JPH0259700A - Radioactive waste liquid treatng system - Google Patents

Radioactive waste liquid treatng system

Info

Publication number
JPH0259700A
JPH0259700A JP20937388A JP20937388A JPH0259700A JP H0259700 A JPH0259700 A JP H0259700A JP 20937388 A JP20937388 A JP 20937388A JP 20937388 A JP20937388 A JP 20937388A JP H0259700 A JPH0259700 A JP H0259700A
Authority
JP
Japan
Prior art keywords
hollow fiber
treated water
tank
fiber membrane
waste liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20937388A
Other languages
Japanese (ja)
Other versions
JP2549155B2 (en
Inventor
Hideji Seki
秀司 関
Takamori Shirai
隆盛 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Original Assignee
Toshiba Corp
Nippon Atomic Industry Group Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Nippon Atomic Industry Group Co Ltd filed Critical Toshiba Corp
Priority to JP63209373A priority Critical patent/JP2549155B2/en
Publication of JPH0259700A publication Critical patent/JPH0259700A/en
Application granted granted Critical
Publication of JP2549155B2 publication Critical patent/JP2549155B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

PURPOSE:To efficiently eliminate a radioactive nuclear species by scavenging a suspended matter in a waste liquid by a hollow fiber filter and scavenging an ionic radioactive nuclear species by using a scavenger. CONSTITUTION:A waste liquid which is collected to a collecting tank T1 is transferred to a hollow fiber filter F1 by a pump P1, and the greater part of a suspended solid is eliminated. Subsequently, radioactive concentration of treated water is measured by a detector D1, and when the concentration is low enough, the treated water is transferred to a treated water tank T3. When the concentration is high, the treated water is transferred to a reaction tank T2, and an ionic radioactive nuclear species is scavenged by throwing in a scavenger such as an inorganic ion exchanger, etc., from a scavenger tank T4, and thereafter, said water is fed to a hollow fiber filter F2 by a pump P2 and the scavenger is eliminated and transferred to the treated water tank T3. Next, radioactive concentration of outlet water of the hollow fiber filter F2 is measured by a detector D2, and unless it is reduced enough, the water is returned to the reaction tank T2 and the processing is executed again.

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は放射性核種取扱施設で発生する放射性廃液を処
理するための放射性廃液処理システムに関する。
Detailed Description of the Invention [Object of the Invention] (Industrial Application Field) The present invention relates to a radioactive waste liquid treatment system for treating radioactive waste liquid generated in a radionuclide handling facility.

(従来の技術) 原子力発電所、核燃料再処理工場、放射性同位元素取扱
M設などの放射性核種取扱施設から放射性廃液が発生す
る。これら放射性廃液の組成は同一の施設であっても大
きく異なる。以下に各施設内で発生する代表的な核種の
みを列記する。
(Prior Art) Radioactive waste liquid is generated from facilities that handle radionuclides, such as nuclear power plants, nuclear fuel reprocessing plants, and facilities that handle radioactive isotopes. The composition of these radioactive waste fluids varies greatly even in the same facility. Only representative nuclides generated within each facility are listed below.

(1)原子力発電所 =  Cr 、”’Mn 、”8
Co 。
(1) Nuclear power plant = Cr, "'Mn,"8
Co.

59Fe、60Coなどの核種が大部分であ、131 
    137 るか  C9,C9が含まれる場合 もめる。
The majority are nuclides such as 59Fe and 60Co, and 131
137 Ruka If C9 or C9 is included, also see.

(2)核燃料再処理工場・・・廃液中に含まれる核種と
しては  Cs、   Cs、  Srなどが多く、そ
の他多種の核種が含まれている。
(2) Nuclear fuel reprocessing plants: The nuclides contained in the waste fluid include Cs, Cs, Sr, and many other nuclides.

(3)放射性同位元素取扱施設・・・取扱っているもの
が決っていないため施設によって全く異なっている。
(3) Facilities that handle radioactive isotopes: The facilities that handle radioactive isotopes are not decided yet, so they vary from facility to facility.

従来の放射性廃液処理システムについて、原子力発電所
を例にとって説明すると、この施設では廃液の電導度の
高低によって処理システムが異なっている。すなわち、
低電導度の廃液は第12図に示したようにt濾過器1と
イオン交換樹脂を充填した脱塩装置2とを接続したシス
テムで処理される。
Conventional radioactive waste liquid treatment systems are explained using a nuclear power plant as an example. At this facility, treatment systems differ depending on the level of conductivity of the waste liquid. That is,
The waste liquid with low conductivity is treated in a system connected to a T-filter 1 and a desalination device 2 filled with ion exchange resin, as shown in FIG.

ここで、濾過器1は廃液中の懸濁物を除去する装置であ
り、脱塩装置2は濾過器1を透過したイオン成分を除去
する装置である。一方、高電導度の廃液は第13図に示
したように蒸発濃縮器3と脱塩装置2とを接続した処理
システムで処理される。
Here, the filter 1 is a device for removing suspended matter in waste liquid, and the desalting device 2 is a device for removing ionic components that have passed through the filter 1. On the other hand, high-conductivity waste liquid is treated in a treatment system in which an evaporative concentrator 3 and a desalination device 2 are connected as shown in FIG.

ン濾過器1には中空糸膜フィルタを利用したものが最新
の設備になっている。このようにして濾過器1または蒸
発濃縮器3の後段に粒状イオン交換樹脂などを充填した
脱塩装置2を設けて、ン濾過器1で懸濁物の除去と同時
に54Mn、60Coを除去し、脱塩装置2でイオン成
分を除去している。蒸発濃縮器3で処理した場合には濃
縮液に”4Mn。
The filter 1 is the latest equipment that uses a hollow fiber membrane filter. In this way, the desalination device 2 filled with granular ion exchange resin or the like is provided after the filter 1 or the evaporator 3, and 54Mn and 60Co are removed at the same time as suspended matter is removed by the filtration device 1. A desalting device 2 removes ionic components. When processed in the evaporative concentrator 3, the concentrated liquid contains 4Mn.

6°Goが残る。6°Go remains.

(発明が解決しようとする課題) C9、Srだけとは限らないが、廃液中に含まれる放射
性核種については放射能濃度が高くても、化学的見地か
らは非常に希薄であるのが殆どである。このように低能
度のイオンをイオン交換樹脂で除去することを考えると
、−緒に含まれる放射性核種以外の濃度の高い成分は除
去され、廃液は純度を増して純水に近づくが、低能度の
イオン成分(放射性核種)は同じようには(同じ割合で
は)低減しないのが普通である。
(Problem to be solved by the invention) Most of the radionuclides contained in the waste liquid, including not only C9 and Sr, are extremely dilute from a chemical standpoint, even if their radioactivity concentration is high. be. Considering that low-potency ions are removed using an ion-exchange resin, high-concentration components other than the radionuclides contained in the water are removed, and the waste liquid becomes more purified and approaches pure water, but the low-potency The ionic components (radionuclides) of are usually not reduced in the same way (at the same rate).

このため、脱塩装置2を通してもイオン性核種は検出さ
れるものと考えられる。また、Csについては1価の陽
イオンであり、しかもイオン半径が大きいところからイ
オン交換樹脂に捕捉され難い(イオン交換基との親和力
が小さい)と考えられる。
Therefore, it is considered that ionic nuclides are detected even through the desalination device 2. Furthermore, since Cs is a monovalent cation and has a large ionic radius, it is thought that it is difficult to be captured by an ion exchange resin (it has a small affinity with ion exchange groups).

従来の処理システムではいずれにしてもイオン性放射性
核種のうち、Cs 、Srなどの除去に対しては効果が
上らない欠点がある。
In any case, conventional treatment systems have the disadvantage that they are not effective in removing Cs, Sr, etc. among ionic radionuclides.

本発明は上記欠点を解決するためになされたもので、懸
濁性固形分(腐食生成物)に随伴する放射性核種(60
Co 、54Mnなど)の効率の良い分離・捕集を兼ね
備えた放射性廃液処理システムを提供することにある。
The present invention was made in order to solve the above-mentioned drawbacks, and the present invention was made to solve the above-mentioned drawbacks.
The purpose of the present invention is to provide a radioactive waste liquid treatment system that combines efficient separation and collection of Co, 54Mn, etc.).

[発明の構成] (課題を解決するための手段) 上記目的を達成するために、本発明に係る放射性廃液処
理システムは次の(1)から(5)項によることを特徴
とする。
[Structure of the Invention] (Means for Solving the Problems) In order to achieve the above object, the radioactive waste liquid treatment system according to the present invention is characterized by the following items (1) to (5).

(1)放射性廃液を収集するための収集タンクと、この
収集タンクに接続され前記放射性廃液中に含まれる懸濁
物を分離・捕集するための前段の中空糸膜フィルタと、
この前段の中空糸膜フィルタで処理された処理済水を受
けさらに処理を行うための反応タンクと、この反応タン
ク中に投入する捕集剤を貯留するための捕集剤タンクと
、前記反応タンクで受けた処理済水および捕集剤を混合
するための攪拌装置と、前記反応タンク内で反応後の捕
集剤含有溶液中から捕集剤のみを分解・捕集するための
後段の中空糸膜フィルタと、この後段の中空糸膜フィル
タで処理された処理済水を受ける処理済水タンクと、前
記各々の中空糸膜フィルタの逆洗時に排出される懸濁性
固形分および使用済の捕集剤を受けるスラッジ受タンク
とを備えたことを特徴とする。
(1) A collection tank for collecting radioactive waste liquid, and a hollow fiber membrane filter at the front stage connected to this collection tank and used to separate and collect suspended matter contained in the radioactive waste liquid;
A reaction tank for receiving the treated water treated by the hollow fiber membrane filter in the previous stage for further treatment, a collection agent tank for storing a collection agent to be introduced into the reaction tank, and the reaction tank. a stirring device for mixing the treated water and the scavenger received in the reaction tank; and a hollow fiber in the latter stage for decomposing and collecting only the scavenger from the scavenger-containing solution after the reaction in the reaction tank. A membrane filter, a treated water tank that receives treated water treated by the subsequent hollow fiber membrane filter, and suspended solids discharged during backwashing of each of the hollow fiber membrane filters and used capture. It is characterized by comprising a sludge receiving tank that receives the collection agent.

(2)前記前段の中空糸膜フィルタで処理された処理済
水の放射能濃度をインラインで計測するための第1の放
射線検出器と、この第1の放射線検出器からの信号で放
射能濃度の高低を判断し、濃度が十分に低いならば反応
タンクには移送せずに前記処理済水タンクに移送するよ
うに判断を下す制御装置を備えたことを特徴とする。
(2) A first radiation detector for in-line measuring the radioactivity concentration of the treated water treated with the preceding hollow fiber membrane filter, and a signal from the first radiation detector to determine the radioactivity concentration. The present invention is characterized by comprising a control device that determines whether the concentration is high or low, and if the concentration is sufficiently low, determines not to transfer the treated water to the reaction tank but to transfer it to the treated water tank.

(3)前記後段の中空糸膜フィルタで処理された処理済
水の放射能濃度をインラインで計測するための第2の放
射線検出器と、この第2の放射線検出器からの信号で放
射能′a度の高低を判断し、濃度が十分に低減してない
場合には処理済水を反応タンクへ戻すように判断を下す
とともに前記後段の中空糸膜フィルタに付着した捕集剤
の逆洗を指令するための制御装置を備えたことを特徴と
する。
(3) A second radiation detector for in-line measuring the radioactivity concentration of the treated water treated with the latter hollow fiber membrane filter, and a signal from the second radiation detector that detects the radioactivity. The degree of a degree is determined, and if the concentration has not been sufficiently reduced, a decision is made to return the treated water to the reaction tank, and at the same time backwashing of the scavenger adhering to the hollow fiber membrane filter at the latter stage is performed. It is characterized by being equipped with a control device for issuing commands.

(4)前記後段の中空糸膜フィルタにおいて捕集剤とし
ての能力が保たれているにもかかわらずフィルタの差圧
が上昇した場合において逆洗の指令を下すとともに捕集
剤を反応タンクに戻す指令をする制御装置を備えたこと
を特徴とする。
(4) If the differential pressure of the filter increases even though the capacity as a scavenger is maintained in the latter hollow fiber membrane filter, a backwashing command is issued and the scavenger is returned to the reaction tank. It is characterized by being equipped with a control device that issues commands.

(5)捕集剤として粉末イオン交換樹脂あるいは粉末無
機イオン交換体を使用することを特徴とする。
(5) The method is characterized in that a powdered ion exchange resin or a powdered inorganic ion exchanger is used as the scavenger.

(作 用) 放射性廃液中に含まれる放射性核種が懸濁物に随伴する
ものが大部分であれば前段のフィルタ処理のみで処理液
を回収する。また、イオン性放射性核種も一緒に含まれ
る場合にはフィルタ処理液に無機イオン交換体を投入し
、このイオン交換体に放射性核種を捕集させ、次段のフ
ィルタでイオン交換体に随伴したイオン性放射性核種を
捕捉する。無機イオン交換体は非常に希薄なイオン成分
を捕捉でき、捕捉対象イオンに対して選択性を有してい
るので、イオン交換樹脂で捕捉できないような低濃度の
イオン性放射性核種も捕捉できる。
(Function) If most of the radionuclides contained in the radioactive waste liquid are accompanied by suspended solids, the treated liquid is recovered only by the filtering process in the first stage. In addition, if ionic radionuclides are also included, an inorganic ion exchanger is added to the filter treatment solution, the radionuclides are collected by this ion exchanger, and the ions accompanying the ion exchanger are passed through the next filter. Captures radioactive nuclides. Inorganic ion exchangers can capture very dilute ion components and have selectivity for the ions to be captured, so they can also capture ionic radionuclides at low concentrations that cannot be captured by ion exchange resins.

(実施例) 以下、本発明の実施例を図面を参照して説明する。(Example) Embodiments of the present invention will be described below with reference to the drawings.

第1図は本発明の一実施例の構成を系統図で示したもの
である。図に示したように、この処理システムは大きく
分けてA、B二つのゾーンから成る。Aゾーンは懸濁性
放射性核種除去ゾーン、Bゾーンはイオン性放射性核種
除去ゾーンである。
FIG. 1 is a system diagram showing the configuration of an embodiment of the present invention. As shown in the figure, this processing system is roughly divided into two zones, A and B. The A zone is a suspended radionuclide removal zone, and the B zone is an ionic radionuclide removal zone.

Aゾーンの主要装置は放射性廃液の収集タンク(T1)
と中空糸膜フィルタ(Fl)であり、Bゾーンの主要装
置は反応タンク(Tz)、捕集剤タンク(T4)、中空
糸膜フィルタ(F2)である。このほか、最終的な処理
済水を受ける処理済水タンク(T3)、中空糸膜フィル
タ(F1F2 )の逆洗フィルタの時に排出されるスラ
ッジ(懸濁性固形分の濃縮物および使用済の捕集剤)を
受けるスラッジ受タンク(T5)ならびに中空糸膜フィ
ルタの出口水(処理済水)の放射能濃度を測定する第1
および第2の放射線検出器(Dl。
The main equipment in Zone A is the radioactive waste liquid collection tank (T1)
and a hollow fiber membrane filter (Fl), and the main devices in zone B are a reaction tank (Tz), a scavenger tank (T4), and a hollow fiber membrane filter (F2). In addition, the treated water tank (T3) that receives the final treated water, the sludge (suspended solids concentrate and used captured water) discharged during the backwash filter of the hollow fiber membrane filter (F1F2). The first step is to measure the radioactivity concentration of the sludge receiving tank (T5) that receives the sludge (collection agent) and the outlet water (treated water) of the hollow fiber membrane filter.
and a second radiation detector (Dl.

D2)、処理済水の移送判断を行う制御装置(N)が備
えられている。
D2), a control device (N) is provided for determining the transfer of treated water.

次に、本実施例の放射性廃液処理法について説明する。Next, the radioactive waste liquid treatment method of this example will be explained.

(1)放射性核種の大部分が懸濁性固形分に随伴してい
る場合、第2図に示す通り収集タンク(T1)に集めら
れた廃液はポンプ(Pl)により中空糸膜フィルタ(F
l)に移送され、懸濁性固形分の大部分が除去される。
(1) When most of the radionuclides are accompanied by suspended solids, the waste liquid collected in the collection tank (T1) is passed through the hollow fiber membrane filter (F
l) to remove most of the suspended solids.

放射性核種は中空糸膜フィルタ(Fl)で除去されるた
め、放射線検出器(Dl)、制御装置(N)ではざらに
処理する必要はないと判断され、反応タンク(T2)を
バイパスして処理済水タンク(T3)へ移送される。
Since the radionuclides are removed by the hollow fiber membrane filter (Fl), it is judged that there is no need for rough treatment with the radiation detector (Dl) and control device (N), and the treatment is performed by bypassing the reaction tank (T2). The water is transferred to the finished water tank (T3).

このときの放射能濃度の変化を第8図に示す。Figure 8 shows the change in radioactivity concentration at this time.

図中、縦軸は放射能濃度を、横軸は収集タンクT+ 、
前段のフィルタF1 出口(反応タンクT2 )および
後段のフィルタF2出口(処理済水タンクT3 )の位
置を示している。また点線(a)はイオン性放射性核種
が一定旦含まれていて、懸濁性固形分に随伴する放射性
核種の吊が異なる場合を示している。すなわち、懸濁性
固形分に随伴する放射性核種の但が増加しても前段のフ
ィルタF1で殆ど捕捉されることが明らかである。実線
すは各装置での濃度を示している。
In the figure, the vertical axis is the radioactivity concentration, the horizontal axis is the collection tank T+,
The positions of the outlet of the front filter F1 (reaction tank T2) and the outlet of the rear filter F2 (treated water tank T3) are shown. Moreover, the dotted line (a) shows the case where ionic radionuclides are contained at a certain level, and the amount of radionuclides accompanying the suspended solid content is different. That is, it is clear that even if the amount of radionuclides accompanying the suspended solids increases, most of the radionuclides are captured by the filter F1 in the previous stage. The solid line indicates the concentration in each device.

(2)懸濁性固形分に随伴する放射性核種とイオン放射
性核種が共存する場合。
(2) When radionuclides accompanying suspended solids and ion radionuclides coexist.

第3図に、示す通り、収集タンク(T1)に集められた
廃液はポンプ(Pl)によって中空糸膜フィルタ(Fl
)に移送され、懸濁性固形分の大部分が除去される。し
かしながら、イオン性放射性核種が含まれているため、
放射線検出器(Dl)。
As shown in Figure 3, the waste liquid collected in the collection tank (T1) is transferred to the hollow fiber membrane filter (Fl) by the pump (Pl).
) to remove most of the suspended solids. However, because it contains ionic radionuclides,
Radiation detector (Dl).

制御装置(N>では反応タンク(2)への移送が判断さ
れる。反応タンク(T2)へ移送された廃液に対し、捕
集剤タンク(T4)から捕集剤が投入され、攪拌装置(
、M)によって十分に攪拌される。イオン性放射性核種
が捕集剤に捕えられた後、廃液(含捕集剤)はポンプ(
F2)によって中空糸膜フィルタ(F2)に移送され、
イオン性放射性核種を随伴する捕集剤が除去され、処理
液が処理済水タンク(T3)へ移送される(第9図)。
The controller (N>) determines whether to transfer the waste liquid to the reaction tank (2). Collection agent is added from the collection agent tank (T4) to the waste liquid transferred to the reaction tank (T2), and the stirring device (
, M). After the ionic radionuclides are captured by the scavenger, the waste liquid (containing the scavenger) is pumped (
F2) to the hollow fiber membrane filter (F2),
The scavenger that accompanies the ionic radionuclides is removed, and the treated liquid is transferred to the treated water tank (T3) (FIG. 9).

ただし、中空糸膜フィルタ(F2)の出口水(処理液)
の放射能濃度が放射線検出器(Dl)および制御!装置
(N)によって十分に低減していないと判断された場合
(第10図)には、第4罹−に示す通り、処理液は反応
タンク(T2)に戻され再度新しい捕集剤が投入されて
処理さ、れる(第11図)。
However, the outlet water (processed liquid) of the hollow fiber membrane filter (F2)
Radioactive concentration of radiation detector (Dl) and control! If the device (N) determines that the reduction is not sufficient (Figure 10), the treated liquid is returned to the reaction tank (T2) and a new scavenger is added again, as shown in the fourth section. (Fig. 11).

(3)中空糸膜フィルタ(Fl)の差圧が上昇し、逆洗
する場合。
(3) When the differential pressure of the hollow fiber membrane filter (Fl) increases and backwashing is performed.

廃液の処理に伴い、中空糸膜フィルタ(Fl)の差圧(
フィルタの入口圧力と出口圧力の差)は上昇し、逆洗す
ることとなる。このときの状態は第5図に示す通りであ
る。フィルタ(Fl)から排出されるスラッジ(濃縮物
)はスラッジ受タンク(T5)に移送される。
With the treatment of waste liquid, the differential pressure of the hollow fiber membrane filter (Fl) (
The difference between the inlet and outlet pressures of the filter increases, resulting in backwashing. The state at this time is as shown in FIG. Sludge (concentrate) discharged from the filter (Fl) is transferred to a sludge receiving tank (T5).

(4)通常のバッチ処理および中空糸膜フィルタの差圧
が上昇した場合(捕集剤のイオン捕集能力が残っている
場合)。
(4) When the differential pressure of the hollow fiber membrane filter increases during normal batch processing (when the ion-trapping ability of the collector remains).

中空糸膜フィルタ(Fl〉から移送された処理液に対し
、反応タンク(T2)では捕集剤を投入するが、捕集剤
にイオンを捕える能力が残っている場合(これは中空糸
膜フィルタ(F2)出口水の放射能濃度から判断される
が)には再度(何度でも)使用される。この場合の状態
は第6図に示す通りであり、中空糸膜フィルタ(F2)
の逆洗液(捕集剤)が反応タンク(T2)に戻され、次
に流入する廃液と混合処理される。イオン捕集能力がお
るにもかかわらず、中空糸膜フィルタ(F2)の差圧が
上昇した場合にもこの状態となる。
A collection agent is added to the reaction tank (T2) for the treated liquid transferred from the hollow fiber membrane filter (Fl), but if the collection agent still has the ability to capture ions (this is the case when the hollow fiber membrane filter (F2) is used again (as judged from the radioactivity concentration of the outlet water) (as many times as possible).The state in this case is as shown in Figure 6, and the hollow fiber membrane filter (F2)
The backwash liquid (collecting agent) is returned to the reaction tank (T2) and mixed with the next inflowing waste liquid. This state also occurs when the differential pressure of the hollow fiber membrane filter (F2) increases despite the ion trapping ability.

(5)中空糸膜フィルタ(F2)の出口水質が悪いとき
および差圧が上昇しlζ場合(捕集剤にイオン捕集能力
がない場合)。
(5) When the quality of the water at the outlet of the hollow fiber membrane filter (F2) is poor, and when the differential pressure increases (when the scavenger does not have the ability to capture ions).

中空糸膜フィルタ(F2)の出口水の放射能濃度が高い
場合および放射能S度と差圧の両者が高くなった場合に
は中空糸膜フィルタ(F2)は逆洗され、イオン性放射
性核種を捕えた捕集剤は第7図に示したようにスラッジ
受タンク(T5)に排出される。
When the radioactivity concentration in the outlet water of the hollow fiber membrane filter (F2) is high, and when both the radioactivity S degree and the differential pressure become high, the hollow fiber membrane filter (F2) is backwashed and the ionic radionuclides are removed. The collecting agent that has captured the sludge is discharged to the sludge receiving tank (T5) as shown in FIG.

しかして、本実施例では放射性廃液中に含まれる放射性
核種が懸濁物に随伴するものが大部分の場合には前段の
フィルタのみで処理液を回収でき、イオン性放射性核種
が共存している場合にはフィルタ処理液に無機イオン交
換体を投入し、このイオン交換体に放射性核種を捕集さ
せ、次段のフィルタでイオン交換体に随伴したイオン性
放射性核種捕捉する。本実施例によれば従来例に比較し
て処理液の放射能I!度を1/1000から1/10に
低減することができる。
However, in this example, if most of the radionuclides contained in the radioactive waste liquid are accompanied by suspended matter, the treated liquid can be recovered using only the filter in the previous stage, and the ionic radionuclides coexist. In this case, an inorganic ion exchanger is added to the filter treatment liquid, and the ion exchanger captures radionuclides, and the next-stage filter captures the ionic radionuclides accompanying the ion exchanger. According to this example, the radioactivity I of the treatment liquid is higher than that of the conventional example. The degree can be reduced from 1/1000 to 1/10.

[発明の効果] 本発明によれば、放射性廃液中に存在する放射性核種(
懸濁物に随伴するもの、イオン性のもの)を効率よく除
去できる。また、移送、処理に対する判断機能を有する
制御装置が備えられているため、合理的な処理ができる
[Effect of the invention] According to the present invention, radionuclides (
It is possible to efficiently remove suspended matter (accompanied by suspended matter, ionic matter). Furthermore, since it is equipped with a control device that has a judgment function regarding transfer and processing, rational processing can be performed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る放射性廃液処理システムの一実施
例を示す系統図、第2図から第7図は運転状態を示す系
統図、第8図から第11図は廃液処理に伴う放射能濃度
変化を示す特性図、第12図および第13図は従来の放
射性廃液処理システムを示す系統図でおる。 A・・・懸濁性放射性核種除去ゾーン B・・・イオン性放射性核種除去ゾーンT1 ・・・収
集タンク T2・・・反応タンク T3・・・処理済水タンク T4・・・捕集剤タンク T5・・・スラッジ受タンク Fl ・・・前段の中空糸膜フィルタ F2・・・後段の中空糸膜フィルタ D1 ・・・第1の放射線検出器 D2・・・第2の放射線検出器 M・・・攪拌装置 N・・・制御装置 PlからP4・・・ポンプ Vl からv9・・・バルブ (8733)代理人
Fig. 1 is a system diagram showing an embodiment of the radioactive waste liquid treatment system according to the present invention, Figs. 2 to 7 are system diagrams showing the operating status, and Figs. Characteristic diagrams showing concentration changes, FIGS. 12 and 13 are system diagrams showing a conventional radioactive waste liquid treatment system. A... Suspended radionuclide removal zone B... Ionic radionuclide removal zone T1... Collection tank T2... Reaction tank T3... Treated water tank T4... Collection agent tank T5 ... Sludge receiving tank Fl ... Hollow fiber membrane filter F2 at the front stage... Hollow fiber membrane filter D1 at the rear stage ... First radiation detector D2 ... Second radiation detector M... Stirring device N...control device Pl to P4...pump Vl to v9...valve (8733) agent

Claims (3)

【特許請求の範囲】[Claims] (1)放射性廃液を収集するための収集タンクと、この
収集タンクに接続され前記放射性廃液中に含まれる懸濁
物を分離・捕集するための前段の中空糸膜フィルタと、
この前段の中空糸膜フィルタで処理された処理済水を受
けさらに処理を行うための反応タンクと、この反応タン
ク中に投入する捕集剤を貯留するための捕集剤タンクと
前記反応タンクで受けた処理済水および捕集剤を混合す
るための攪拌装置と、前記反応タンク内で反応後の捕集
剤含有溶液中から捕集剤のみを分離・捕集するための後
段の中空糸膜フィルタと、この後段の中空糸膜フィルタ
で処理された処理済水を受ける処理済水タンクと、前記
各々の中空糸膜フィルタの逆洗時に排出される懸濁性固
形分および使用済の捕集剤を受けるスラッジ受タンクを
備えたことを特徴とする放射性廃液処理システム。
(1) A collection tank for collecting radioactive waste liquid, and a hollow fiber membrane filter at the front stage connected to this collection tank and used to separate and collect suspended matter contained in the radioactive waste liquid;
A reaction tank for receiving the treated water treated by the hollow fiber membrane filter in the previous stage for further treatment, a collection agent tank for storing the collection agent to be introduced into the reaction tank, and the reaction tank. a stirring device for mixing the received treated water and a scavenger, and a subsequent hollow fiber membrane for separating and collecting only the scavenger from the scavenger-containing solution after reaction in the reaction tank. a filter, a treated water tank that receives treated water treated by the hollow fiber membrane filter in the subsequent stage, and collection of suspended solids and used waste discharged during backwashing of each of the hollow fiber membrane filters. A radioactive waste liquid treatment system characterized by being equipped with a sludge receiving tank that receives a sludge agent.
(2)前記前段の中空糸膜フィルタで処理された処理済
水の放射能濃度をインラインで計測するための第1の放
射線検出器と、この第1の放射線検出器からの信号で放
射能濃度の高低を判断し、濃度が十分に低い場合には前
記反応タンクには移送せずに前記処理済水タンクに移送
するように判断を下す制御装置を備えたことを特徴とす
る請求項1記載の放射性廃液処理システム。
(2) A first radiation detector for in-line measuring the radioactivity concentration of the treated water treated with the preceding hollow fiber membrane filter, and a signal from the first radiation detector to determine the radioactivity concentration. 2. The control device according to claim 1, further comprising a control device that determines whether the concentration is high or low and, if the concentration is sufficiently low, determines not to transfer the treated water to the reaction tank but to transfer the treated water to the treated water tank. Radioactive waste liquid treatment system.
(3)前記後段の中空糸膜フィルタで処理された処理済
水放射能濃度をインラインで計測するための第2の放射
線検出器、この第2の放射線検出器からの信号で放射能
濃度の高低を判断し、濃度が十分に低減してない場合に
は処理済水を反応タンクへ戻すように判断を下すととも
に前記後段の中空糸膜フィルタに付着した捕集剤の逆洗
を指令するための制御装置を備えたことを特徴とする請
求項1記載の放射性廃液処理システム。
(3) A second radiation detector for in-line measuring the radioactivity concentration of the treated water processed by the hollow fiber membrane filter in the latter stage, and the radioactivity concentration is determined by the signal from this second radiation detector. and, if the concentration has not been sufficiently reduced, makes a decision to return the treated water to the reaction tank, and also instructs backwashing of the collecting agent adhering to the hollow fiber membrane filter in the latter stage. The radioactive waste liquid treatment system according to claim 1, further comprising a control device.
JP63209373A 1988-08-25 1988-08-25 Radioactive waste liquid treatment equipment Expired - Lifetime JP2549155B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63209373A JP2549155B2 (en) 1988-08-25 1988-08-25 Radioactive waste liquid treatment equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63209373A JP2549155B2 (en) 1988-08-25 1988-08-25 Radioactive waste liquid treatment equipment

Publications (2)

Publication Number Publication Date
JPH0259700A true JPH0259700A (en) 1990-02-28
JP2549155B2 JP2549155B2 (en) 1996-10-30

Family

ID=16571855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63209373A Expired - Lifetime JP2549155B2 (en) 1988-08-25 1988-08-25 Radioactive waste liquid treatment equipment

Country Status (1)

Country Link
JP (1) JP2549155B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644898A (en) * 1979-09-21 1981-04-24 Hitachi Ltd Radioactive liquid waste processing method
JPS5729981A (en) * 1980-07-30 1982-02-18 Tohoku Electric Power Co Inc Drainage monitor
JPS5729978A (en) * 1980-07-30 1982-02-18 Tohoku Electric Power Co Inc Radioactivity monitor for drainage

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5644898A (en) * 1979-09-21 1981-04-24 Hitachi Ltd Radioactive liquid waste processing method
JPS5729981A (en) * 1980-07-30 1982-02-18 Tohoku Electric Power Co Inc Drainage monitor
JPS5729978A (en) * 1980-07-30 1982-02-18 Tohoku Electric Power Co Inc Radioactivity monitor for drainage

Also Published As

Publication number Publication date
JP2549155B2 (en) 1996-10-30

Similar Documents

Publication Publication Date Title
US5366634A (en) Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering
US4105556A (en) Liquid waste processing system
Zakrzewska-Trznadel et al. Membrane processes in nuclear technology-application for liquid radioactive waste treatment
EP0700315A1 (en) Multi-stage water treatment system
CN110349689B (en) Radioactive waste liquid treatment device for nuclear power station
JP2012229998A (en) Radioactive substance decontamination device and decontamination method, from radioactively contaminated water incorporating salt such as seawater
CN110349690A (en) Radioactive liquid waste processing method and processing device
CA1154885A (en) Method of decontaminating nuclear power plant waste liquids or removing radioactive components therefrom
JPH11352283A (en) Condensate processing method and condensate demineralization device
JP2001239138A (en) Device for treating liquid
JPH0259700A (en) Radioactive waste liquid treatng system
JP3388920B2 (en) Power plant wastewater treatment method and apparatus
Harjula et al. Testing of highly selective CoTreat ion exchange media for the removal of radiocobalt and other activated corrosion product nuclides from NPP waste waters
JPS5835096B2 (en) How to capture spilled ion exchange resin
Miśkiewicz et al. Application of biosorbents in hybrid ultrafiltration/sorption processes to remove radionuclides from low-level radioactive waste
JPH0356126A (en) Hollow yarn membrane filter having desalting function
RU2273066C1 (en) Method for recovering liquid radioactive wastes
Shakir et al. Decontamination of a radioactive process waste water by adsorbing colloid flotation
RU2112289C1 (en) Method for recovery of liquid radioactive wastes
JPS63274405A (en) Reverse washing treatment method of hollow fiber membrane filter apparatus
El Tayara et al. Purification of Liquid Radwaste Using Hollow Fibre Membrane Cross Flow Filtration at Ringhals NPP
JPS62123397A (en) Low-conductivity waste-liquor processor
RU2301466C1 (en) Method for decontaminating low-activity solutions
JPS63250597A (en) Radioactive waste-liquor processor
JP2006162316A (en) Waste liquid processing method and waste liquid processing system