をう
ることがわかる。
From FIG. 9, when the liquid is branched and sent from one liquid sending part to the many pipe lines through the injection nozzle, even if the injection resistance pressure of the ground during the injection fluctuates or the injection stage changes, Even if the resistance pressure of the ground changes, or even if the resistance pressure in each injection hole differs due to the difference in the ground where each injection pipe is located, if the pressure is within a certain range, the primary pressure, the injection nozzle It can be seen that a constant flow rate corresponding to the aperture can be obtained.

また、注入中に二次圧力が上昇し、所定の流量を保持
できなくなった場合には、一次圧力を上昇させたり、あ
るいは噴射ノズル口径を大きくしたり等の操作により所
定の流量を保持し得ることもわかる。
When the secondary pressure rises during injection and the prescribed flow rate cannot be maintained, the prescribed flow rate can be maintained by increasing the primary pressure or increasing the injection nozzle diameter. I also understand that.

〔実施例〕〔Example〕

第1図に示される装置を用いて本発明を実施した。ま
ず、バルブ3を閉じるとともに、各注入管路9、9・・
9のバルブ11、11・・11を開いた後、注入液槽2の注入
液をポンプ6のポンプ圧を80kg f/cm2に保って一つの送
液部1に送液した。ここで、注入液は送液部1から分枝
された複数の注入管路9、9・・9にそれぞれ60/分
の流量で送液され、ノズル口径1.5mmの各噴射ノズル1
0、10・・10を経て吐出部9b、9b・・9bから地盤14に12
/分の流量で注入された。このとき、ポンプ6のポン
プ圧によって噴射ノズル10、10・・10の上流側の圧力を
充分に高く保つことにより、噴射ノズル10、10・・10の
下流側の圧力が注入時間とともに変化しても、あるいは
地層の違いによりそれぞれの注入孔15、15・・15の注入
圧力が異なっても、これが50kg f/cm2以内であればそれ
ぞれの噴射ノズル10、10・・10からは常に12/分の一
定流量の注入液が送液された。上流側の圧力および流量
は一次圧力計7および一次流量計8によってそれぞれ測
定し、また下流側のそれは二次圧力計13、および二次流
量計12によってそれぞれ測定した。注入後は各バルブ1
1、11・・11を閉じるとともにバルブ3を開き、これに
より注入液は管路4を経て循環系路5により注入液槽2
にもどされた。
The present invention was carried out using the apparatus shown in FIG. First, the valve 3 is closed, and the injection pipe lines 9, 9 ...
After opening the valves 11, 11, ... 11 of 9, the injection liquid in the injection liquid tank 2 was supplied to one liquid supply unit 1 while maintaining the pump pressure of the pump 6 at 80 kg f / cm 2 . Here, the injection liquid is sent to the plurality of injection pipes 9, 9 ... 9 branched from the liquid supply unit 1 at a flow rate of 60 / min, and each injection nozzle 1 having a nozzle diameter of 1.5 mm.
12 from the discharge parts 9b, 9b ... 9b to the ground 14 through 0, 10 ... 10
Injected at a flow rate of / min. At this time, by maintaining the pressure on the upstream side of the injection nozzles 10, 10 ... 10 sufficiently high by the pump pressure of the pump 6, the pressure on the downstream side of the injection nozzles 10, 10 ... 10 changes with the injection time. Or, even if the injection pressure of each injection hole 15, 15 ・ ・ 15 is different due to the difference of the stratum, if the injection pressure is within 50 kg f / cm 2 , it is always 12 / A constant flow rate of injection liquid of a minute was delivered. The upstream pressure and flow rate were measured by a primary pressure gauge 7 and a primary flow meter 8, respectively, and the downstream pressure was measured by a secondary pressure gauge 13 and a secondary flow meter 12, respectively. 1 valve after injection
1, 11 ... 11 are closed and the valve 3 is opened, so that the injection liquid passes through the pipe line 4 and the circulation system line 5 to make the injection liquid tank 2
I was returned.

上述によれば、一次圧力を一定に保ち、かつ噴射ノズ
ルの口径を一定に定めることにより、地盤の注入抵抗圧
あるいは抵抗圧の変化にもかかわらず、複数の注入管路
から全体にわたって一定の注入速度(単位時間当りの注
入量)で注入できる。
According to the above, the primary pressure is kept constant and the diameter of the injection nozzle is fixed, so that despite the injection resistance pressure of the ground or the change of the resistance pressure, a constant injection is performed from a plurality of injection pipelines. It can be injected at a speed (injection amount per unit time).

また、一次圧力を一定に保ち、噴射ノズル口径を変換
することにより、複数の注入管路において各注入管路か
らの注入速度を、それぞれ注入地盤の透水性の違いに応
じて所定の注入速度で注入できる。
Also, by maintaining the primary pressure constant and changing the diameter of the injection nozzle, the injection speed from each injection pipe in a plurality of injection pipes can be adjusted to a predetermined injection speed according to the difference in the water permeability of the injection ground. Can be injected.

例えば、上述の第1図において、注入管路9、9・・
9のうち、一つの管路の透水係数が少なく、他の一つの
透水係数がさらに少ない場合には、噴射ノズル口径をそ
れぞれφ1.0mm、φ0.5mmに選定し、これにより注入速度
をそれぞれ6/分、3/分として最適の注入速度を
選定できる。
For example, in FIG. 1 described above, the injection pipe lines 9, 9 ...
If one of the 9 has a low hydraulic conductivity and the other has a low hydraulic conductivity, the injection nozzle diameters are selected to be φ1.0 mm and φ0.5 mm, respectively. Optimal injection rates can be selected as / min and 3 / min.

さらに、一次圧力の変化と噴射ノズル口径の変換によ
り、複数の注入管路において各注入孔における注入ステ
ージの透水性の変化あるいは注入中における注入地盤の
透水性の変化に対応して最も適切な注入速度で注入する
ことができる。
Furthermore, by changing the primary pressure and converting the diameter of the injection nozzle, the most appropriate injection can be performed in response to changes in the water permeability of the injection stage in each injection hole in multiple injection pipes or changes in the water permeability of the injection ground during injection. Can be injected at a rate.

例えば、注入管路の注入ステージが透水係数の小さな
層に達し、注入速度を小さくしたい場合には、噴射ノズ
ル口径を小さなものに変換したり、あるいは各ノズル径
の変換と一次圧力の調整を行うことによって最も適切な
注入が可能になる。
For example, when the injection stage of the injection pipe reaches a layer with a low hydraulic conductivity and it is desired to reduce the injection speed, the injection nozzle bore diameter is converted to a smaller one, or each nozzle diameter is converted and the primary pressure is adjusted. This allows the most appropriate injection.

上記において、一次圧力は、10kg f/cm2以上、望まし
くは2kg f/cm2以上である。
In the above, the primary pressure is 10 kg f / cm 2 or more, preferably 2 kg f / cm 2 or more.

10kg f/cm2以下になると二次圧力の増大により、複数
の注入孔への所定流量の分流が困難になる。また、一次
圧力と二次圧力の差圧は、2kg f/cm2以上、好ましくは5
kg f/cm2以上である。なぜならば、流量の暫減領域でも
ポンプ圧とノズル孔径を変換することにより、ほぼ所定
の流量を確保出来るものの、差圧が2kg f/cm2以下にな
るとそれらの調整がだんだん難しくなるからである。ま
た、ノズル口の開口面積の注入管路内面積(あるいは、
送液部内面積)に対する比率は1/4以下、好ましくは1/1
0以下である。なぜならば1/4以下になると噴射効果が減
少し、下流圧力の上昇にもかかわらず一定の流量を保持
する現象が生じにくくなるためである。
When the pressure is 10 kgf / cm 2 or less, the secondary pressure increases, which makes it difficult to divert a predetermined flow rate to the plurality of injection holes. The differential pressure between the primary pressure and the secondary pressure is 2 kg f / cm 2 or more, preferably 5
It is more than kg f / cm 2 . This is because even if the flow rate is temporarily reduced, the pump pressure and the nozzle hole diameter can be converted to secure a nearly predetermined flow rate, but if the differential pressure becomes 2 kg f / cm 2 or less, it becomes increasingly difficult to adjust them. . In addition, the area inside the injection conduit of the opening area of the nozzle opening (or,
Ratio to the inner area of the liquid transfer part) is 1/4 or less, preferably 1/1
It is 0 or less. This is because if it becomes 1/4 or less, the injection effect decreases, and it becomes difficult for the phenomenon of maintaining a constant flow rate to occur despite the increase in the downstream pressure.

〔発明の効果〕〔The invention's effect〕

上述したように本発明は流体の管内噴射に着目したも
のであって、これにより一つの送液部から複数の注入管
路に注入液を分流し、注入抵抗圧が異なっても所定の流
量を確保せしめ、これにより多孔同時注入を可能にした
ものである。
As described above, the present invention focuses on the in-pipe injection of the fluid, whereby the injecting liquid is diverted from one liquid sending section to a plurality of injecting pipe lines, and a predetermined flow rate is maintained even if the injecting resistance pressure is different. This ensures the simultaneous injection of multiple pores.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明装置の一具体例の説明図、第2図は本発
明装置の変形例の説明図、第3図は本発明にかかる噴射
ノズルの一具体例の断面図、第4図は第3図の平面図、
第5図および第8図はそれぞれ実験に用いた装置の説明
図、第6図、第7図および第9図はそれぞれ二次圧力と
流量との関係を表したグラフ、第10図、第11図、第12図
および第13図はそれぞれ、本発明装置の変形例の説明図
である。 1……送液部、2……注入液槽、 6……ポンプ、9……注入管路、 10……噴射ノズル、14……地盤、 15……注入孔。
FIG. 1 is an explanatory view of a specific example of the device of the present invention, FIG. 2 is an explanatory view of a modified example of the device of the present invention, FIG. 3 is a sectional view of a specific example of the injection nozzle according to the present invention, and FIG. Is a plan view of FIG.
FIGS. 5 and 8 are explanatory views of the apparatus used in the experiments, FIGS. 6, 7, and 9 are graphs showing the relationship between the secondary pressure and the flow rate, FIGS. 10 and 11, respectively. FIG. 12, FIG. 12 and FIG. 13 are explanatory views of modified examples of the device of the present invention. 1 ... Liquid sending part, 2 ... Injection liquid tank, 6 ... Pump, 9 ... Injection pipe, 10 ... Injection nozzle, 14 ... Ground, 15 ... Injection hole.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】注入液を送液する一つの送液部から複数分
枝され、かつそれぞれの内部に噴射ノズルが備えられた
複数の注入管路をそれぞれ地盤内の各注入孔に別々に設
置し、次いで、前記送液部を通じて注入液を前記複数の
注入管路に同時に送液して注入孔から地盤内に同時注入
することを特徴とし、前記送液部の内圧が前記各注入管
路の噴射ノズルよりも下流の内圧よりも高く保持されて
なり、これにより前記各注入孔における地盤の注入抵抗
圧の違いあるいは注入中における地盤の注入抵抗圧の変
化にもかかわらず、前記各注入管路に注入液を所定の注
入速度で送液することを特徴とする注入液の複数の注入
管路からの同時注入工法。
1. A plurality of injection pipes, each of which is branched from one liquid supply unit for supplying an injection liquid and has an injection nozzle inside, is separately installed in each injection hole in the ground. Then, the injection liquid is simultaneously sent to the plurality of injection pipes through the liquid supply unit and simultaneously injected into the ground through the injection hole, and the internal pressure of the liquid supply unit is set to the respective injection pipes. Is maintained higher than the internal pressure at the downstream side of the injection nozzle of the injection nozzle, so that despite the difference in the injection resistance pressure of the ground in the injection holes or the change of the injection resistance pressure of the ground during the injection, the injection pipes A method for simultaneously injecting injecting liquid from a plurality of injecting pipes, wherein the injecting liquid is sent to the passage at a predetermined injection speed.
【請求項2】請求項第1項に記載の工法において、前記
送液部の内圧および各注入管路の噴射ノズル口径を一定
に設定し、これにより各注入管路に、それぞれ同量の注
入液を送液するようにした工法。
2. The method according to claim 1, wherein the inner pressure of the liquid feeding section and the diameter of the injection nozzle of each injection pipe are set to be constant, whereby the same amount of injection is made in each injection pipe. A construction method in which the liquid is sent.
【請求項3】請求項第1項に記載の工法において、前記
送液部の内圧を一定に保って前記各ノズル口径をそれぞ
れ適宜に選定し、これにより前記各注入管路への注入量
を地盤の注入抵抗圧に応じてそれぞれ所望の量に調整す
るようにした工法。
3. The method according to claim 1, wherein the inner diameter of the liquid feeding section is kept constant and each of the nozzle diameters is appropriately selected, whereby the injection amount into each of the injection pipes is determined. A construction method in which the desired amount is adjusted according to the injection resistance pressure of the ground.
【請求項4】請求項第1項に記載の工法において、前記
送液部の内圧と、噴射ノズルの口径を適宜に選定し、こ
れにより注入管路先端からの注入液の吐出速度を注入す
べき地盤の透水性に対応した最も適当な速度に設定する
ようにした工法。
4. The method according to claim 1, wherein the inner pressure of the liquid feeding section and the diameter of the injection nozzle are appropriately selected to inject the discharge speed of the injection liquid from the tip of the injection conduit. A construction method that is set to the most appropriate speed corresponding to the permeability of the ground to be ground.
【請求項5】請求項第1項の工法において、前記各噴射
ノズルの上流側と下流側の管路内圧力差は5kg f/cm2
上である工法。
5. The method according to claim 1, wherein the pressure difference between the upstream side and the downstream side of each of the injection nozzles is 5 kg f / cm 2 or more.
【請求項6】注入液を送液する一つの送液部と、この送
液部から複数分枝され、それぞれ地盤内の各注入孔に別
々に設置される複数の注入管路と、前記複数の注入管路
内にそれぞれ設置された噴射ノズルとを備え、前記送液
部の内圧を、前記各注入管路の噴射ノズルよりも下流の
内圧よりも高く保持してなり、これにより前記各注入孔
における地盤の注入抵抗圧の違いあるいは注入中におけ
る地盤の注入抵抗圧の変化にもかかわらず、前記各注入
管路に前記注入液を所定の注入速度で送液することを特
徴とする注入液の複数の注入管路からの同時注入装置。
6. A single liquid feeding part for feeding the injecting liquid, a plurality of injection conduits branching from the liquid feeding part and separately installed in respective injection holes in the ground, and Injection nozzles respectively installed in the injection pipes, and the internal pressure of the liquid feeding section is kept higher than the internal pressure downstream of the injection nozzles of the injection pipes. An injecting liquid, which is characterized in that the injecting liquid is sent to each of the injecting pipes at a predetermined injecting speed, regardless of the difference in the injecting resistive pressure of the ground in the hole or the change of the injecting resistive pressure of the ground during the injection. Simultaneous injection device from multiple injection lines.
【請求項7】請求項第6項の装置において、前記各噴射
ノズルの上流側と下流側の管路内圧力差は5kg f/cm2
上である装置。
7. The device according to claim 6, wherein the pressure difference between the upstream side and the downstream side of each of the injection nozzles is 5 kg f / cm 2 or more.
JP1230981A 1989-09-06 1989-09-06 Simultaneous injection method and equipment from multiple injection lines Expired - Fee Related JP2552553B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1230981A JP2552553B2 (en) 1989-09-06 1989-09-06 Simultaneous injection method and equipment from multiple injection lines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1230981A JP2552553B2 (en) 1989-09-06 1989-09-06 Simultaneous injection method and equipment from multiple injection lines

Publications (2)

Publication Number Publication Date
JPH0393916A JPH0393916A (en) 1991-04-18
JP2552553B2 true JP2552553B2 (en) 1996-11-13

Family

ID=16916358

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1230981A Expired - Fee Related JP2552553B2 (en) 1989-09-06 1989-09-06 Simultaneous injection method and equipment from multiple injection lines

Country Status (1)

Country Link
JP (1) JP2552553B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50146110A (en) * 1974-05-14 1975-11-22
JPS5830445B2 (en) * 1978-10-27 1983-06-29 三井東圧化学株式会社 Constant pressure grouting method and equipment

Also Published As

Publication number Publication date
JPH0393916A (en) 1991-04-18

Similar Documents

Publication Publication Date Title
US5484232A (en) Method for injecting lubricant and filler in the pipe-jacking method
JP2011074591A (en) Grouting pipe and grouting method
JP3663113B2 (en) Ground injection device and ground injection method
KR101698970B1 (en) Chemical liquid injection grouting process automation systems
JP2552553B2 (en) Simultaneous injection method and equipment from multiple injection lines
JP4294691B2 (en) Injection tube and grout injection method
KR20170097434A (en) Grout injection method according to the permeable membrane and back flow prevention infusion tube
JP3140742B2 (en) Chemical injection tube structure and chemical injection method
KR950004683B1 (en) Method and device for injecting ground hardening agent
JP2630722B2 (en) Ground injection method and injection pipe device
US4842780A (en) System for preparing ground-impregnating material
EP3008250B1 (en) Computerised feed grouting system for multiple inlet sleeve pipes
JP2586984B2 (en) Ground injection method and injection pipe
JP3919727B2 (en) Ground injection device and ground injection method
JP3914542B2 (en) Chemical injection device and chemical injection method
JP2772637B2 (en) Injection pipe device and ground injection method using this device
JP5190598B1 (en) Ground injection device and ground injection method
CN107926627A (en) It is a kind of to use the irrigation rig for intersecting bilateral with being set with micro-nozzle
JPH11200405A (en) In-pipe mixing method for injected hardener and soil for use during pneumatic conveyance of dredged soil
JP2004346646A (en) Construction method for preventing piping
JP3632956B2 (en) Ground injection device and injection method
JP2004075251A (en) Pumping method for gellike substance
JP3525079B2 (en) Rehabilitation repair method for existing pipeline
JPH0791824B2 (en) Ground injection method
JP2881331B2 (en) Directional injection injection method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080822

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090822

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees