JPH0356126A - Hollow yarn membrane filter having desalting function - Google Patents

Hollow yarn membrane filter having desalting function

Info

Publication number
JPH0356126A
JPH0356126A JP1191559A JP19155989A JPH0356126A JP H0356126 A JPH0356126 A JP H0356126A JP 1191559 A JP1191559 A JP 1191559A JP 19155989 A JP19155989 A JP 19155989A JP H0356126 A JPH0356126 A JP H0356126A
Authority
JP
Japan
Prior art keywords
hollow fiber
fiber membrane
water
membrane filter
water collection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP1191559A
Other languages
Japanese (ja)
Other versions
JPH0679656B2 (en
Inventor
Toshio Sawa
俊雄 沢
Takayuki Matsumoto
隆行 松本
Kiichi Shindo
新藤 紀一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1191559A priority Critical patent/JPH0679656B2/en
Publication of JPH0356126A publication Critical patent/JPH0356126A/en
Publication of JPH0679656B2 publication Critical patent/JPH0679656B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Abstract

PURPOSE:To make desalting function excellent by fixing both ends of hollow membrane yarns to the water gathering parts on the inflow and outflow sides of a liquid to be treated provided to a hollow yarn membrane filter and filling the water passing pipe connecting both water gathering parts with a filler having desalting function. CONSTITUTION:In the structure of a hollow yarn membrane filter 3 separating a particulate solid and a dissolved ion component by hollow yarn membranes 7, water gathering parts 12a, 12b are provided to the filter 3 on the inflow and outflow sides of a liquid to be treated thereof. Both ends of the hollow yarn membranes 7 are fixed to both water gathering parts and the water passing pipe 11 connecting both water gathering parts if filled with a filler 18 having desalting function. As a result, solid separating function and dissolved component removing function can be provided to the hollow yarn membrane filter and the contact time of a dissolved component and an ion exchange material can be extended and, by this method, the hollow yarn membrane filter excellent in desalting function is obtained.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、例えば原子力発電プラントや、火力発電プラ
ントの冷却水浄化のために用いられる中空糸膜フィルタ
に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a hollow fiber membrane filter used for purifying cooling water in, for example, nuclear power plants and thermal power plants.

〔従来の技術〕[Conventional technology]

原子力発電プラントでは原子炉周辺の放射線量を抑制す
ることを目的に、復水中の不純物であるクラッドと称す
る鉄酸化物戒分と溶存戒分を予め除去する必要があり、
除去装置として′rJjJ過脱塩器、脱塩器等が設置さ
れている。濾過脱塩器は棒状のエレメントに粉末状のイ
オン交換樹脂をプリコートし、プリコート層内で捕捉す
るものである。本方式でクラッドを除去することはでき
るが、プリコート操作等の運用面が面倒であったり、逆
洗頻度が短いなどの課題があるとともに、廃イオン交換
樹脂が多量に発生する問題がある。
In nuclear power plants, in order to suppress the radiation dose around the reactor, it is necessary to remove iron oxides and dissolved substances called crud, which are impurities in the condensate, in advance.
As removal equipment, 'rJjJ over desalination equipment, desalination equipment, etc. are installed. A filtration demineralizer is a device in which a rod-shaped element is precoated with powdered ion exchange resin, and the ion exchange resin is captured within the precoat layer. Although it is possible to remove crud using this method, there are problems such as operational aspects such as pre-coating operations being troublesome, backwashing frequency being short, and the problem of generating a large amount of waste ion exchange resin.

一方、ブリコート助剤を必要としない方式として中空糸
膜フィルタがある。このフィルタは、ポリエチレンのよ
うな高分子素材でできている直径1mm程度の中空糸状
の膜を数千本束にしたモジュールで構威されており、膜
の表面には、0.01〜0.1μ僧の細孔をもつ精密濾
膜の層を形威したものと、これよりさらに小さい細孔の
限外濾過膜の層を形威したものがある。この中空糸膜フ
ィルタはクラッドのような微細な固形分を分離し、溶存
戒分は細孔を通るようになっている。したがって、この
フィルタでは溶存成分の除去はできない。
On the other hand, a hollow fiber membrane filter is available as a method that does not require a bricoating aid. This filter is made up of a module consisting of several thousand hollow fiber membranes made of a polymeric material such as polyethylene and each having a diameter of about 1 mm. There are those that use a layer of microfiltration membrane with pores of 1 μm, and those that use a layer of ultrafiltration membrane that has even smaller pores. This hollow fiber membrane filter separates fine solids such as cladding, and allows dissolved substances to pass through the pores. Therefore, this filter cannot remove dissolved components.

ところで、上記の中空糸膜フィルタを改良し、原子力発
電プラントの復水中の溶存戒分をこの中空糸膜フィルタ
で除去する試みがなされている。
By the way, attempts have been made to improve the above-mentioned hollow fiber membrane filter and to remove dissolved substances in the condensate of nuclear power plants using this hollow fiber membrane filter.

この方式にあっては、中空糸膜自体にイオン交換基を付
与するものであり、すてにスルホン基(ski11)、
カルボン酸基(Cool)等の官能基を付与する膜があ
る(例えば特公昭56−57836号、62−8300
6号).このような膜で脱塩すなわち溶存イオン成分を
イオン交換反応で除去することはできるが、膜の厚さが
薄いために膜内での滞留時間が短く十分なイオン交換が
できない。また、膜への官能基の十分な付与は強度低下
の点からできないので十分なイオン交換をすることがで
きない。
In this method, ion exchange groups are added to the hollow fiber membrane itself, and all sulfone groups (ski11),
There are films that provide functional groups such as carboxylic acid groups (Cool) (for example, Japanese Patent Publication No. 56-57836, 62-8300).
No. 6). Although it is possible to desalt or remove dissolved ion components by an ion exchange reaction using such a membrane, the membrane is thin and the residence time within the membrane is short, making it impossible to perform sufficient ion exchange. Furthermore, sufficient ion exchange cannot be carried out because it is not possible to sufficiently impart functional groups to the membrane due to the reduction in strength.

一方、中空糸膜に多孔質のイオン交換樹脂膜の層を重合
し、復水中の非溶融性の不純物は中空糸濾過膜部の表面
で除去し、溶融不純物はイオン交換じ1脂膜部を通過す
るときにイオン交換によって浄化する浄化装置がある。
On the other hand, a layer of porous ion-exchange resin membrane is polymerized on the hollow fiber membrane, and non-meltable impurities in the condensate are removed on the surface of the hollow fiber filtration membrane, and molten impurities are removed from the ion-exchange membrane. There are purifiers that purify water by ion exchange as it passes through.

 (特開昭62−129109号、63−65910号
、63−296803号)。これら浄化装置のうち、特
開昭62−129109号と63−296803号では
前に述べた特公昭56−57836号、62−8300
6号と同様中空糸欣に形威するイオン交換樹脂膜の層は
強度等の面から薄く形威されるため膜内での滞留時間が
短く十分なイオン交換ができない。また特開昭63−6
5910号では中空糸膜フィルタの上部にイオン交換樹
脂層を設けており、フィルタ容器内でイオン交換材の十
分な充填高さがとれないため上記と同様被処理液の接触
時間が短く除去率が小さい。
(JP-A-62-129109, 63-65910, 63-296803). Among these purifying devices, Japanese Patent Publications Nos. 62-129109 and 63-296803 are similar to those mentioned above in Japanese Patent Publication Nos. 56-57836 and 62-8300.
Similar to No. 6, the ion exchange resin membrane layer formed on the hollow fiber rod is formed thinly from the viewpoint of strength, etc., so the residence time in the membrane is short and sufficient ion exchange cannot be performed. Also, JP-A-63-6
In No. 5910, an ion exchange resin layer is provided on the upper part of the hollow fiber membrane filter, and since a sufficient filling height of the ion exchange material cannot be secured in the filter container, the contact time of the liquid to be treated is short and the removal rate is low. small.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記のように従来の中空糸膜フィルタは溶存戊分とイオ
ン交換材との接触時間が短いため溶存成分の除去効率が
よくなかった。本発明の目的は、中空糸膜フィルタに固
形分分gll能と熔存成分除去機能をもたせ、しかも溶
存戒分とイオン交換材との接触時間を長くすることがで
き、それにより脱塩機能の優れた中空糸膜フィルタを提
供することを目的とする。
As mentioned above, conventional hollow fiber membrane filters have poor removal efficiency of dissolved components because the contact time between dissolved components and ion exchange material is short. The purpose of the present invention is to provide a hollow fiber membrane filter with the ability to remove solid content and remove dissolved components, and to prolong the contact time between the dissolved components and the ion exchange material, thereby improving the desalination function. The purpose is to provide an excellent hollow fiber membrane filter.

(課題を解決するための手段〕 上記目的を達戒するため、本発明は、粒子状固形分と溶
存イオン成分を分離する中空糸膜フィルタの構造におい
て、該フィルタの被処理液の流入側と流出側に集水部を
設け、両集水部に中空糸膜の両端を固定するとともに、
流出側集水部と流入側集水部を連結する通水管内に脱塩
能を有する充填材を充填したことを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention provides a structure for a hollow fiber membrane filter that separates particulate solid content and dissolved ion components. A water collection part is provided on the outflow side, and both ends of the hollow fiber membrane are fixed to both water collection parts.
It is characterized in that the water pipe connecting the outflow side water collection part and the inflow side water collection part is filled with a filler having desalination ability.

上記充填材を充填する通水管は、流入側の集水部に入っ
た被処理液を流出側の集水部に導くために設けられる集
水管であってもよいし、又は集水管とは別に設けた管の
内部に脱塩能を有する充填材を充填してなる脱塩管を設
けてもよい。
The water pipe filled with the filler material may be a water collection pipe provided to guide the liquid to be treated that has entered the water collection part on the inflow side to the water collection part on the outflow side, or may be a water collection pipe provided separately from the water collection pipe. A desalting tube may be provided in which the inside of the provided tube is filled with a filler having desalting ability.

上記通水管の材質はプラスチック材、ゴム材等の焼却可
能な材料で形威される。
The material of the water pipe is incinerated, such as plastic or rubber.

また、上記脱塩能を有する充填材として、カチオン交換
体又はアニオン交換体とからなるイオン交換樹脂又はイ
オン交換繊維が使用される。
Further, as the filler having desalting ability, an ion exchange resin or ion exchange fiber comprising a cation exchanger or an anion exchanger is used.

さらに具体的に説明すると、中空糸膜フィルタは次のよ
うに構成することができる。すなわち中空糸膜の両端を
フィルタ容器内の被処理液流入側と流出側に設けた集水
槽に固定し、かつ中空糸膜の端部を両集水槽内に開通し
、両集水槽を連結する集水管の内部に脱塩能を有する充
填材を充填する。また、中空糸膜の流出側集水槽に固定
する糸膜端部は閉塞し、流入側集水槽に固定する端部の
みを該流入側集水槽に開通してもよい。
More specifically, the hollow fiber membrane filter can be configured as follows. That is, both ends of the hollow fiber membrane are fixed to water collection tanks provided on the inflow and outflow sides of the liquid to be treated in the filter container, and the ends of the hollow fiber membrane are opened into both water collection tanks to connect the two water collection tanks. The inside of the water collection pipe is filled with a filler that has desalination ability. Alternatively, the ends of the hollow fiber membranes fixed to the outflow side water collection tank may be closed, and only the ends fixed to the inflow side water collection tank may be opened to the inflow side water collection tank.

上記中空糸膜フィルタは原子力発電プラントや火力発電
プラントの冷却水浄化系統に使用することができる。す
なわち、原子炉やボイラで発生した蒸気を発電用タービ
ンに導きこれを駆動させた後、復水器で冷却して液化し
、給水ヒータに導いたうえ再び原子炉やボイラに循環さ
せる原子力又は火力発電プラントにおいて、上記復水器
と給水ヒータの流通経路に本発明の脱塩機能を有する中
空糸膜フィルタを介装するとよい。
The hollow fiber membrane filter described above can be used in cooling water purification systems of nuclear power plants and thermal power plants. In other words, nuclear power or thermal power generation involves introducing steam generated in a nuclear reactor or boiler to a power generation turbine, driving it, cooling it in a condenser, liquefying it, guiding it to a feedwater heater, and then circulating it back to the reactor or boiler. In a power generation plant, the hollow fiber membrane filter having a desalination function of the present invention may be interposed in the flow path between the condenser and the feed water heater.

また、本発明の中空糸膜フィルタを超純水製造装置に用
いることができる。超純水製造プロセスは、例えば、原
水→前処理→逆侵透膜(フィルタ)→イオン交換樹脂(
脱塩器)→紫外線照射(有機物分解)→イオン交換樹脂
(脱塩器)→精密膜(フィルタ)の順となる。本発明の
中空糸膜フィルタを上記梢製経路の一部に組込んで使用
することができる。例えば、上記最柊の2経路に設けら
れるイオン交換樹脂脱塩器と精密欣フィルタの組合せ部
に上記中空糸膜フィルタを使用することにより超純水製
造効率のアップと装置の小型化を図ることができる。
Furthermore, the hollow fiber membrane filter of the present invention can be used in ultrapure water production equipment. The ultrapure water production process includes, for example, raw water → pretreatment → reverse osmosis membrane (filter) → ion exchange resin (
The order is: demineralizer) → ultraviolet irradiation (organic matter decomposition) → ion exchange resin (demineralizer) → precision membrane (filter). The hollow fiber membrane filter of the present invention can be used by being incorporated into a part of the treetop path. For example, by using the above-mentioned hollow fiber membrane filter in the combination of the ion-exchange resin demineralizer and the precision filter installed in the two Sai-Hiragi routes, the efficiency of ultrapure water production can be increased and the equipment can be made more compact. I can do it.

〔作 用] 被処理液が中空糸膜の外部からその内部に流入する際液
中の固形分が除去されるとともに、流入側と流出側を連
結する通水管内を通過する際、管内の脱塩能を有する充
填材によって溶融戒分が除去される。
[Function] When the liquid to be treated flows into the inside of the hollow fiber membrane from the outside, the solid content in the liquid is removed, and when it passes through the water passage pipe that connects the inflow side and the outflow side, the desorption inside the pipe is removed. The molten substances are removed by the salt-capable filler.

〔実施例] 以下本発明の実施例を図面にもとづいて説明する。〔Example] Embodiments of the present invention will be described below based on the drawings.

第1図は本発明になる中空糸膜フィルタを原子力発電プ
ラントの復水浄化系に適用した系統を示す。同図におい
て、原子炉1で発生した蒸気は発電気用のタービン2を
駆動した後、復水器5によって冷却された後、給水ヒー
ク4を通り再び原子炉1に循環流入する。この場合、冷
却水中に不純物があると原子炉l内で放射性物質に変換
されたり、配管材の腐食要因となるので極力浄化する必
要がある。浄化装置として、クラッド等の固形分と溶存
イオン戒分を同時に分離するための中空糸膜フィルタ3
が給水ヒータ4の前に設置される。
FIG. 1 shows a system in which the hollow fiber membrane filter of the present invention is applied to a condensate purification system of a nuclear power plant. In the figure, steam generated in a nuclear reactor 1 drives a turbine 2 for power generation, is cooled by a condenser 5, and then circulates into the reactor 1 through a water supply heak 4. In this case, if there are impurities in the cooling water, they may be converted into radioactive substances within the reactor l or cause corrosion of piping materials, so it is necessary to purify the water as much as possible. As a purification device, a hollow fiber membrane filter 3 is used to simultaneously separate solid content such as cladding and dissolved ion components.
is installed in front of the water supply heater 4.

発明に係る中空糸膜フィルタの構造と系統を第2図に示
す。同図において、フィルタ容器19の中に中空糸膜モ
ジュール17が多数装填されている。
FIG. 2 shows the structure and system of the hollow fiber membrane filter according to the invention. In the figure, a large number of hollow fiber membrane modules 17 are loaded into a filter container 19.

モジュール17はフィルタ容器19の上部の固定仮6に
設置されており、数千本の中空糸膜7が固定されている
.フィルタ容器19の下部には逆洗時に用いる分散器8
が配設されている。第1図に示した復水器5からの復水
は容器下部の流入口9より流入し、各モジュール17の
中空糸膜7を通って上部の流出口10より流出する。
The module 17 is installed on a fixed temporary 6 above the filter container 19, and several thousand hollow fiber membranes 7 are fixed thereon. At the bottom of the filter container 19 is a disperser 8 used for backwashing.
is installed. Condensate from the condenser 5 shown in FIG. 1 flows in through the inlet 9 at the bottom of the container, passes through the hollow fiber membrane 7 of each module 17, and flows out through the outlet 10 at the top.

次に中空糸膜モジュール17の構造と機能について第3
図によって説明する。モジュール17は、中空糸膜7と
、集水管の内部に脱塩材を充填してなる脱塩カラムl1
のそれぞれの両端を被処理液(復水)の流入側と流出側
の各集水槽12a,12bに固定する構造になっている
。脱塩カラム11の上部と下部に充填材を固定するため
のネットが設けてあり、その間にイオン交換樹脂あるい
はイオン交換繊維が充填されている。この充填材の充填
量は、脱塩カラム11の直径と充填高さ、カラム本数で
調整される。脱塩カラムl1は交換可能なパッケージタ
イプも用いることができる。第3図では、中空糸膜7の
両端が流入側と流出側の各集水槽12a,12b内に開
通しているが、第4図(b)に示すように流出側の集水
槽12bに固定する糸膜端部は閉塞してもよい。
Next, the structure and function of the hollow fiber membrane module 17 will be explained in the third section.
This will be explained using figures. The module 17 includes a hollow fiber membrane 7 and a desalination column l1 formed by filling a water collection pipe with a desalination material.
It has a structure in which both ends thereof are fixed to respective water collecting tanks 12a and 12b on the inflow side and outflow side of the liquid to be treated (condensate). Nets for fixing the packing material are provided at the upper and lower parts of the desalting column 11, and ion exchange resin or ion exchange fiber is filled between them. The amount of filling material is adjusted by the diameter and filling height of the desalting column 11, and the number of columns. A replaceable package type can also be used for the desalting column 11. In Fig. 3, both ends of the hollow fiber membrane 7 are opened into the water collection tanks 12a and 12b on the inflow side and the outflow side, but as shown in Fig. 4(b), it is fixed to the water collection tank 12b on the outflow side. The end of the thread membrane may be occluded.

復水の流れる方向についての実施例を第4図(a),(
b)に示す。図(a)では中空糸膜7の両端が流入側と
流出側の集水槽12a,12bに開放されており、水は
膜外表面より内部に入り、上下方向に2分され、流入側
集水槽12aに入った水は脱塩カラム11を通って流出
側の集水槽12bに入り上方に排出される。
Examples of the flow direction of condensate are shown in Figures 4(a) and (
Shown in b). In Figure (a), both ends of the hollow fiber membrane 7 are open to water collection tanks 12a and 12b on the inflow side and outflow side, water enters the inside from the outer surface of the membrane, is divided into two in the vertical direction, and is separated into water collection tanks 12a and 12b on the inflow side. The water that has entered 12a passes through the desalination column 11, enters the water collection tank 12b on the outflow side, and is discharged upward.

この実施例では、被処理液の約50%程度しか脱塩カラ
ム11を通らない。なお、18は充填材である。
In this embodiment, only about 50% of the liquid to be treated passes through the desalting column 11. Note that 18 is a filler.

一方、第4図(b)では、排出側の集水槽12bに固定
する中空糸膜7の端部は閉塞されているので、膜内に入
った水は全量流入側の集水槽12aに集められ、脱塩カ
ラムl1を通って上部に流出する。この実施例では被処
理液の全量が脱塩カラム11を通り脱塩されるが、全量
が膜内管を通るので図(a)の分流方式に比べ圧力損失
が大きくなる。
On the other hand, in FIG. 4(b), since the end of the hollow fiber membrane 7 fixed to the water collection tank 12b on the discharge side is closed, all of the water that has entered the membrane is collected in the water collection tank 12a on the inflow side. , flows out to the top through the desalting column 11. In this embodiment, the entire amount of the liquid to be treated passes through the desalting column 11 and is desalted, but since the entire amount passes through the membrane tube, the pressure loss is greater than in the split flow system shown in FIG.

次に本発明を実証した実験例について述べる。Next, an experimental example demonstrating the present invention will be described.

第5図は実験装置の概略を示す。この実験装置は中空糸
膜フィルタl3を中心に原水槽14と2つの液濃度調整
槽15. 16とで構成されている中空糸膜フィルタ1
3の仕様は、中空糸膜(1.2φX300mm細孔径0
. 1μm) 1 00本であり、濾過面積はlooO
cfflである。脱塩カラム11は中空糸膜フィルタ1
3の中央部に配置したlOφX300mmの円筒管で構
威されており、その内部にカチオン樹脂とア二オン樹脂
をそれぞれ20ml充填している。原水槽l4は実験条
件に対応した.液を調整できるようになっており、ここ
では一方の濃度調整槽l5に収容したNaCl液と、他
方の濃度調整槽l6に収容した鉄酸化物粒子含有液を原
水槽14に注入できるようにしている。本実験装置を用
いて中空糸膜フィルタの脱塩性能と圧力損失特性を求め
た。
FIG. 5 shows an outline of the experimental apparatus. This experimental device consists of a hollow fiber membrane filter l3, a raw water tank 14, and two liquid concentration adjustment tanks 15. Hollow fiber membrane filter 1 consisting of 16 and
3 specifications are hollow fiber membrane (1.2φX300mm pore diameter 0
.. 1μm) 100 lines, and the filtration area is looO
cffl. The desalting column 11 is a hollow fiber membrane filter 1
It consists of a cylindrical tube of lOφ×300 mm placed in the center of the tube, and 20 ml of each of cationic resin and anionic resin are filled inside the tube. Raw water tank 14 corresponded to the experimental conditions. The liquid can be adjusted, and here, the NaCl solution stored in one concentration adjustment tank l5 and the iron oxide particle-containing liquid stored in the other concentration adjustment tank l6 can be injected into the raw water tank 14. There is. Using this experimental device, we determined the desalination performance and pressure drop characteristics of a hollow fiber membrane filter.

実験例I 第6図(a), 0))に示した液の流路方向の異なる
2つの中空糸膜フィルタでの脱塩性能をフィルタ出口の
導電率変化を追跡した。原液はNaC1濃度10■/l
、液160Il/hで通水した。フィルタ出口の導電率
の経時変化を第6図に示す。図中(a)は人口濃度の平
均値を示しており、(b)は全量集水中空糸膜フィルタ
(第4図(b)の構造)の出口濃度、(C)は両端開放
部分集水フィルタ(第4図(a)の構造)の出口濃度を
示している。第6図から分るとおり、bで示す全量通水
方式の方が、部分通水方式より脱塩率が大きい。脱塩量
は逆に部分通水方式の方が全景通水方式より大きい。こ
れは部分通水の場合、脱塩カラム11内での流速が小さ
いので、それだけ脱塩カラム11内での脱塩率が大きく
なり、全体としての脱塩量が大きくなるためであると考
えられる。
Experimental Example I The desalting performance of two hollow fiber membrane filters with different liquid flow path directions shown in FIG. 6(a), 0)) was tracked by changes in the conductivity at the filter outlet. The stock solution has a NaCl concentration of 10■/l
, liquid was passed through at a rate of 160 Il/h. Figure 6 shows the change in electrical conductivity at the filter outlet over time. In the figure, (a) shows the average value of the population concentration, (b) shows the outlet concentration of the entire collection water hollow fiber membrane filter (structure shown in Figure 4 (b)), and (C) shows the partial water collection with both ends open. The outlet concentration of the filter (structure of FIG. 4(a)) is shown. As can be seen from FIG. 6, the full water flow system shown in b has a higher desalination rate than the partial water flow system. On the other hand, the amount of desalination is greater in the partial water flow method than in the panoramic water flow method. This is thought to be because in the case of partial water flow, the flow rate within the desalting column 11 is low, so the desalting rate within the desalting column 11 increases accordingly, and the total amount of desalting increases. .

実験例■ 全景集水フィルタを用いて鉄酸化物粒子とNaClを含
む液での脱塩特性とフィルタの圧力損失変化を求めたの
で、その変化特性を第7図に示す。処理条件は、NaC
NJ度10■/l、鉄酸化物粒子(α−Fe20i、l
tlIIl)濃度2 !Ilg / eを含む液を50
 ff /hで通水した。フィルタ出口導電率は第6図
に示したNaCI単独通水での特性と同じであり、脱塩
されていることが分る。一方、圧力損失の変化は鉄酸化
物粒子が膜表面で捕捉されるにしたがい上昇していく。
Experimental Example ■ Using a panoramic water collection filter, the desalination characteristics of a liquid containing iron oxide particles and NaCl and the change in pressure loss of the filter were determined, and the change characteristics are shown in FIG. The treatment conditions were NaC
NJ degree 10■/l, iron oxide particles (α-Fe20i, l
tlIIl) Concentration 2! 50% of the solution containing Ilg/e
Water was passed at a rate of ff/h. The filter outlet conductivity is the same as the characteristic shown in FIG. 6 when NaCI water is passed through alone, indicating that desalination is occurring. On the other hand, the change in pressure drop increases as iron oxide particles are trapped on the membrane surface.

これよりフィルタ構造としては脱塩率、脱塩量を考慮し
た脱塩器カラムの大きさ(直径、長さ)と通水条件を選
ぶことになる。
From this, the size (diameter, length) of the desalter column and water flow conditions should be selected in consideration of the desalination rate and amount of desalination as the filter structure.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、中空糸膜フィルタに脱塩機能をもたせ
ることができるので、被処理液中の固形分分離とイオン
除去を同時に行なうことができる。
According to the present invention, since the hollow fiber membrane filter can be provided with a desalting function, solid content separation and ion removal in the liquid to be treated can be performed simultaneously.

と《に、原子力発電プラント、火力発電プラントなどの
冷却水の浄化系統のように固形分分離を主とし、なお脱
塩機能も必要とする場合には、中空糸膜を用いた分離器
と脱塩器とを別々に設けることなく、本発明の中空糸膜
フィルタだけで処理できるので、必要な浄化装置の数を
減らすことができ、スペース的にもコスト的にも有利で
ある。
In cases where solid content separation is the main purpose and a desalination function is also required, such as in cooling water purification systems for nuclear power plants, thermal power plants, etc., a separator using a hollow fiber membrane and a demineralizer are recommended. Since treatment can be carried out using only the hollow fiber membrane filter of the present invention without separately providing a salt container, the number of necessary purification devices can be reduced, which is advantageous in terms of space and cost.

また、本発明は中空糸膜フィルタの集水部に設けた通水
管を利用してその内部に脱塩能を有する充填材を充填す
るものであるから、充填材の高さを十分とり、被処理液
との接触時間を長くできるから従来の中空糸膜にイオン
交換基を付与するもの等に比べて脱塩性能を高めること
ができる。さらに脱塩機能部を交換可能なカラムで構成
すると、イオン交換体の再生操作をすることなく必要な
処理性能を満足できる利点がある。本発明は超純水製造
装置に用いるときも前記と同様利点を有する。
Furthermore, since the present invention utilizes a water pipe provided in the water collection part of a hollow fiber membrane filter and fills the inside with a filler having desalination ability, the filler should be sufficiently high and covered with water. Since the contact time with the treatment liquid can be extended, the desalting performance can be improved compared to conventional hollow fiber membranes in which ion exchange groups are added. Furthermore, if the desalting function section is configured with an exchangeable column, there is an advantage that the necessary treatment performance can be satisfied without performing an operation to regenerate the ion exchanger. The present invention has the same advantages as described above when used in an ultrapure water production apparatus.

【図面の簡単な説明】[Brief explanation of drawings]

第l図は本発明の中空糸膜フィルタを用いたBWR型原
子力発電プラント冷却水の浄化系統図、第2図は中空糸
膜フィルタの構造図、第3図は中空糸膜フィルタのモジ
ュールの構造図、第4図(a),(b3はモジュール構
造の差による液の流れ系統を示ず2の実施例図、第5図
は本発明に用いた実験装置の構成図、第6図は中空糸膜
フィルタの処理特性図、第7図はフィルタの処理特性と
圧力損失変化の特性図である。 l・・・原子炉      2・・・タービン3・・・
中空糸膜フィルタ 4・・・給水ヒータ5・・・復水器
      7・・・中空糸膜11・・・脱塩カラム 12a, 12b・・・流入側、流出側集水槽17・・
・中空糸膜モジュール l8・・・充填材 19・・・フィルタ容器
Figure 1 is a diagram of a BWR type nuclear power plant cooling water purification system using the hollow fiber membrane filter of the present invention, Figure 2 is a structural diagram of the hollow fiber membrane filter, and Figure 3 is the structure of the module of the hollow fiber membrane filter. Figures 4 (a) and (b3 do not show the liquid flow system due to the difference in module structure); Figure 5 is a configuration diagram of the experimental apparatus used in the present invention; Figure 6 is a hollow Fig. 7 is a processing characteristic diagram of the thread membrane filter and a characteristic diagram of the filter processing characteristic and pressure loss change. l...Reactor 2...Turbine 3...
Hollow fiber membrane filter 4... Water supply heater 5... Condenser 7... Hollow fiber membrane 11... Desalination columns 12a, 12b... Inflow side, outflow side water collection tank 17...
・Hollow fiber membrane module l8...Filling material 19...Filter container

Claims (1)

【特許請求の範囲】 1、粒子状固形分と溶存イオン成分を中空糸膜により分
離する中空糸膜フィルタの構造において、該フィルタの
被処理液流入側と流出側に集水部を設け、両集水部に中
空糸膜の両端を固定するとともに、両集水部を連結する
通水管内に脱塩能を有する充填材を充填したことを特徴
とする脱塩機能を有する中空糸膜フィルタ。 2、前記通水管が流入側と流出側集水部を連結する集水
管であることを特徴とする請求項1記載の脱塩機能を有
する中空糸膜フィルタ。 3、前記通水管が集水管とは別に設けた脱塩管であるこ
とを特徴とする請求項1記載の脱塩機能を有する中空糸
膜フィルタ。 4、前記通水管の材質がプラスチック材、ゴム材等の焼
却可能な材料であることを特徴とする請求項1記載の脱
塩機能を有する中空糸膜フィルタ。 5、前記脱塩機能を有する充填材がカチオン交換体とア
ニオン交換体とからなるイオン交換樹脂又はイオン交換
繊維であることを特徴とする請求項1記載の脱塩機能を
有する中空糸膜フィルタ。 6、被処理液は、中空糸膜の外部から膜内を流入し、さ
らにその一部又は全部が通水管を通過することを特徴と
する請求項1記載の脱塩機能を有する中空糸膜フィルタ
。 7、容器内に設けた中空糸膜の両端部を被処理液の流入
側及び流出側集水槽に固定し、かつ前記両端部を槽内部
に開通して設け、流入側及び流出側集水槽を連結する集
水管の内部に脱塩機能を有する充填材を充填したことを
特徴とする脱塩機能を有する中空糸膜フィルタ。 8、容器内に設けた中空糸膜の両端部を被処理液の流入
側及び流出側集水槽に連結し、流出側集水槽に固定した
中空糸膜の端部を閉塞し、流入側集水槽に固定した中空
糸膜の端部を該槽内に開通し、流入側と流出側の集水槽
を連結する集水管の内部に脱塩機能を有する充填材を充
填したことを特徴とする脱塩機能を有する中空糸膜フィ
ルタ。 9、原子炉で発生した蒸気を発電用タービンに導きこれ
を駆動させた後、復水器で冷却して液化し給水ヒータに
導いたうえ再び原子炉に循環させる原子力発電プラント
において、前記復水器と給水ヒータの流通経路に請求項
1乃至8のいずれかの項記載の中空糸膜フィルタを介装
したことを特徴とする原子力発電プラント。 10、ボイラで発生した蒸気を発電用タービンに導きこ
れを駆動させた後、復水器で冷却して液化し、給水ヒー
タに導いたうえ再びボイラに循環させる火力発電プラン
トにおいて、前記復水器と給水ヒータの流通経路に請求
項1乃至8のいずれかの項記載の中空糸膜フィルタを介
装したことを特徴とする火力発電プラント。 11、原水を通過させるフィルタ、脱塩器及び原水に含
まれる有機物分解のための紫外線照射装置等の複数の構
成要素からなる超純水製造装置において、前記精製経路
の一部に請求項1乃至8のいずれかの項記載の中空糸膜
フィルタを介装させたことを特徴とする超純水製造装置
[Scope of Claims] 1. In the structure of a hollow fiber membrane filter that separates particulate solid content and dissolved ionic components by a hollow fiber membrane, a water collection part is provided on the inflow side and the outflow side of the liquid to be treated of the filter, and both 1. A hollow fiber membrane filter having a desalting function, characterized in that both ends of the hollow fiber membrane are fixed to a water collecting part, and a water pipe connecting the two water collecting parts is filled with a filler having a desalting ability. 2. The hollow fiber membrane filter having a desalination function according to claim 1, wherein the water flow pipe is a water collection pipe that connects an inflow side and an outflow side water collection section. 3. The hollow fiber membrane filter having a desalination function according to claim 1, wherein the water flow pipe is a desalination pipe provided separately from the water collection pipe. 4. The hollow fiber membrane filter having a desalination function according to claim 1, wherein the material of the water pipe is an incinerated material such as a plastic material or a rubber material. 5. The hollow fiber membrane filter having a desalting function according to claim 1, wherein the filler having a desalting function is an ion exchange resin or an ion exchange fiber comprising a cation exchanger and an anion exchanger. 6. The hollow fiber membrane filter having a desalting function according to claim 1, wherein the liquid to be treated flows into the membrane from the outside of the hollow fiber membrane, and further, a part or all of it passes through a water pipe. . 7. Fix both ends of the hollow fiber membrane provided in the container to the inflow and outflow side water collection tanks for the liquid to be treated, and provide both ends open to the inside of the tank to form the inflow and outflow side water collection tanks. A hollow fiber membrane filter having a desalination function, characterized in that a filler having a desalination function is filled inside connected water collecting pipes. 8. Connect both ends of the hollow fiber membrane provided in the container to the inflow and outflow water collection tanks for the liquid to be treated, close the ends of the hollow fiber membrane fixed to the outflow water collection tank, and close the inflow water collection tank. Desalination characterized by opening the end of a hollow fiber membrane fixed to the tank into the tank, and filling the inside of the water collection pipe that connects the water collection tanks on the inflow side and the outflow side with a filler having a desalination function. Hollow fiber membrane filter with functions. 9. In a nuclear power plant, the steam generated in a nuclear reactor is guided to a power generation turbine to drive it, then cooled in a condenser, liquefied, guided to a feed water heater, and then circulated back to the reactor. A nuclear power generation plant, characterized in that a hollow fiber membrane filter according to any one of claims 1 to 8 is interposed in a flow path between the reactor and the water supply heater. 10. In a thermal power generation plant in which steam generated in a boiler is guided to a power generation turbine to drive it, then cooled and liquefied in a condenser, guided to a feed water heater, and then circulated to the boiler again, the condenser A thermal power generation plant characterized in that the hollow fiber membrane filter according to any one of claims 1 to 8 is interposed in a flow path of a water supply heater. 11. An ultrapure water production apparatus comprising a plurality of components such as a filter for passing raw water, a demineralizer, and an ultraviolet irradiation device for decomposing organic matter contained in raw water, in which a part of the purification route is provided as claimed in claim 1. 9. An ultrapure water production apparatus characterized in that the hollow fiber membrane filter according to any one of 8 above is interposed therein.
JP1191559A 1989-07-26 1989-07-26 Hollow fiber membrane filter with desalination function Expired - Lifetime JPH0679656B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1191559A JPH0679656B2 (en) 1989-07-26 1989-07-26 Hollow fiber membrane filter with desalination function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1191559A JPH0679656B2 (en) 1989-07-26 1989-07-26 Hollow fiber membrane filter with desalination function

Publications (2)

Publication Number Publication Date
JPH0356126A true JPH0356126A (en) 1991-03-11
JPH0679656B2 JPH0679656B2 (en) 1994-10-12

Family

ID=16276687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1191559A Expired - Lifetime JPH0679656B2 (en) 1989-07-26 1989-07-26 Hollow fiber membrane filter with desalination function

Country Status (1)

Country Link
JP (1) JPH0679656B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994009889A1 (en) * 1992-10-23 1994-05-11 United Kingdom Atomic Energy Authority Liquid treatment apparatus
JP2006062750A (en) * 2004-07-29 2006-03-09 Oriental:Kk Container
JP2011009033A (en) * 2009-06-25 2011-01-13 Honda Motor Co Ltd Ion exchanger
JP2017217579A (en) * 2016-06-03 2017-12-14 株式会社クラレ Hollow fiber membrane filtration device and method for cleaning the same
US10688441B2 (en) 2017-04-19 2020-06-23 Mann+Hummel Gmbh Integrated ultrafiltration membrane and ion-exchange filtration system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103212295B (en) * 2013-04-19 2015-09-02 荷丰(天津)化工工程有限公司 Industrial large-scale seawater desalination technology and device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994009889A1 (en) * 1992-10-23 1994-05-11 United Kingdom Atomic Energy Authority Liquid treatment apparatus
JP2006062750A (en) * 2004-07-29 2006-03-09 Oriental:Kk Container
JP4694252B2 (en) * 2004-07-29 2011-06-08 株式会社オリエンタル container
JP2011009033A (en) * 2009-06-25 2011-01-13 Honda Motor Co Ltd Ion exchanger
JP2017217579A (en) * 2016-06-03 2017-12-14 株式会社クラレ Hollow fiber membrane filtration device and method for cleaning the same
US10688441B2 (en) 2017-04-19 2020-06-23 Mann+Hummel Gmbh Integrated ultrafiltration membrane and ion-exchange filtration system

Also Published As

Publication number Publication date
JPH0679656B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
Zakrzewska-Trznadel et al. Membrane processes in nuclear technology-application for liquid radioactive waste treatment
US6402956B1 (en) Treatment system and treatment method employing spiral wound type membrane module
Pabby et al. Radioactive waste processing using membranes: state of the art technology, challenges and perspectives
Chmielewski et al. Membrane technologies for liquid radioactive waste treatment
JPH1147560A (en) Secondary system line water treatment plant for pressurized water type atomic power plant
JPH0356126A (en) Hollow yarn membrane filter having desalting function
JP2012225755A (en) Radioactive contamination water processing system, barge type radioactive contamination water processing facility, radioactive contamination water processing method, and on-barge radioactive contamination water processing method
JPH11352283A (en) Condensate processing method and condensate demineralization device
RU2686074C1 (en) Method of processing liquid radioactive wastes
JPS63273093A (en) Condensate purifier
US4773979A (en) Equipment for purifying gases and liquids
JP3388920B2 (en) Power plant wastewater treatment method and apparatus
JP2001239138A (en) Device for treating liquid
KR101063926B1 (en) Condensate polishing system and method thereof
KR100965489B1 (en) Fluid Treatment System
RU2273066C1 (en) Method for recovering liquid radioactive wastes
JP2892811B2 (en) Ion exchange resin, condensate desalination tower and condensate purification device using this resin
JP5350337B2 (en) Radioactive waste treatment method and apparatus
JPH063495A (en) Equipment for treating waste liquid
JP2530609B2 (en) Radioactive high conductivity waste liquid treatment facility
JPS6328404A (en) Water treating device and operating method thereof
JPS61155898A (en) Treater for regenerated waste liquor of ion exchnage resin
JPS63274405A (en) Reverse washing treatment method of hollow fiber membrane filter apparatus
JPH03238083A (en) Filtering and desalting device
JP2922000B2 (en) Condensate filtration and desalination equipment