JP2549155B2 - Radioactive waste liquid treatment equipment - Google Patents
Radioactive waste liquid treatment equipmentInfo
- Publication number
- JP2549155B2 JP2549155B2 JP63209373A JP20937388A JP2549155B2 JP 2549155 B2 JP2549155 B2 JP 2549155B2 JP 63209373 A JP63209373 A JP 63209373A JP 20937388 A JP20937388 A JP 20937388A JP 2549155 B2 JP2549155 B2 JP 2549155B2
- Authority
- JP
- Japan
- Prior art keywords
- hollow fiber
- fiber membrane
- membrane filter
- tank
- treated water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Separation Using Semi-Permeable Membranes (AREA)
Description
【発明の詳細な説明】 (産業上の利用分野) 本発明は放射性核種取扱施設で発生する放射性廃液を
処理するための放射性廃液処理装置に関する。TECHNICAL FIELD The present invention relates to a radioactive liquid waste treatment apparatus for treating a radioactive liquid waste generated in a radionuclide handling facility.
(従来の技術) 原子力発電所,核燃料再処理工場,放射性同位元素取
扱施設などの放射性核種取扱施設から放射性廃液が発生
する。これら放射性廃液の組成は同一の施設であっても
大きく異なる。以下に各施設内で発生する代表的な核種
のみを列記する。(Prior art) A radioactive waste liquid is generated from a radionuclide handling facility such as a nuclear power plant, a nuclear fuel reprocessing plant, or a radioisotope handling facility. The composition of these radioactive liquid wastes varies greatly even in the same facility. Only the representative nuclides generated in each facility are listed below.
(1) 原子力発電所…51Cr,54Mn,58Co,59Fe,60Coなど
の核種が大部分であるが131Cs,137Csが含まれる場合も
ある。(1) Nuclear power plants: Most of the nuclides such as 51 Cr, 54 Mn, 58 Co, 59 Fe, and 60 Co, but 131 Cs and 137 Cs may be included.
(2) 核燃料再処理工場…廃液中に含まれる核種とし
ては131Cs,137Cs,90Srなどが多く、その他多種の核種が
含まれている。(2) Nuclear fuel reprocessing plant ... As the nuclides contained in the waste liquid, there are many 131 Cs, 137 Cs, 90 Sr, etc., and various other nuclides are contained.
(3) 放射性同位元素取扱施設…取扱っているものが
決まっていないため施設によって全く異なっている。(3) Radioisotope handling facility: It is completely different depending on the facility because what is handled is not decided.
従来の放射性廃液処理装置について、原子力発電所を
例にとって説明すると、この施設では廃液の電導度の高
低によって処理装置が異なっている。すなわち、第12図
に示したように低電導度の廃液は濾過器1とイオン交換
樹脂を充填した脱塩装置2とを接続した処理装置で処理
される。A conventional radioactive waste liquid treatment device will be described by taking a nuclear power plant as an example. In this facility, the treatment device is different depending on the level of electric conductivity of the waste liquid. That is, as shown in FIG. 12, the low-conductivity waste liquid is treated by the treatment device in which the filter 1 and the desalting device 2 filled with the ion exchange resin are connected.
ここで、濾過器1は廃液中の懸濁物を除去する装置で
あり、脱塩装置2は濾過器1を透過したイオン成分を除
去する装置で、除去された脱イオン水は再使用するか、
あるいは放出される。Here, the filter 1 is a device for removing the suspended matter in the waste liquid, the desalting device 2 is a device for removing the ionic components that have passed through the filter 1, and the removed deionized water is reused. ,
Or it is released.
一方、高電導度の廃液は第13図に示したように蒸発濃
縮器3と脱塩装置2とに接続した処理装置で処理され
る。第12図に示した濾過器1には中空糸膜フィルタを使
用したものが最新の設備になっている。On the other hand, the high-conductivity waste liquid is treated by the treatment device connected to the evaporative concentrator 3 and the desalting device 2 as shown in FIG. The latest equipment is a filter 1 shown in Fig. 12 that uses a hollow fiber membrane filter.
このようにして濾過器1または蒸発濃縮器3の後段に
粒状イオン交換樹脂などを充填した脱塩装置2を設け
て、濾過器1で懸濁物の除去と同時に54Mn,60Coなどを
除去し、脱塩装置2でイオン成分を除去している。蒸発
濃縮器3で処理した場合には濃縮液に54Mn,60Coが残
る。In this way, the desalting device 2 filled with the granular ion-exchange resin or the like is provided at the subsequent stage of the filter 1 or the evaporative concentrator 3, and the filter 1 removes 54 Mn, 60 Co and the like at the same time as removing the suspension. Then, the desalting device 2 removes the ionic components. When treated with the evaporative concentrator 3, 54 Mn, 60 Co remains in the concentrate.
(発明が解決しようとするする課題) Cs,Srだけとは限らないが、廃液中に含まれる放射性
核種については放射性濃度が高くても、化学的見地から
は非常に希薄であるのが殆どである。このように低濃度
のイオンをイオン交換樹脂で除去することを考えると、
一緒に含まれる放射性核種以外の濃度の高い成分は除去
され、廃液は純度を増して純水に近づくが、低濃度のイ
オン成分(放射性核種)は同じようには、つまり、同じ
割合では低減しないのが普通である。(Problems to be solved by the invention) Although not limited to Cs and Sr, the radionuclide contained in the waste liquid is highly diluted from the chemical point of view even if the radionuclide concentration is high. is there. Considering the removal of such low-concentration ions with an ion exchange resin,
High-concentration components other than the radionuclide contained together are removed, and the effluent increases in purity and approaches pure water, but low-concentration ionic components (radionuclides) do not decrease in the same way, that is, at the same rate. Is normal.
このため、脱塩装置2を通してもイオン性核種は検出
されるものと考えられる。また、Csについては1価の陽
イオンであり、しかもイオン半径が大きいところからイ
オン交換樹脂に捕捉され難い(イオン交換基との親和力
が小さい)と考えられる。Therefore, it is considered that the ionic nuclide is also detected through the desalting device 2. It is considered that Cs is a monovalent cation and has a large ionic radius, so that it is difficult to be captured by the ion exchange resin (has a small affinity with the ion exchange group).
従来の放射性廃液処理装置ではいずれにしてもイオン
性放射核種のうち、Cs,Srなどの除去に対しては効果が
上がらない欠点がある。In any case, the conventional radioactive liquid waste treatment device has a drawback that it is not effective in removing Cs, Sr and the like among ionic radionuclides.
本発明は上記欠点を解決するためになされたもので、
懸濁性固形分(腐食生成物)に随伴する放射性核種(60
Co,54Mnなど)の効率の良い分離・捕集を兼ね備えた合
理的に処理できる放射性廃液処理装置を提供することに
ある。The present invention has been made to solve the above drawbacks,
Radionuclides associated with suspended solids (corrosion products) ( 60
It is to provide a radioactive waste liquid treatment device capable of rational treatment, which combines efficient separation and collection of Co, 54 Mn, etc.).
(課題を解決するための手段) 本発明は放射性廃液を収集するための収集タンクと、
この収集タンクに接続され前記放射性廃液中に含まれる
懸濁性放射性核種を除去するための前段の中空糸膜フィ
ルタと、この前段の中空糸膜フィルタで処理された処理
済水を受けさらに処理を行うための反応タンクと、この
反応タンク内に投入する捕集剤を貯留するための捕集剤
タンクと、前記反応タンクで受けた処理済水および捕集
剤を混合するための撹拌装置と、前記反応タンク内で反
応後の捕集剤含有溶液中からイオン性放射性核種を除去
するための後段の中空糸膜フィルタと、この後段の中空
糸膜フィルタで処理された処理済水を受ける処理済水タ
ンクと、前記各々の中空糸膜フィルタの逆洗時に排出さ
れる懸濁性固形分および使用済の捕集剤を受けるスラッ
ジ受タンクと、前記前段の中空糸膜フィルタで処理され
た処理済水の放射能濃度をインラインで計測するための
第1の放射線検出器と、前記後段の中空糸膜フィルタで
処理された処理済水の放射能濃度をインラインで計測す
るための第2の放射線検出器と、この第2の放射線検出
器および前記第1の放射線検出器からの信号を入力する
制御装置とを具備し、この制御装置は前記第1の放射線
検出器からの信号で放射能濃度の高低を判断し、濃度が
十分に低い場合には前記反応タンクに移送せずに前記処
理済水タンクに移送するように判断し、かつ前記第2の
放射線検出器からの信号で放射能濃度の高低を判断し、
濃度が十分低減してない場合には処理済水を前記反応タ
ンクへ戻すように判断を下すとともに前記後段の中空糸
膜フィルタに付着した捕集剤の逆洗を指令するためのも
のであることを特徴とする。(Means for Solving the Problems) The present invention relates to a collection tank for collecting radioactive waste liquid,
Connected to this collection tank, a pre-stage hollow fiber membrane filter for removing suspended radionuclides contained in the radioactive waste liquid, and treated water treated by the pre-stage hollow fiber membrane filter for further treatment. A reaction tank for performing, a scavenger tank for storing the scavenger to be charged into the reaction tank, and a stirring device for mixing the treated water and the scavenger received in the reaction tank, A post-stage hollow fiber membrane filter for removing ionic radionuclides from the scavenger-containing solution after the reaction in the reaction tank, and a treated water treated by the post-stage hollow fiber membrane filter A water tank, a sludge receiving tank for receiving suspended solids discharged during backwashing of each of the hollow fiber membrane filters and a used scavenger, and a treated material treated by the preceding hollow fiber membrane filter. Radiation of water A first radiation detector for measuring the concentration in-line, and a second radiation detector for measuring the radiation concentration of the treated water treated with the hollow fiber membrane filter at the latter stage in-line, A control device for inputting a signal from the second radiation detector and the first radiation detector is provided, and the control device determines whether the radioactivity concentration is high or low based on the signal from the first radiation detector. When the concentration is sufficiently low, it is determined that the radioactivity should be transferred to the treated water tank without being transferred to the reaction tank, and whether the radioactivity concentration is high or low is determined by the signal from the second radiation detector. ,
If the concentration is not sufficiently reduced, it is for making a decision to return the treated water to the reaction tank and instructing backwashing of the scavenger adhering to the hollow fiber membrane filter at the latter stage. Is characterized by.
(作用) 放射性廃液中に含まれる放射性核種が懸濁物に随伴す
るものが大部分であれば前段の中空糸膜フィルタ処理の
みで処理液を回収する。また、イオン性放射性核種も一
緒に含まれる場合にはフィルタ処理液に無機イオン交換
体を投入し、このイオン交換体に放射性核種を捕集さ
せ、後段の中空糸膜フィルタでイオン交換体に随伴した
イオン性放射性核種を捕捉する。無機イオン交換体は非
常に希薄なイオン成分を捕捉でき、捕捉対象イオンに対
して選択性を有しているので、イオン交換樹脂で捕捉で
きないような低濃度のイオン性放射性核種も捕捉でき
る。(Operation) If most of the radioactive nuclides contained in the radioactive waste liquid are associated with the suspension, the treated liquid is collected only by the hollow fiber membrane filter treatment in the preceding stage. When an ionic radionuclide is also contained, an inorganic ion exchanger is added to the filtering solution, the radionuclide is collected by this ion exchanger, and the ion exchanger is attached to the ion exchanger by the hollow fiber membrane filter in the latter stage. Captured ionic radionuclides. Since the inorganic ion exchanger can capture a very dilute ionic component and has selectivity for the target ion to be captured, it can also capture a low concentration of ionic radionuclide that cannot be captured by an ion exchange resin.
また、前段の中空糸膜フィルタで処理された処理済水
の放射能濃度をインラインで計測するための第1の放射
線検出器と、前記後段の中空糸膜フィルタで処理された
処理済水の放射能濃度をインラインで計測するための第
2の放射線検出器を設け、この第2の放射線検出器と前
記第1の放射線検出器を制御装置に接続する。Also, a first radiation detector for in-line measuring the radioactivity concentration of the treated water treated by the hollow fiber membrane filter in the preceding stage, and the radiation of the treated water treated by the hollow fiber membrane filter in the latter stage. A second radiation detector for measuring the active concentration in-line is provided, and the second radiation detector and the first radiation detector are connected to the control device.
この制御装置により前記第1の放射線検出器からの信
号で放射能濃度の高低を判断し、濃度が十分に低い場合
には前記反応タンクに移送しないで前記処理済水タンク
に移送するように判断し、また、第2の放射線検出器か
らの信号で放射能濃度の高低を判断し、濃度が十分低減
してない場合には処理水を前記反応タンクへ戻すように
判断を下すとともに前記後段の中空糸膜フィルタに付着
した捕集剤の逆洗を指令する。This controller determines whether the radioactivity concentration is high or low based on the signal from the first radiation detector, and if the radioactivity concentration is sufficiently low, it is determined not to transfer to the reaction tank but to the treated water tank. Also, the level of the radioactivity concentration is judged based on the signal from the second radiation detector, and if the concentration is not sufficiently reduced, it is judged that the treated water should be returned to the reaction tank and the latter stage Command backwashing of the scavenger adhering to the hollow fiber membrane filter.
(実施例) 本発明に係る放射性廃液処理装置の実施例を図面を参
照して説明する。(Example) The Example of the radioactive waste liquid processing apparatus which concerns on this invention is described with reference to drawings.
第1図は本発明の一実施例の構成を系統図で示したも
のである。第1図に示したように、この実施例の放射性
廃液処理装置は大きく分けてA,B二つのゾーンから成
る。Aゾーンは懸濁性放射性核種除去ゾーンであり、B
ゾーンはイオン性放射性核種除去ゾーンである。Aゾー
ンの主要装置は放射性廃液の収集タンク(T1)と前段の
中空糸膜フィルタ(F1)であり、Bゾーンの主要装置は
反応タンク(T2),捕集剤タンク(T4),後段の中空糸
膜フィルタ(F2)である。このほか、最終的な処理済水
を受ける処理済水タンク(T3),前段および後段の中空
糸膜フィルタ(F1,F2)の逆洗フィルタの時に排出され
るスラッジ(懸濁性固形分の濃縮物および使用済の捕集
剤)を受けるスラッジ受タンク(T5)ならびに前段およ
び後段の中空糸膜フィルタ(F1,F2)の出口水(処理済
水)の放射能濃度を測定する第1および第2の放射線検
出器(D1,D2),この第1および第2の放射線検出器(D
1,D2)からの信号により処理済水の移送判断を行う制御
装置(N)が備えられている。なお、図中P1からP4はポ
ンプで、V1からV9はバルブを示している。FIG. 1 is a system diagram showing the configuration of an embodiment of the present invention. As shown in FIG. 1, the radioactive liquid waste treatment apparatus of this embodiment is roughly divided into two zones, A and B. Zone A is the suspension radionuclide removal zone, B
The zone is an ionic radionuclide removal zone. The main equipment in the A zone is the radioactive waste liquid collection tank (T 1 ) and the hollow fiber membrane filter (F 1 ) in the previous stage, and the main equipment in the B zone is the reaction tank (T 2 ) and scavenger tank (T 4 ). The hollow fiber membrane filter (F 2 ) in the latter stage. In addition, sludge (suspended solids) discharged during the backwash filter of the treated water tank (T 3 ) that receives the final treated water and the hollow fiber membrane filters (F 1 and F 2 ) at the front and rear stages. Of the concentration of sludge in the sludge receiving tank (T 5 ) that receives the concentrate and spent scavenger) and the outlet water (treated water) of the front and rear hollow fiber membrane filters (F 1 , F 2 ) The first and second radiation detectors (D 1 , D 2 ) to be measured, the first and second radiation detectors (D 1
1 , a control device (N) for making a judgment on the transfer of the treated water by a signal from D 2 ) is provided. Incidentally, the reference numeral P1 P4 in the pump, V 9 from V 1 was shows the valve.
次に、上記実施例の放射性廃液処理装置における放射
性廃液処理方法について第2図から第7図により説明す
る。また、第8図から第11図は各々の処理工程に伴う放
射能濃度の変化を示している。Next, a method for treating radioactive waste liquid in the radioactive waste liquid treatment apparatus of the above embodiment will be described with reference to FIGS. 2 to 7. Further, FIGS. 8 to 11 show changes in radioactivity concentration due to each treatment step.
(1) 放射性核種の大部分が懸濁性固形分に随伴して
いる場合の処理方法は次の通りである。(1) The treatment method when most of the radionuclides are associated with the suspended solids is as follows.
第2図に示す通り収集タンク(T1)に集められた廃液
はポンプ(P1)により前段の中空糸膜フィルタ(F1)に
移送され、懸濁性固形分の大部分が除去される。放射性
核種は中空糸膜フィルタ(F1)で除去されるため、第1
の放射線検出器(D1)からの信号が制御装置(N)に入
力されて、制御装置(N)によりさらに処理する必要は
ないと判断され、反応タンク(T2)をバイパスして処理
済水タンク(T3)へ移送される。As shown in Fig. 2, the waste liquid collected in the collection tank (T 1 ) is transferred to the previous hollow fiber membrane filter (F 1 ) by the pump (P 1 ) and most of the suspended solids are removed. . Since radionuclides are removed by the hollow fiber membrane filter (F 1 ),
The signal from the radiation detector (D 1 ) is input to the control device (N) and it is judged that there is no need for further processing by the control device (N), and the reaction tank (T 2 ) is bypassed and processed. Transferred to the water tank (T 3 ).
この処理工程における放射能濃度の変化を第8図に示
す。The change in radioactivity concentration in this treatment step is shown in FIG.
図中、縦軸は放射能濃度を、横軸は収集タンクT1,前
段の中空糸膜フィルタF1出口(反応タンクT2)および後
段の中空糸膜フィルタF2出口(処理済水タンクT3)の位
置を示している。また点線(a)はイオン性放射能核種
が一定量含まれていて、懸濁性固形分に随伴する放射性
核種の量が異なる場合を示している。すなわち、懸濁性
固形分に随伴する放射性核種の量が増加しても前段の中
空糸膜フィルタ(F1)で殆ど捕捉されることが明らかで
ある。実線bは各装置での濃度を示している。In the figure, the vertical axis represents the radioactivity concentration, and the horizontal axis represents the collection tank T 1 , the outlet of the front hollow fiber membrane filter F 1 (reaction tank T 2 ) and the outlet of the rear hollow fiber membrane filter F 2 (treated water tank T 3 ) shows the position. The dotted line (a) shows the case where a fixed amount of ionic radionuclide is contained and the amount of radionuclide associated with the suspended solid content is different. That is, it is clear that even if the amount of radionuclide associated with the suspended solids increases, it is almost captured by the hollow fiber membrane filter (F 1 ) in the preceding stage. The solid line b shows the concentration in each device.
(2) 懸濁性固形分に随伴する放射性核種とイオン放
射性核種が共存する場合の処理方法は次の通りである。(2) The treatment method when the radionuclide and the ionic radionuclide associated with the suspended solid content coexist is as follows.
第3図に示す通り、種集タンク(T1)に集められた廃
液はポンプ(P1)によって前段の中空糸膜フィルタ
(F1)に移送され、懸濁性固形分の大部分が除去され
る。しかしながら、イオン性放射性核種が含まれている
ため、第1の放射性検出器(D1)からの信号が制御装置
(N)に入力し、この制御装置(N)では反応タンク(
2)への移送が判断される。As shown in Fig. 3, the waste liquid collected in the seed collection tank (T 1 ) is transferred to the previous hollow fiber membrane filter (F 1 ) by the pump (P 1 ) and most of the suspended solids are removed. To be done. However, since the ionic radionuclide is contained, the signal from the first radioactive detector (D 1 ) is input to the control device (N), and in this control device (N), the reaction tank (
Transfer to 2 ) is judged.
反応タンク(T2)へ移送された廃液に対し、捕集剤タ
ンク(T4)から捕集剤が投入され、攪拌装置(M)によ
って十分に攪拌される。イオン性放射性核種が捕集剤に
捕えられた後、廃液(含捕集剤)はポンプ(P2)によっ
て後段の中空糸膜フィルタ(F2)に移送され、イオン性
放射性核種を随伴する捕集剤が除去され、処理液が処理
済水タンク(T3)へ移送される。このときの放射能濃度
の変化を図9に示す。The scavenger is put into the waste liquid transferred to the reaction tank (T 2 ) from the scavenger tank (T 4 ) and sufficiently stirred by the stirring device (M). After the ionic radionuclide is captured by the scavenger, the waste liquid (containing scavenger) is transferred by the pump (P 2 ) to the hollow fiber membrane filter (F 2 ) in the subsequent stage, and the ionic radionuclide is captured. The collecting agent is removed, and the treatment liquid is transferred to the treated water tank (T 3 ). The change in radioactivity concentration at this time is shown in FIG.
ただし、後段の中空糸膜フィルタ(F2)の出口水(処
理液)の放射能濃度が放射線検出器(D2)および制御装
置(N)によって十分に低減していないと判断された場
合、このときの放射能濃度の変化を第10図に示すには第
4図に示す通り、処理液は反応タンク(T2)に戻され再
度新しい捕集剤が投入されて処理される。このときの放
射能濃度を第11図に示す。However, when it is determined by the radiation detector (D 2 ) and the control device (N) that the activity concentration of the outlet water (treatment liquid) of the hollow fiber membrane filter (F 2 ) in the subsequent stage is not sufficiently reduced, The change in radioactivity concentration at this time is shown in FIG. 10, and as shown in FIG. 4, the treatment liquid is returned to the reaction tank (T 2 ) and a new scavenger is again charged to treat it. The radioactivity concentration at this time is shown in FIG.
(3) 中空糸膜フィルタ(F1)の差圧が上昇し、逆洗
する場合の処理方法は次の通りである。(3) The method of treating when backwashing due to an increase in the differential pressure of the hollow fiber membrane filter (F 1 ) is as follows.
廃液の処理に伴い、前段の中空糸膜フィルタ(F1)の
差圧(フィルタの入口圧力と出口圧力の差)は上昇し、
逆洗することとなる。このときの状態は第5図に示す通
りである。前段の中空糸膜フィルタ(F1)から排出され
るスラッジ(濃縮物)はスラッジ受タンク(T5)に移送
される。With the treatment of the waste liquid, the differential pressure (difference between the inlet pressure and the outlet pressure of the filter) of the preceding hollow fiber membrane filter (F 1 ) rises,
It will be backwashed. The state at this time is as shown in FIG. Sludge (concentrate) discharged from the hollow fiber membrane filter (F 1 ) in the previous stage is transferred to the sludge receiving tank (T 5 ).
(4) 通常のバッチ処理および中空糸膜フィルタの差
圧が上昇した場合(捕集剤のイオン捕集能力が残ってい
る場合)の処理方法は次の通りである。(4) The normal batch treatment and the treatment method when the differential pressure of the hollow fiber membrane filter is increased (when the ion trapping ability of the trapping agent remains) are as follows.
前段の中空糸膜フィルタ(F1)から移送された処理液
に対し、反応タンク(T2)では捕集剤を投入するが、捕
集剤にイオンを捕える能力が残っている場合(これは後
段の中空糸膜フィルタ(F2)出口水の放射能濃度から判
断されるが)には再度(何度でも)使用される。この場
合の状態は第6図に示す通りであり、後段の中空糸膜フ
ィルタ(F2)の逆洗液(捕集剤)が反応タンク(T2)に
戻され、次に流入する廃液と混合処理される。イオン捕
集能力があるにもかかわらず、後段の中空糸膜フィルタ
(F2)の差圧が上昇した場合にもこの状態となる。When the scavenger is added to the treatment liquid transferred from the hollow fiber membrane filter (F 1 ) in the previous stage in the reaction tank (T 2 ), but the scavenger still has the ability to trap ions (this is It is used again (as many times as possible) for the hollow fiber membrane filter (F 2 ) at the latter stage, which is judged from the radioactivity concentration of the water. The state in this case is as shown in FIG. 6, in which the backwashing liquid (collector) of the hollow fiber membrane filter (F2) at the latter stage is returned to the reaction tank (T 2 ) and mixed with the waste liquid flowing in next. It is processed. Despite the ion-capturing ability, this state also occurs when the differential pressure of the hollow fiber membrane filter (F 2 ) in the latter stage increases.
(5) 後段の中空糸膜フィルタ(F2)の出口水質が悪
いときおよび差圧が上昇した場合(捕集剤にイオン捕集
能力がない場合)の処理方法は次の通りである。(5) The treatment method when the outlet water quality of the subsequent hollow fiber membrane filter (F 2 ) is poor and when the differential pressure increases (when the scavenger does not have the ability to collect ions) is as follows.
後段の中空糸膜フィルタ(F2)の出口水の放射能濃度
が高い場合および放射能濃度と差圧の両者が高くなった
場合には後段の中空糸膜フィルタ(F2)は逆洗され、イ
オン性放射性核種を捕えた捕集剤は第7図に示したよう
にスラッジ受タンク(T5)に排出される。The back-stage hollow fiber membrane filter (F 2 ) is backwashed when the radioactivity concentration of the outlet water of the post-stage hollow fiber membrane filter (F 2 ) is high or when both the radioactivity concentration and the differential pressure are high. The scavenger that has captured the ionic radionuclide is discharged to the sludge receiving tank (T 5 ) as shown in Fig. 7.
しかして、本実施例では放射性廃液中に含まれる放射
性核種が懸濁物に随伴するものが大部分の場合には前段
の中空糸膜フィルタのみで処理液を回収でき、イオン性
放射性核種が共存している場合にはフィルタ処理液に無
機イオン交換体を投入し、このイオン交換体に放射性核
種を捕集させ、後段の中空糸膜フィルタでイオン交換体
に随伴したイオン性放射性核種捕捉する。本実施例によ
れば従来例に比較して処理液の放射能濃度を1/1000から
1/10に低減することができる。Therefore, in the present example, in the case where most of the radioactive nuclides contained in the radioactive liquid waste are associated with the suspension, the treatment liquid can be recovered only by the hollow fiber membrane filter in the preceding stage, and the ionic radioactive nuclide coexists. If so, an inorganic ion exchanger is introduced into the filtering solution, the radionuclide is collected by this ion exchanger, and the ionic radionuclide associated with the ion exchanger is captured by the hollow fiber membrane filter at the subsequent stage. According to this embodiment, the radioactivity concentration of the treatment liquid is reduced from 1/1000 as compared with the conventional example.
It can be reduced to 1/10.
[発明の効果] 本発明によれば、放射性廃液中に存在する放射性核種
(懸濁物に随伴するもの、イオン性のもの)を効率よく
除去できる。また、第1および第2の放射線検出器の信
号入力により移送,処理に対する判断機能を有する制御
装置が備えられているため、合理的な処理ができる。[Effects of the Invention] According to the present invention, the radionuclide (the one associated with the suspension, the one ionic) present in the radioactive liquid waste can be efficiently removed. Further, since a control device having a function of judging transfer and processing by the signal input of the first and second radiation detectors is provided, rational processing can be performed.
第1図は本発明に係る放射性廃液処理装置の一実施例を
示す系統図、第2図から第7図は第1図における装置を
使用して廃液処理する処理方法の各々の運転状態を示す
系統図、第8図から第11図は同じく各廃液処理に伴う放
射能濃度変化を示す特性図、第12図および第13図は従来
の放射性廃液処理装置をそれぞれ示す系統図である。 A……懸濁性放射性核種除去ゾーン B……イオン性放射性核種除去ゾーン T1……収集タンク T2……反応タンク T3……処理済水タンク T4……捕集剤タンク T5……スラッジ受タンク F1……前段の中空糸膜フィルタ F2……後段の中空糸膜フィルタ D1……第1の放射線検出器 D2……第2の放射線検出器 M……攪拌装置 N……制御装置 P1からP4……ポンプ V1からV9……バルブFIG. 1 is a system diagram showing an embodiment of a radioactive liquid waste treatment apparatus according to the present invention, and FIGS. 2 to 7 show respective operating states of a processing method for treating a liquid waste using the apparatus shown in FIG. System diagrams, FIGS. 8 to 11 are characteristic diagrams similarly showing changes in radioactivity concentration with each waste liquid treatment, and FIGS. 12 and 13 are system diagrams showing a conventional radioactive waste liquid treatment apparatus, respectively. A: Suspended radionuclide removal zone B: Ionic radionuclide removal zone T 1 …… Collection tank T 2 …… Reaction tank T 3 …… Treated water tank T 4 …… Collection agent tank T 5 …… … Sludge receiving tank F 1 …… First stage hollow fiber membrane filter F 2 …… Second stage hollow fiber membrane filter D 1 …… First radiation detector D 2 …… Second radiation detector M …… Stirrer N ...... Control device P 1 to P 4 …… Pump V 1 to V 9 …… Valve
Claims (1)
と、この収集タンクに接続され前記放射性廃液中に含ま
れる懸濁性放射性核種を除去するための前段の中空糸膜
フィルタと、この前段の中空糸膜フィルタで処理された
処理済水を受けさらに処理を行うための反応タンクと、
この反応タンク内に投入する捕集剤を貯留するための捕
集剤タンクと、前記反応タンクで受けた処理済水および
捕集剤を混合するための撹拌装置と、前記反応タンク内
で反応後の捕集剤含有溶液中からイオン性放射性核種を
除去するための後段の中空糸膜フィルタと、この後段の
中空糸膜フィルタで処理された処理済水を受ける処理済
水タンクと、前記各々の中空糸膜フィルタの逆洗時に排
出される懸濁性固形分および使用済の捕集剤を受けるス
ラッジ受タンクと、前記前段の中空糸膜フィルタで処理
された処理済水の放射能濃度をインラインで計測するた
めの第1の放射線検出器と、前記後段の中空糸膜フィル
タで処理された処理済水の放射能濃度をインラインで計
測するための第2の放射線検出器と、この第2の放射線
検出器および前記第1の放射線検出器からの信号を入力
する制御装置とを具備し、この制御装置は前記第1の放
射線検出器からの信号で放射能濃度の高低を判断し、濃
度が十分に低い場合には前記反応タンクに移送せずに前
記処理済水タンクに移送するように判断し、かつ前記第
2の放射線検出器からの信号で放射能濃度の高低を判断
し、濃度が十分低減してない場合には処理済水を前記反
応タンクへ戻すように判断を下すとともに前記後段の中
空糸膜フィルタに付着した捕集剤の逆洗を指令するため
のものであることを特徴とする放射性廃液処理装置。1. A collection tank for collecting radioactive waste liquid, a hollow fiber membrane filter in the preceding stage connected to the collection tank for removing suspended radionuclides contained in the radioactive waste liquid, and A reaction tank for receiving the treated water treated by the hollow fiber membrane filter and further treating it.
A scavenger tank for storing the scavenger to be charged into this reaction tank, a stirring device for mixing the treated water and the scavenger received in the reaction tank, and after the reaction in the reaction tank A hollow fiber membrane filter in the latter stage for removing the ionic radionuclide from the scavenger-containing solution, a treated water tank for receiving the treated water treated in the hollow fiber membrane filter in the latter stage, and each of the above. In-line the sludge receiving tank that receives the suspended solids discharged during backwashing of the hollow fiber membrane filter and the used scavenger, and the radioactivity concentration of the treated water treated by the preceding hollow fiber membrane filter. And a second radiation detector for measuring in-line the radioactivity concentration of the treated water treated by the hollow fiber membrane filter at the latter stage, and the second radiation detector for measuring Radiation detector and said And a control device for inputting a signal from the first radiation detector, the control device judges whether the radioactivity concentration is high or low based on the signal from the first radiation detector, and when the concentration is sufficiently low, When it is judged not to transfer to the reaction tank but to the treated water tank, and whether the radioactivity concentration is high or low based on the signal from the second radiation detector, and the concentration is not sufficiently reduced Is for returning the treated water to the reaction tank and for instructing backwashing of the collecting agent adhering to the hollow fiber membrane filter at the latter stage. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63209373A JP2549155B2 (en) | 1988-08-25 | 1988-08-25 | Radioactive waste liquid treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63209373A JP2549155B2 (en) | 1988-08-25 | 1988-08-25 | Radioactive waste liquid treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0259700A JPH0259700A (en) | 1990-02-28 |
JP2549155B2 true JP2549155B2 (en) | 1996-10-30 |
Family
ID=16571855
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63209373A Expired - Lifetime JP2549155B2 (en) | 1988-08-25 | 1988-08-25 | Radioactive waste liquid treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2549155B2 (en) |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5644898A (en) * | 1979-09-21 | 1981-04-24 | Hitachi Ltd | Radioactive liquid waste processing method |
JPS5729978A (en) * | 1980-07-30 | 1982-02-18 | Tohoku Electric Power Co Inc | Radioactivity monitor for drainage |
JPS5729981A (en) * | 1980-07-30 | 1982-02-18 | Tohoku Electric Power Co Inc | Drainage monitor |
-
1988
- 1988-08-25 JP JP63209373A patent/JP2549155B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPH0259700A (en) | 1990-02-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5366634A (en) | Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering | |
Pabby | Membrane techniques for treatment in nuclear waste processing: global experience | |
JP2012229998A (en) | Radioactive substance decontamination device and decontamination method, from radioactively contaminated water incorporating salt such as seawater | |
WO2019220001A1 (en) | Method of treating liquid radioactive waste containing boron | |
JPS6136198B2 (en) | ||
CA1154885A (en) | Method of decontaminating nuclear power plant waste liquids or removing radioactive components therefrom | |
Osteen et al. | Treatment of radioactive laboratory waste for mercury removal | |
JP2549155B2 (en) | Radioactive waste liquid treatment equipment | |
JP4380875B2 (en) | Liquid processing equipment | |
JP3388920B2 (en) | Power plant wastewater treatment method and apparatus | |
Harjula et al. | Testing of highly selective CoTreat ion exchange media for the removal of radiocobalt and other activated corrosion product nuclides from NPP waste waters | |
US4415457A (en) | Process for treating liquid waste containing solid fine particles | |
JP2001324593A (en) | Radioactive waste treatment system for boiling water type nuclear power plant | |
JPS63289497A (en) | Radioactive liquid waste treating apparatus | |
Koster et al. | Treatment and conditioning of liquid low and intermediate level wastes | |
Augustin et al. | Use of a tangential filtration unit for processing liquid waste from nuclear laundries | |
JP2001235593A (en) | Adsorption method for metallic element using insoluble tannin | |
El Tayara et al. | Purification of Liquid Radwaste Using Hollow Fibre Membrane Cross Flow Filtration at Ringhals NPP | |
Haghiri et al. | A Decontamination Device for the Removal of Radioactive Strontium from Water1 | |
JPS5815079B2 (en) | Radioactive waste disposal method from nuclear fuel reprocessing facilities | |
WO2003065381A1 (en) | Process and apparatus for volume reduction of oil scale waste | |
Godbee et al. | Unit operations used to treat process and/or waste streams at nuclear power plants | |
JPH0474999A (en) | Processing device for radioactive waste liquid | |
JPH0329897A (en) | Method of removing radioactive substances from radioactive solid waste storage pool | |
US20080142448A1 (en) | Treatment of metal-containing liquids |