JPH0791824B2 - Ground injection method - Google Patents

Ground injection method

Info

Publication number
JPH0791824B2
JPH0791824B2 JP2993792A JP2993792A JPH0791824B2 JP H0791824 B2 JPH0791824 B2 JP H0791824B2 JP 2993792 A JP2993792 A JP 2993792A JP 2993792 A JP2993792 A JP 2993792A JP H0791824 B2 JPH0791824 B2 JP H0791824B2
Authority
JP
Japan
Prior art keywords
injection
pipe
ports
port
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2993792A
Other languages
Japanese (ja)
Other versions
JPH05195525A (en
Inventor
健二 栢原
Original Assignee
強化土エンジニヤリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 強化土エンジニヤリング株式会社 filed Critical 強化土エンジニヤリング株式会社
Priority to JP2993792A priority Critical patent/JPH0791824B2/en
Publication of JPH05195525A publication Critical patent/JPH05195525A/en
Publication of JPH0791824B2 publication Critical patent/JPH0791824B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Consolidation Of Soil By Introduction Of Solidifying Substances Into Soil (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は固結時間の異なる複数
の注入材を地盤中に注入して地盤を固結する複合注入工
法に係り、特に前記固結時間の異なる複数の注入材を同
時にかつ横方向に向けて注入することにより極めて迅速
かつ簡単に地盤を固結する地盤注入工法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a composite pouring method for pouring a plurality of injection materials having different setting times into the ground to consolidate the ground, and particularly to simultaneously applying a plurality of injection materials having different setting times at the same time. In addition, the present invention relates to a ground pouring method of consolidating the ground extremely quickly and easily by pouring in the lateral direction.

【0002】[0002]

【従来の技術】複雑な地盤を改良する技術として一般
に、固結時間の短いグラウトならびに長いグラウトを地
盤中に注入する、いわゆる複合注入工法が用いられる。
この種の複合注入工法として、従来、二重管を用いてま
ず、固結時間の短いグラウトを地盤中に注入して粗い部
分、弱い部分あるいは注入管まわりの空隙を填充し、そ
の後固結時間の長いグラウトを土粒子間注入して地盤中
に浸透させる工法が知られている。
2. Description of the Related Art Generally, a so-called composite pouring method is used as a technique for improving a complicated ground, in which a grout having a short setting time and a grout having a long setting time are poured into the ground.
Conventionally, this type of composite pouring method uses a double pipe to inject grout with a short setting time into the ground to fill the rough parts, weak parts or voids around the injection pipe, and then set the setting time. It is known that a long grout is injected between soil particles to penetrate into the ground.

【0003】さらに、三重管を用いて二つの管路から別
々に送液された二液の合流液(固結時間の短い注入液)
を上部吐出口から注入し、同時に下部吐出口から固結時
間の長いグラウトを注入する複合注入工法が知られてい
る。
Further, a confluent liquid of two liquids separately fed from two pipe lines using a triple pipe (injection liquid having a short setting time)
There is known a composite injection method in which grouting is injected from the upper discharge port and simultaneously grout having a long setting time is injected from the lower discharge port.

【0004】[0004]

【発明が解決しようとする問題点】しかし、前者の二重
管では固結時間の異なるグラウトが別々に注入されるた
め、注入の際にこれらグラウトの切り換えが必要とな
り、このため操作が複雑化されて迅速かつ簡単な注入が
不可能である。さらに、この注入管では送液量を多くで
きず、施工能率が低い。
However, in the former double pipe, since grouts having different setting times are separately injected, it is necessary to switch these grouts during injection, which complicates the operation. It has been impossible to inject quickly and easily. Furthermore, this injection pipe cannot increase the amount of liquid to be sent, resulting in low construction efficiency.

【0005】また、後者の三重管では固結時間の異なる
グラウトの同時注入が可能となるが、三重管であるため
注入管孔径が大きくなり、削孔費が高く、かつ施工能率
が悪くなる。さらに、この三重管では主材、瞬結用反応
剤配合液および緩結用反応剤配合液の配合調整が必要
で、複雑となる。さらに、この三重管では上部吐出口か
らの注入液は水平方向に注入されるが、下部吐出口から
の注入液は下方垂直方向に注入される。
Further, the latter triple pipe allows simultaneous injection of grout having different setting times, but since it is a triple pipe, the diameter of the injection pipe becomes large, the drilling cost becomes high, and the construction efficiency becomes poor. Furthermore, this triple pipe is complicated because it requires adjustment of the composition of the main material, the reaction mixture composition for instant setting and the reaction composition formulation for slow setting. Further, in this triple pipe, the injection liquid from the upper discharge port is injected horizontally, while the injection liquid from the lower discharge port is injected vertically downward.

【0006】通常、注入工法が対象とする地盤は軟弱地
盤であるが、この地盤では地盤生成過程において透水性
の異なる層が水平方向に帯積するのが通例である。した
がって、透水係数は垂直方向よりも水平方向が大きく、
注入管の吐出口は注入管末端部に下方垂直方向に向いて
位置するよりも注入管側壁に、水平方向に向いて位置す
る方が無理なく注入される。
[0006] Normally, the ground to which the pouring method is applied is soft ground, but in this ground, it is customary that layers having different water permeability are piled up in the horizontal direction in the process of ground formation. Therefore, the hydraulic conductivity in the horizontal direction is larger than in the vertical direction,
The discharge port of the injection pipe is more naturally injected in the horizontal direction on the side wall of the injection pipe than in the downward vertical direction at the end of the injection pipe.

【0007】本出願人はこの考えに基づく注入管を特願
昭62−240656号として出願している。この先願
にかかる注入管は二つの管路を有するとともに軸方向の
異なる位置に水平方向に向いた複数の吐出口を有し、前
記吐出口には一方の管路と通じる噴射口および他方の管
路と通じる噴射口がそれぞれ開口され、前記複数の吐出
口のうち少なくとも二つはその中に開口される噴射口の
口径比率がそれぞれ異なるように形成されてなるもので
ある。
The applicant has applied for an injection tube based on this idea as Japanese Patent Application No. Sho 62-240656. The injection pipe according to this prior application has two pipe lines and also has a plurality of discharge ports oriented in the horizontal direction at different axial positions, and the discharge port communicates with one pipe line and the other pipe. Each of the ejection ports communicating with the passage is opened, and at least two of the plurality of ejection ports are formed such that the diameter ratios of the ejection ports opened therein are different from each other.

【0008】この先願発明の特徴は内管および外管か
ら、それぞれA液およびB液を同時に注入し続け、上下
の吐出口にそれぞれ開口する噴射口からの噴射量の比率
の違いによって瞬結ゲルと緩結ゲルを形成させるもので
ある。このため、噴射口からの噴射量にわずかなくるい
が生じた場合でも、所定のゲルが形成されないという問
題が生じた。
The feature of the invention of this prior application is that the liquid A and the liquid B are continuously injected simultaneously from the inner pipe and the outer pipe, respectively, and the instantaneous setting gel is caused by the difference in the ratio of the injection amount from the injection ports opening at the upper and lower discharge ports. And to form a loose gel. For this reason, even if a slight amount of spray is generated from the spray port, a problem that a predetermined gel is not formed occurs.

【0009】すなわち、噴射口の口径比率で噴射量を調
整する先願発明では、口径のわずかな違いでも、噴射口
面積が大きく変化して噴射量の比率が大きく変動するこ
とになる。したがって、噴射口の形成の誤差がゲル化時
間に大きく影響することになる。
That is, in the prior invention in which the injection amount is adjusted by the ratio of the diameters of the injection ports, even a slight difference in the diameters causes a large change in the area of the injection port and a large change in the ratio of the injection amounts. Therefore, the error in the formation of the injection port greatly affects the gelation time.

【0010】そこで、本発明の目的は固結時間の異なる
複数の注入材を地盤中に注入するに際して、二重管等の
二つの管路を有する孔径の小さい注入管を用いて水平方
向に同時注入を可能とし、このため迅速かつ簡単に地盤
を固結し、前述先願発明をさらに改良発展せしめた地盤
注入工法を提供することにある。
Therefore, an object of the present invention is to simultaneously inject a plurality of injection materials having different consolidation times into the ground in a horizontal direction by using an injection pipe having a small hole diameter having two pipe paths such as a double pipe. It is an object of the present invention to provide a ground injection method that enables injection, and therefore solidifies the ground quickly and easily, and further improves and develops the above-mentioned prior invention.

【0011】[0011]

【問題点を解決するための手段】前述の目的を達成する
ため、本発明によれば、二つの管路を有し、かつ軸方向
の異なる位置に複数の吐出口を有する注入管であって、
前記吐出口には一方の管路と通じる一つまたは複数の噴
射口および他方の管路と通じる一つまたは複数の噴射口
がそれぞれ開口され、前記複数の吐出口のうち少なくと
も二つはその中に開口される一方の管路の噴射口の数と
他方の管路の噴射口の数の比率がそれぞれ異なるように
形成された注入管を用い、前記二つの管路のうち一方の
管路から主材を送り、他方の管路から反応剤を送ること
により、固結時間の異なる複数の注入材を前記複数の吐
出口から横方向に、かつ同時に注入することを特徴とす
る。
In order to achieve the above-mentioned object, according to the present invention, there is provided an injection pipe having two pipe lines and a plurality of discharge ports at different axial positions. ,
One or a plurality of injection ports that communicate with one of the conduits and one or a plurality of injection ports that communicate with the other of the conduits are opened in the discharge port, and at least two of the plurality of discharge ports are in the discharge port. Using the injection pipes formed so that the ratio of the number of the injection ports of one pipeline and the number of the injection ports of the other pipeline are different from one of the two pipelines By feeding the main material and the reactant from the other pipe, a plurality of injection materials having different setting times are injected laterally and simultaneously from the plurality of discharge ports.

【0012】以下、本発明を添付図面を用いて説明す
る。図1および図2はそれぞれ、本発明方法に用いられ
る注入管の一具体例の断面図ならびに本発明工法の説明
図である。図1は掘削水の送液状態を示し、図2は注入
状態を示す。図1および図2において、1は本発明工法
にかかる二つの管路を有する注入管であって、二重管の
例を示す。注入管1は外管管路2および内管管路3を有
し、かつ軸方向の異なる位置、すなわち注入管1の長さ
方向の異なる位置に注入管1の外側Aに通じる横方向に
向いた複数の吐出口5、5・・5を有し、さらに前記吐
出口5、5・・5には一方の管路、例えば内管管路3と
通じる一つまたは複数の噴射口4、4・・4(または
4′、4′・・4′)および他方の管路、例えば外管管
路2と通じる噴射口6、6・・6(または6′、6′・
・6′)がそれぞれ開口される。
The present invention will be described below with reference to the accompanying drawings. 1 and 2 are a cross-sectional view of one specific example of an injection pipe used in the method of the present invention and an explanatory view of the method of the present invention. FIG. 1 shows the state of sending the drilling water, and FIG. 2 shows the state of injection. 1 and 2, reference numeral 1 denotes an injection pipe having two pipe lines according to the method of the present invention, showing an example of a double pipe. The injection pipe 1 has an outer pipe line 2 and an inner pipe line 3 and is oriented in different positions in the axial direction, that is, in different positions in the longitudinal direction of the injection pipe 1 in the lateral direction leading to the outside A of the injection pipe 1. Has a plurality of discharge ports 5, 5 ... 5 and further has one or a plurality of injection ports 4, 4 communicating with one of the discharge ports 5, 5 ,. .. 4 (or 4 ', 4' .. 4 ') and the other conduit, for example the injection port 6, 6 ... 6 (or 6', 6 '.
・ 6 ') are opened respectively.

【0013】さらに前述の吐出口5、5・・5のうち、
少なくとも二つはその中に開口される一方の管路の噴射
口の数と、他方の管路の噴射口の数の比率がそれぞれ異
なるように形成される。例えば図5に示されるように一
つの吐出口5内に噴射口4(口径Φ 1.0mm) および6
(口径Φ 1.0mm)、6′(口径1.0mm)が開口し、内管管
路の噴射口と外管管路の噴射口との数の比率が1:2で
あり、また図6に示されるように他の一つの吐出口5内
には、噴射口4(口径Φ 1.0mm)、噴射口4′(口径Φ
1.0mm)および6(口径Φ 1.0mm) が開口し、内管管路
の噴射口と、外管管路の噴射口との数の比率は2:1で
あるように形成される。
Further, among the above-mentioned discharge ports 5, 5, ... 5,
At least two of them are formed so that the ratio of the number of the ejection openings of one of the conduits opened therein and the number of the ejection openings of the other conduit are different from each other. For example, as shown in FIG. 5, the injection ports 4 (diameter Φ 1.0 mm) and 6 are provided in one discharge port 5.
(Diameter Φ 1.0 mm) and 6 '(diameter 1.0 mm) are open, and the ratio of the number of the injection port of the inner pipe line to the injection port of the outer pipe line is 1: 2, as shown in FIG. As described above, the other one discharge port 5 has an injection port 4 (diameter Φ 1.0 mm) and an injection port 4 ′ (diameter Φ Φ).
1.0 mm) and 6 (diameter Φ 1.0 mm) are opened, and the ratio of the number of the injection port of the inner pipe line to the injection port of the outer pipe line is 2: 1.

【0014】このように構成される注入管1を用いて図
2に示されるように一方の管路、例えば内管管路3を通
じて主材としての注入材を送液し、かつ他方の管路、例
えば外管管路2を通じて反応剤を送液すると、主材は噴
射口4から吐出口5内に噴射されるとともに反応剤は噴
射口6、6′から吐出口5内に噴射され、両液は吐出口
5内で合流して地盤中に水平方向に注入される。このと
き、吐出口5、5…5のうち少なくとも二つはその中に
開口される一方の管路からの噴射口の数と他方の管路か
らの噴射口の数が異なるから噴射される主材ならびに反
応剤の合流比率が異なり、固結時間の異なる少なくとも
二種以上の注入材が同時に地盤中に注入される。
As shown in FIG. 2, the injection pipe 1 constructed as described above is used to feed an injection material as a main material through one pipe line, for example, an inner pipe line 3, and the other pipe line. For example, when the reaction agent is fed through the outer pipe line 2, the main material is injected from the injection port 4 into the ejection port 5 and the reaction agent is injected from the ejection ports 6 and 6 ′ into the ejection port 5, The liquids merge in the discharge port 5 and are horizontally injected into the ground. At this time, at least two of the discharge ports 5, 5 ... 5 have different numbers of injection ports from one pipe line opened therein and the number of injection ports from the other pipe line are different from each other. At least two kinds of injection materials having different confluence ratios of the material and the reaction agent and having different setting times are simultaneously injected into the ground.

【0015】上述の本発明において、噴射口4、4′お
よび6、6′はいずれも図1および図2に示されるよう
に口径をしぼって形成される。この口径のしぼりは地上
部において噴射口4、4′および6、6′からの注入材
が注入管内流量に対して圧力を生じる程度に、すなわち
ある速度をもって噴射する程度に行われる。この噴射圧
力は1kgf/cm2 以上、好ましくは10kgf/cm2 、さらに好
ましくは15〜20kgf/cm2 以上である。
In the present invention described above, the injection ports 4, 4'and 6, 6'are all formed with a reduced diameter as shown in FIGS. The squeezing of the diameter is performed in the above-ground portion to such an extent that the injection material from the injection ports 4, 4'and 6, 6'produces a pressure with respect to the flow rate in the injection pipe, that is, the injection is performed at a certain speed. The injection pressure is 1 kgf / cm 2 or more, preferably 10 kgf / cm 2, more preferably 15~20kgf / cm 2 or more.

【0016】一般に、地上部において、注入管内の流体
を噴射口から空気中に吐出する場合、注入管内圧力は噴
射口の大きさと流量に依存し、流量に対して噴射口径を
小さくしぼる程、また噴射口径に対して流量を大きくす
るほど、注入管内圧力、すなわち噴射圧力は大きくな
る。また、流量に対して噴射口径が大きいとき、あるい
は噴射口径に対して流量が小さいときには注入管内圧
力、すなわち噴射圧力は小さくなる。そして管内圧力が
高いほど、吐出口外部の抵抗圧が変化してもその吐出量
は変動し難い。
Generally, in the above-ground portion, when the fluid in the injection pipe is discharged into the air from the injection port, the pressure in the injection pipe depends on the size and the flow rate of the injection port, and the smaller the injection port diameter with respect to the flow rate, The larger the flow rate with respect to the injection port diameter, the higher the injection pipe internal pressure, that is, the injection pressure. Further, when the injection port diameter is large with respect to the flow rate or when the flow rate is small with respect to the injection port diameter, the injection pipe internal pressure, that is, the injection pressure becomes small. The higher the pressure inside the pipe, the more difficult it is for the discharge amount to change, even if the resistance pressure outside the discharge port changes.

【0017】さらに、本発明は異なるゲル化時間を正確
に設定しやすく、かつ注入中の抵抗圧力の変化にも注入
液の吐出口への噴射量が変化しにくいため、設定したゲ
ル化時間を正確に保持し得る。すなわち、本発明者は所
定の噴射量をうる際に、噴射口の口径を調整する先願発
明よりも噴射口の数を調整する方が噴射口の工作誤差が
少なく、正確に行なえることに着目し、本発明を完成す
るに至った。この理由は噴射量は圧力が一定の場合、噴
射面積にほぼ比例するためである。噴射量を2倍にする
には噴射口の口径を大きくする方法と噴射口を増加する
方法があるが、口径を大きくする場合の誤差の面積に対
する影響は口径の数を増加することによって生じる誤差
の影響よりも大きくなる。したがって、A、B合流液の
合流比率を噴射口の口径比率によって定めるよりも噴射
口の数の比率によって定める方が一層容易であり、合流
液のゲル化時間を正確に定め得る。
Further, according to the present invention, different gelling times can be set accurately, and the injection amount of the injecting liquid to the ejection port does not easily change even when the resistance pressure changes during injection. Can hold exactly. That is, when the present inventor obtains a predetermined injection amount, it is possible to perform the operation accurately by adjusting the number of the injection ports as compared with the invention of the prior application that adjusts the diameter of the injection ports. Focusing attention, the present invention has been completed. This is because the injection amount is almost proportional to the injection area when the pressure is constant. In order to double the injection amount, there are a method of increasing the diameter of the injection port and a method of increasing the injection port, but the effect of the error when increasing the diameter on the area is the error caused by increasing the number of the diameters. Will be greater than the effect of. Therefore, it is easier to determine the confluence ratio of the A and B confluents by the ratio of the number of ejection ports than by the aperture ratio of the ejection ports, and the gelling time of the confluent can be accurately determined.

【0018】さらに、本発明者は内圧を高くして噴射口
から流体を噴射した場合、外部からの抵抗圧力に対して
噴射口径が小さい方が噴射量に変動が少ないことに着目
し、噴射量を多くするには噴射口径を大きくするよりも
噴射口の数を増やす方が外部からの抵抗圧力の変動に影
響されにくい噴射量が得られ、したがって、所定のゲル
化時間を得やすいことを見いだした。
Furthermore, the present inventor has noticed that when the fluid is ejected from the ejection port by increasing the internal pressure, the smaller the ejection port diameter with respect to the resistance pressure from the outside, the smaller the variation of the ejection amount. It was found that increasing the number of injection ports to increase the number of injections makes it possible to obtain an injection amount that is less affected by fluctuations in resistance pressure from the outside, and thus it is easier to obtain a predetermined gelation time. It was

【0019】本発明はこのようにして後述のとおり、吐
出口5からの注入材の固結時間が異なっても、また、吐
出口5のまわりの地盤の透水性が異なっても、さらに注
入された注入液のゲル化の進行により地盤の浸透抵抗力
が変化しても、いずれも吐出口5、5・・5からもほぼ
一定の吐出量が得られ、地盤を確実に固結する。
According to the present invention, as will be described later, even if the solidification time of the injection material from the discharge port 5 is different, or the water permeability of the ground around the discharge port 5 is different, further injection is performed. Even when the permeation resistance of the ground changes due to the progress of gelation of the injected liquid, a substantially constant discharge amount can be obtained from the discharge ports 5, 5 ... 5 and the ground is firmly solidified.

【0020】本発明に用いられる主材は水ガラスあるい
はそれ自体固結し得る注入材であって、例えば水ガラス
と反応剤の混合液、非アルカリ性水ガラスグラウト、セ
メントグラウト等が挙げられ、また、反応剤は各種固結
剤あるいは固結促進剤であって、水ガラスと反応剤の混
合液に対しては塩、石灰等のアルカリ、非アルカリ性水
ガラス配合液、炭酸ガス、炭酸水等、非アルカリ性水ガ
ラスグラウトに対しては水ガラス、セメント、アルカリ
各種塩、 水ガラスグラウト等、セメントグラウトに対し
て水ガラス、各種塩、非アルカリ性水ガラス配合液等が
挙げられる。なお、前述の吐出口5の代わりに図示しな
いが、 注入管円周方向に溝を形成してもよい。この場
合、 図1の栓7の代わりにゴムリングが溝に嵌められ
る。
The main material used in the present invention is water glass or an injectable material which can be solidified by itself, and examples thereof include a mixed solution of water glass and a reactant, non-alkaline water glass grout, cement grout, and the like. , The reaction agent is various caking agents or caking accelerators, salt, alkali such as lime, non-alkaline water glass compounded solution, carbon dioxide gas, carbonated water, etc. for a mixed solution of water glass and a reaction agent, Examples of the non-alkaline water glass grout include water glass, cement, various alkali salts, water glass grout, and the like, and for cement grout, water glass, various salts, non-alkaline water glass compounding liquid, and the like. Although not shown in the figure instead of the above-mentioned discharge port 5, a groove may be formed in the circumferential direction of the injection pipe. In this case, a rubber ring is fitted in the groove instead of the plug 7 of FIG.

【0022】[0022]

【作用】上述の本発明工法において、まず図1に示され
るように内管3aの閉束金具9を外管2aの下方吐出口
8から離れて配置して末端吐出口8を開口しておき、こ
の状態で外管管路2を通して掘削水を送液し、末端吐出
口8から矢印の方向に吐出して削孔する。このとき吐出
口5は栓7、例えばゴム栓、ゴムリング、スチール栓等
により閉栓されている。
In the method of the present invention described above, first, as shown in FIG. 1, the closing bundling member 9 of the inner pipe 3a is arranged away from the lower discharge port 8 of the outer pipe 2a, and the end discharge port 8 is opened. In this state, the drilling water is sent through the outer pipe line 2 and discharged from the end discharge port 8 in the direction of the arrow for drilling. At this time, the discharge port 5 is closed by a stopper 7, for example, a rubber stopper, a rubber ring, a steel stopper or the like.

【0023】次いで、図2に示されるように、内管管路
3を通じて主材としての注入材、例えば水ガラス水溶液
と反応剤の混合液を送液すると、この液圧により閉束金
具9が落下して末端吐出口8を閉塞するとともに栓7を
放出して吐出口5、5・・5を開口し、前記注入剤は噴
射口4、4・・4を通じて吐出口5、5・・5に噴射さ
れる。さらに同時に外管管路2を通じて反応剤を送液す
ると、この液体は噴射口6から吐出口5中の噴射液に噴
射合流される。このとき吐出口5、5・・5のうち少な
くとも二つは内外管管路からの噴射口の数の比率が異な
るから主材および反応剤の合流比率が異なり、固結時間
の異なる少なくとも二種以上の注入材が同時に注入管1
の外側Aに横方向に噴射注入される。すなわち、本発明
工法では一方の吐出口5から固結時間の短い注入材、他
方の吐出口5から固結時間の長い注入材が同時にかつ横
方向に注入される。
Then, as shown in FIG. 2, when an injection material as a main material, for example, a mixed solution of a water glass aqueous solution and a reactant is sent through the inner pipe line 3, the closing bundle metal fitting 9 is caused by this liquid pressure. It drops and closes the end discharge port 8 and releases the stopper 7 to open the discharge ports 5, 5, ... 5, The injection agent is discharged through the injection ports 4, 4 ,. Is injected into. Further, at the same time, when the reactant is fed through the outer pipe line 2, this liquid is jet-merged from the jet port 6 to the jet liquid in the discharge port 5. At this time, since at least two of the discharge ports 5, 5, ... 5 have different ratios of the number of injection ports from the inner and outer pipe lines, the merging ratios of the main material and the reactant are different, and at least two kinds having different consolidation times The above injection materials are the injection pipes 1
Is injected laterally to the outside A of the. That is, in the method of the present invention, the injection material having a short setting time is injected from one discharge port 5 and the injection material having a long setting time is injected simultaneously and laterally from the other discharge port 5.

【0024】本発明における噴射による注入機能を図3
および図4で説明する。内径4cmの管にポンプで送水し
たところ、ポンプ圧は殆ど生じない。この管の末端に噴
射口を設けた先端部を装着して噴射圧力(ホンプ圧)と
吐出量を測定した結果の例を図3および図4に示す。な
お、比較のために上記管に直径1cmの吐出口を3個有す
る先端部を上記管の末端部に装着して1〜20l/mの送
水を行ったが、吐出圧力は殆ど認められなかった。
FIG. 3 shows the injection function by injection in the present invention.
And it demonstrates in FIG. When pumping water to a pipe with an inner diameter of 4 cm, almost no pump pressure is generated. An example of the result of measuring the injection pressure (honp pressure) and the discharge amount by mounting the tip end portion having the injection port at the end of this pipe is shown in FIGS. 3 and 4. For comparison, a tip having three discharge ports each having a diameter of 1 cm was attached to the end of the pipe to feed water of 1 to 20 l / m, but almost no discharge pressure was observed. .

【0025】図3はノズル口径 1.0mm、図4は 1.5mmの
吐出口をそれぞれ有する先端部を管に装着し、ポンプ圧
を種々変え、ポンプ圧が所定圧を保つように水を送液
し、かつ噴射口の下流側も管路でつなげて管路内にバル
ブにより抵抗圧を作用せしめて地盤の抵抗圧力に相当す
る圧力を生ぜしめ、その場合の噴射口から吐出される流
量(l/分)と抵抗圧(kgf/cm2)を測定し、その結果を
表したグラフである。図3および図4から明らかなよう
に、例えばポンプ圧80kg/cm2を用いて説明すると、地盤
内における抵抗圧力(kg/cm2)が変化しても、抵抗圧力
50kg/cm2位まではノズルからの流量が一定である。
FIG. 3 shows a nozzle having a nozzle diameter of 1.0 mm, and FIG. 4 has a tip portion having a discharge port of 1.5 mm, which is attached to a pipe, the pump pressure is changed variously, and water is sent so that the pump pressure maintains a predetermined pressure. Moreover, the downstream side of the injection port is also connected by a pipeline, and a resistance pressure is applied by a valve in the pipeline to generate a pressure corresponding to the resistance pressure of the ground, and the flow rate (l / Min) and resistance pressure (kgf / cm 2 ) were measured, and the results are shown in the graph. As is clear from FIGS. 3 and 4, for example, using a pump pressure of 80 kg / cm 2 , even if the resistance pressure (kg / cm 2 ) in the ground changes, the resistance pressure
The flow rate from the nozzle is constant up to about 50 kg / cm 2 .

【0026】すなわち、地盤抵抗圧の変化にもかかわら
ず、一定の吐出量が得られる領域が存在することが図3
および図4からわかる。さらに、本発明者は次のことに
着目して先願発明の欠点を除き、本発明を完成するに至
った。すなわち、実験によれば、例えばポンプ圧30kg/c
m2で噴射する場合、地上での噴射量(地盤の抵抗圧がゼ
ロの場合)はノズル口径Φ1.0 mmではほぼ3l/分、ノ
ズル口径Φ1.5 mmではほぼ6l/分になる。このことは
噴射量を2倍にするには噴射口の数で調整する場合に
は、ノズル口径Φ1.0 mmを2個に増やせばよいのに対
し、口径の大きさで調整するには、ノズル口径Φ1.0 mm
を0.5mm 大きくすることを意味する。
That is, there is a region where a constant discharge amount can be obtained despite the change in the ground resistance pressure.
And it can be seen from FIG. Furthermore, the present inventor has completed the present invention by focusing on the following points, except for the drawbacks of the prior invention. That is, according to the experiment, for example, the pump pressure is 30 kg / c
If injecting m 2, and the injection quantity on the ground (when the resistance pressure of the ground is zero) is approximately 3l / min in the nozzle diameter ø1.0 mm, becomes substantially 6l / min at a nozzle diameter Φ1.5 mm. This means that when adjusting the number of injection ports to double the injection amount, the nozzle diameter Φ1.0 mm should be increased to two, whereas in order to adjust by the size of the nozzle diameter, Nozzle diameter Φ1.0 mm
Means increasing by 0.5 mm.

【0027】このことはさらに、前者は噴射口の数で調
整するには噴射口の数を増減すれば、確実に、かつ正確
に行なえるのに対し、後者は微細な大きさで調整しなけ
ればならず、わすかな径の違いで大幅に吐出量が変化し
てしまい、工作が極めて難しいことを意味する。
Further, the former can be surely and accurately performed by adjusting the number of injection ports by increasing or decreasing the number of injection ports, while the latter must be adjusted by a fine size. This means that the amount of discharge changes drastically due to slight differences in diameter, which means that machining is extremely difficult.

【0028】さらにまた、図3と図4を比較すると、ノ
ズル口径が大きい場合は、小さな場合にくらべてノズル
からの流量が大きく、地盤の抵抗圧力が同じ場合、吐出
量が大きいため、抵抗圧力の変化に対する吐出量の変化
が大きくなる。したがって、地盤の変状あるいは注入中
の地盤の透水性の変化による地盤抵抗力の変化に対し、
ノズル口径が大きいほど噴射量の変化が大きくなりやす
い。特に、抵抗圧力が高くなるほどノズルからの噴射量
の低下の度合いは大きい。このことはノズルの口径を変
化させて噴射量を変化させるよりも、小さな口径のノズ
ルの数を増減しさせて噴射量を変化させた方が抵抗圧の
変化にも常に一定の噴射量を確保でき、したがって常に
一定のゲル化時間を確保しやすいことを意味する。
Further, comparing FIG. 3 with FIG. 4, when the nozzle diameter is large, the flow rate from the nozzle is larger than when it is small, and when the ground resistance pressure is the same, the discharge amount is large, so the resistance pressure The change in the discharge amount with respect to the change in Eq. Therefore, for changes in the ground resistance due to changes in the ground or changes in the permeability of the ground during injection,
The larger the nozzle diameter, the larger the change in the injection amount. In particular, the higher the resistance pressure, the greater the degree of decrease in the injection amount from the nozzle. This means that rather than changing the nozzle diameter to change the injection amount, changing the injection amount by increasing or decreasing the number of nozzles with a small diameter ensures a constant injection amount even when the resistance pressure changes. This means that it is possible to always maintain a constant gelation time.

【0029】したがって、固結時間の異なった注入材が
それぞれの吐出口から吐出されるにもかかわらず、さら
に地盤の透水性が異なっても一定の吐出量が得られ、地
盤に確実に固結し得る。すなわち、固結時間が短い注入
材は固結時間の長い注入材よりも早くかたまるためその
周辺地盤の注入抵抗は大きくなるが、それにもかかわら
ず、ノズル口径に対応する一定の流量が確保され、ま
た、地盤は上下層それぞれ透水性が異なり、したがって
注入抵抗が異なるが、それにもかかわらず、常に一定の
流量が確保され、さらに地盤は種々の原因により地盤圧
力(抵抗圧力)が変化するが、それにもかかわらず常に
一定の流量が確保され、したがって、本発明工法によれ
ば、ポンプ圧を所望の値に選定することにより一定の吐
出流が確保され、地盤が確実に固結される。
Therefore, even though the injection materials having different setting times are discharged from the respective discharge ports, a constant discharge amount can be obtained even if the water permeability of the ground is different, and the solid is surely solidified on the ground. You can That is, since the injection material with a short setting time is more quickly solidified than the injection material with a long setting time, the injection resistance of the surrounding ground is large, but nevertheless, a constant flow rate corresponding to the nozzle diameter is secured, In addition, although the soil has different permeability in the upper and lower layers, and therefore the injection resistance is different, nevertheless, a constant flow rate is always secured, and the soil pressure (resistive pressure) changes due to various causes. Nevertheless, a constant flow rate is always ensured. Therefore, according to the method of the present invention, a constant discharge flow is ensured by selecting the pump pressure to a desired value, and the ground is reliably solidified.

【0030】さらに、本発明工法は固結時間の異なるグ
ラウトを二重注入管を用いて同時に確実に注入でき、従
来の注入工法のように注入液をきり変える必要がないの
で、簡単で施工能率が高い。例えば、図2の状態で注入
範囲の最下部のステージから上部ステージまで注入管を
引き上げながら注入することができる。この場合、主剤
を内管から、反応剤を外管から送液すれば、上部吐出口
から固結時間の短いグラウトが上層の粗い部分や細かい
部分を填充すると同時に中間の吐出口からはそれより長
いゲル化時間のグラウトが吐出され、最下端の吐出口か
ら固結時間の長いグラウトが重ね合わされて注入されて
いくことになる。
Further, according to the method of the present invention, grouts having different setting times can be surely injected at the same time by using the double injection pipe, and it is not necessary to change the injection liquid as in the conventional injection method. Is high. For example, in the state of FIG. 2, the injection can be performed while pulling up the injection pipe from the lowest stage to the upper stage of the injection range. In this case, if the main agent is fed from the inner tube and the reactant is fed from the outer tube, the grout having a short setting time fills the rough portion or the fine portion of the upper layer from the upper discharge port and at the same time from the middle discharge port. The grout having a long gelation time is discharged, and the grout having a long solidification time is superposed and injected from the discharge port at the lowermost end.

【0031】図7は図2の構造を注入管の上方まで連続
させた例を示す。この場合、注入ステージを上方に引き
上げなくても一本の注入管で全ステージを一度に注入す
ることができる。何となれば、吐出口を多くしても、各
吐出口のゲル化時間が異なっても、また周辺地盤の注入
抵抗が異なっても、所定の注入が確保できることと、吐
出口aと吐出口bからの注入を同時に行った場合、ゲル
化時間の短い注入液は脈状が主体となり、ゲル化時間の
長い注入液は土粒子間浸透が主体となり、このため前者
の方が早く周辺の粗い部分や弱い部分を填充し、後者は
そのあとでゆるやかに細かい部分に浸透していくことに
なるから確実な複合注入が可能であるからである。な
お、図7において、ゲル化時間の短いグラウトの吐出口
と長いグラウトの吐出口は上下方向に交互に設けてもよ
いのはもちろんである。
FIG. 7 shows an example in which the structure of FIG. 2 is continued up to the upper part of the injection pipe. In this case, all stages can be injected at one time with one injection tube without pulling the injection stage upward. What is necessary is that even if the number of ejection ports is increased, the gelation time of each ejection port is different, and the injection resistance of the surrounding ground is different, a predetermined injection can be ensured, and the ejection port a and the ejection port b can be secured. When the injection from the same time is performed at the same time, the infusion solution with a short gel time mainly consists of veins, and the infusion solution with a long gel time mainly consists of penetration between soil particles. This is because a weak compound is filled, and the latter gradually penetrates into a fine part, so that reliable composite injection is possible. It should be noted that, in FIG. 7, the outlets for grout having a short gelation time and the outlets for a long grout may be provided alternately in the vertical direction.

【0032】図8は、同一原理にもとづき、複数の注入
管から同時に所定の注入対象地盤を注入してしまう例を
示す。この場合、施工能率の向上ははかり知れないほど
である。
FIG. 8 shows an example in which a predetermined injection target ground is simultaneously injected from a plurality of injection pipes based on the same principle. In this case, the improvement of construction efficiency is immeasurable.

【0033】[0033]

〔配合〕[Compound]

A液:100 l当たり水ガラス35l、75%硫酸7l、残り
水。(PH約 1.7) B液:100 l当たり水ガラス3l、残り水。 A液、B液を 0.5: 1.0(容量比)で合流すると、8秒
でゲル化し、1.0 :1.0(容量比)で合流すると20分でゲ
ル化し、1.0 :0.5で合流すると60分でゲル化する。A液
は内管から、B液は外管から噴射した。掘削したとこ
ろ、各吐出口からの注入液の浸透固結が確保され、かつ
断面積がほぼ1.2 m2、長さが約 1.5mの円柱形の均質に
浸透した固結体が形成されていることが確認された。
Solution A: 35 liters of water glass, 7 liters of 75% sulfuric acid, and remaining water per 100 liters. (PH about 1.7) Solution B: 3 liters of water glass per 100 liters, remaining water. When liquids A and B are combined at a ratio of 0.5: 1.0 (volume ratio), gelation occurs in 8 seconds, when they are combined at 1.0: 1.0 (volume ratio), gelation occurs in 20 minutes, and when combined at 1.0: 0.5 gelation occurs in 60 minutes. To do. Liquid A was ejected from the inner pipe, and liquid B was ejected from the outer pipe. When excavated, the injection liquid from each discharge port was infiltrated and solidified, and a column-shaped homogeneously solidified body with a cross-sectional area of approximately 1.2 m 2 and a length of approximately 1.5 m was formed. It was confirmed.

【0034】比較のため、上述と同一の二重管で最上部
の吐出口では噴射口6、6′の代わりに直径1.5mm 噴射
口を1個設け、最下部の吐出口では噴射口4、4′の代
わりに直径1.5mm 噴射口を1個設けた注入管を用いて掘
削したところ、固結断面積の径は 1.5〜0.8 までばらつ
いた。
For comparison, the same double pipe as described above is provided with one injection port having a diameter of 1.5 mm instead of the injection ports 6 and 6'in the uppermost ejection port, and the ejection port 4 in the lowermost ejection port. When excavation was carried out using an injection pipe with a 1.5 mm diameter injection port instead of 4 ', the diameter of the consolidation cross-section varied from 1.5 to 0.8.

【0035】[0035]

【発明の効果】以上のとおり、本発明工法によれば、固
結時間の異なる複数の注入材を地盤中に注入するに際し
て、二重管等の二つの管路を有する孔径の小さい注入管
を用いて同時注入が可能となり、これにより迅速かつ簡
単に地盤固結が可能となり、また、注入抵抗圧のちが
い、あるいは変動にもかかわらず、各吐出口において所
定の吐出量、所定のゲル化時間を保持して注入され、こ
れにより地盤を確実に固結することが可能となる。
As described above, according to the method of the present invention, when injecting a plurality of injection materials having different consolidation times into the ground, an injection pipe having two small pipe diameters such as a double pipe is provided. Simultaneous injection can be performed by using this, which enables quick and easy ground consolidation, and a predetermined discharge amount and a predetermined gelling time at each discharge port, regardless of the difference or fluctuation of the injection resistance pressure. Is held and injected, which makes it possible to firmly solidify the ground.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明工法に用いられる注入管の一具体例の断
面図ならびに本発明工法の説明図である。
FIG. 1 is a cross-sectional view of a specific example of an injection pipe used in the method of the present invention and an explanatory view of the method of the present invention.

【図2】本発明工法に用いられる注入管の一具体例の断
面図ならびに本発明工法の説明図である。
FIG. 2 is a cross-sectional view of a specific example of an injection pipe used in the method of the present invention and an explanatory view of the method of the present invention.

【図3】抵抗圧力に対するノズル(口径Φ1.0mm)からの
流量の関係を表したグラフである。
FIG. 3 is a graph showing the relationship between the resistance pressure and the flow rate from a nozzle (diameter Φ1.0 mm).

【図4】抵抗圧力に対するノズル(口径Φ1.5mm)からの
流量の関係を表したグラフである。
FIG. 4 is a graph showing the relationship between the resistance pressure and the flow rate from a nozzle (diameter Φ1.5 mm).

【図5】図2の吐出口部分の一部を表した拡大部分断面
図である。
5 is an enlarged partial cross-sectional view showing a part of the discharge port portion of FIG.

【図6】図2の吐出口部分の他の一部を表した拡大部分
断面図である。
FIG. 6 is an enlarged partial cross-sectional view showing another part of the discharge port portion of FIG.

【図7】本発明工法の他の具体例である。FIG. 7 is another specific example of the method of the present invention.

【図8】本発明工法のさらに他の具体例である。FIG. 8 is still another specific example of the method of the present invention.

【符号の説明】[Explanation of symbols]

1 注入管 2 外管管路 2a 外管 3 内管管路 3a 内管 4 噴出口 4′噴出口 5 吐出口 6 噴出口 6′噴出口 1 injection pipe 2 outer pipe line 2a outer pipe 3 inner pipe line 3a inner pipe 4 jet port 4'jet port 5 discharge port 6 jet port 6 'jet port

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 二つの管路を有し、かつ軸方向の異なる
位置に複数の吐出口を有する注入管であって、前記吐出
口には一方の管路と通じる一つまたは複数の噴射口およ
び他方の管路と通じる一つまたは複数の噴射口がそれぞ
れ開口され、前記複数の吐出口のうち少なくとも二つは
その中に開口される一方の管路の噴射口の数と他方の管
路の噴射口の数の比率がそれぞれ異なるように形成され
た注入管を用い、前記二つの管路のうち一方の管路から
主材を送り、他方の管路から反応剤を送ることにより、
固結時間の異なる複数の注入材を前記複数の吐出口から
横方向に、かつ同時に注入することを特徴とする地盤注
入工法。
1. An injection pipe having two pipe lines and a plurality of discharge ports at different axial positions, wherein the discharge port has one or a plurality of injection ports communicating with one pipe line. And one or a plurality of injection ports that communicate with the other pipe line, respectively, and at least two of the plurality of discharge ports are opened therein. The number of injection ports of the one pipe line and the other pipe line. By using the injection pipe formed so that the ratio of the number of the injection port of each different, by sending the main material from one of the two pipelines, by sending the reactant from the other pipeline,
A ground pouring construction method characterized in that a plurality of pouring materials having different setting times are injected laterally and simultaneously from the plurality of ejection ports.
JP2993792A 1992-01-22 1992-01-22 Ground injection method Expired - Lifetime JPH0791824B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2993792A JPH0791824B2 (en) 1992-01-22 1992-01-22 Ground injection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2993792A JPH0791824B2 (en) 1992-01-22 1992-01-22 Ground injection method

Publications (2)

Publication Number Publication Date
JPH05195525A JPH05195525A (en) 1993-08-03
JPH0791824B2 true JPH0791824B2 (en) 1995-10-09

Family

ID=12289908

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2993792A Expired - Lifetime JPH0791824B2 (en) 1992-01-22 1992-01-22 Ground injection method

Country Status (1)

Country Link
JP (1) JPH0791824B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69527344T2 (en) * 1994-12-29 2003-02-27 Stmicroelectronics, Inc. Method of manufacturing a semiconductor interconnect structure
CN102808427B (en) * 2012-08-21 2014-08-13 中国水利水电第七工程局成都水电建设工程有限公司 Composite grouting reinforcement anti-seepage treatment technology

Also Published As

Publication number Publication date
JPH05195525A (en) 1993-08-03

Similar Documents

Publication Publication Date Title
CN104711987B (en) A kind of deep covering layer sleeving valve tube method controllable grouting method
US4043830A (en) Method of consolidating poor quality soils
CN107882040A (en) A kind of construction method of foundation ditch prestress anchorage cable
JPS61211418A (en) Chemical solution pouring method
JPH0791824B2 (en) Ground injection method
JPS6117970B2 (en)
JPH0649974B2 (en) Ground injection method
JPH07252822A (en) Ground grouting method
JPS6358972B2 (en)
JPH0794725B2 (en) Injection pipe for ground injection
JPH0565649B2 (en)
JPH0651970B2 (en) Injection pipe for ground injection
JP2739641B2 (en) Ground improvement method
CN104695441A (en) Deep and thick blanket double-liquid grouting method
JP2630722B2 (en) Ground injection method and injection pipe device
JPS6381191A (en) Production device for impregnating material for ground
JPH0552367B2 (en)
JP2586984B2 (en) Ground injection method and injection pipe
JPH0649835A (en) Filling pipe for grouting
JPH0621451B2 (en) Ground injection method
CN108301839A (en) A kind of pumping decompression orientation grouting equipment and method
JP3151637B2 (en) Ground injection system
JPH06212620A (en) Method of ground impregnation construction
JPH07324327A (en) Ground impregnation method
CN204590032U (en) A kind of seepage prevention for deep covering grouting equipment

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081009

Year of fee payment: 13

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 14

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 14

Free format text: PAYMENT UNTIL: 20091009

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091009

Year of fee payment: 14

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20101009

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 15

Free format text: PAYMENT UNTIL: 20101009

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111009

Year of fee payment: 16

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 16

Free format text: PAYMENT UNTIL: 20111009

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20121009

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121009

Year of fee payment: 17

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 17

Free format text: PAYMENT UNTIL: 20121009