JP2548561B2 - Wastewater treatment method and apparatus - Google Patents

Wastewater treatment method and apparatus

Info

Publication number
JP2548561B2
JP2548561B2 JP8840287A JP8840287A JP2548561B2 JP 2548561 B2 JP2548561 B2 JP 2548561B2 JP 8840287 A JP8840287 A JP 8840287A JP 8840287 A JP8840287 A JP 8840287A JP 2548561 B2 JP2548561 B2 JP 2548561B2
Authority
JP
Japan
Prior art keywords
wastewater
aeration
dissolved oxygen
bod
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP8840287A
Other languages
Japanese (ja)
Other versions
JPS63256185A (en
Inventor
賢二 浅野
千明 丹羽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KENSETSUSHO KENCHIKU KENKYU SHOCHO
Shimizu Construction Co Ltd
Original Assignee
KENSETSUSHO KENCHIKU KENKYU SHOCHO
Shimizu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KENSETSUSHO KENCHIKU KENKYU SHOCHO, Shimizu Construction Co Ltd filed Critical KENSETSUSHO KENCHIKU KENKYU SHOCHO
Priority to JP8840287A priority Critical patent/JP2548561B2/en
Publication of JPS63256185A publication Critical patent/JPS63256185A/en
Application granted granted Critical
Publication of JP2548561B2 publication Critical patent/JP2548561B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は、循環流動床式の廃水処理方法に係り、特
に曝気に要するエネルギーの節約と高い処理効率の維持
が可能な廃水処理方法およびその装置に関する。
TECHNICAL FIELD The present invention relates to a circulating fluidized bed type wastewater treatment method, and more particularly to a wastewater treatment method capable of saving energy required for aeration and maintaining high treatment efficiency, and a method thereof. Regarding the device.

「従来技術とその問題点」 従来より、廃水処理方法の一方法として、例えば微生
物担体を懸濁させた廃水を濁気することによってこれを
循環流動させ、微生物担体に担持された微生物により廃
水を好気的に浄化する。いわゆる循環流動床式の廃水処
理方法がある。
“Prior art and its problems” Conventionally, as one method of treating wastewater, for example, wastewater in which a microbial carrier is suspended is circulated and fluidized by turbidity, and the wastewater is removed by microorganisms carried on the microbial carrier. Clean aerobically. There is a so-called circulating fluidized bed type wastewater treatment method.

この循環流動式の廃水処理方法は、比表面積の大きい
微生物担体表面に多くの微生物を担持できることおよび
曝気することによって微生物担体との接触機会を増やせ
るので、処理槽の単位容積当たりの処理能力を高め得る
ことから、処理槽のコンパクト化を図ることができるな
どの点で優れている。
This circulating flow type wastewater treatment method can support many microorganisms on the surface of the microorganism carrier having a large specific surface area and can increase the chances of contact with the microorganism carrier by aeration, thus enhancing the treatment capacity per unit volume of the treatment tank. Since it is obtained, it is excellent in that the processing tank can be made compact.

ところで、このような廃水処理方法において、微生物
担体を流動化させるのに必要な曝気量(以下、流動化曝
気量と言う。)は、処理槽の製造、微生物担体の種類お
よび径などが同じであれば、廃水中への微生物担体の添
加率が増すほど大きくなる。また、廃水中の酸素要求量
を満たせる曝気量(以下、酸素供給曝気量と言う。)
は、廃水中の有機物(基質)の種類が同じであれば、BO
D容積負荷が増すほど大きくなる。そして、これら流動
化曝気量と酸素供給曝気量との大小関係は、BOD容積負
荷の所定値を境にして逆転することがある。
By the way, in such a wastewater treatment method, the aeration amount required to fluidize the microbial carrier (hereinafter referred to as the fluidizing aeration amount) is the same for the production of the treatment tank, the type and the diameter of the microbial carrier, and the like. If so, the larger the rate of addition of the microbial carrier to the wastewater, the larger. Further, the aeration amount that can satisfy the oxygen demand amount in the wastewater (hereinafter referred to as the oxygen supply aeration amount).
If the type of organic matter (substrate) in the wastewater is the same,
D It increases as the volumetric load increases. Then, the magnitude relationship between the fluidized aeration amount and the oxygen supply aeration amount may be reversed at a predetermined value of the BOD volumetric load.

このようなことから、廃水処理にあたり必要な曝気量
は、上記の流動化曝気量および酸素供給曝気量を同時に
満たすことが前提となり、これら各曝気量のうち、大き
い方を基準として決める必要がある。
Therefore, the aeration amount required for wastewater treatment is premised on satisfying the above fluidization aeration amount and oxygen supply aeration amount at the same time, and it is necessary to decide on the basis of the larger of these aeration amounts. .

しかしながら、従来の廃水処理方法では、処理中を通
じて、廃水に対する曝気ガス(空気、酸素富化ガス等)
量を、上記流動化曝気量あるいは酸素供給曝気量のいず
れか一方のみを基準として決めることが多かった。すな
わち、上記の流動化曝気量を基準にして曝気ガス量を決
めると、廃水のBOD容積負荷が所定値よりも小さいとき
は流動化曝気量に比べて酸素供給曝気量が小さく、廃水
中の酸素要求量が少なくてすむので廃水の浄化が可能で
あるが、処理槽内に濃厚な廃水が流入してBOD容積負荷
が大きくなったときは廃水の酸素要求量が大きくなり、
流動化曝気量に比べて酸素供給曝気量が大きくなるた
め、流動化曝気量を基準にした曝気量では少な過ぎて、
廃水中の溶存酸素量が不足し、廃水中の有機物分解が進
まず、その結果廃水を十分に浄化できない問題があっ
た。
However, in the conventional wastewater treatment method, aeration gas (air, oxygen-enriched gas, etc.) to the wastewater is treated throughout the treatment.
In many cases, the amount was determined based on either the fluidization aeration amount or the oxygen supply aeration amount. That is, when the amount of aeration gas is determined based on the above fluidization aeration amount, when the BOD volumetric load of the wastewater is smaller than a predetermined value, the oxygen supply aeration amount is smaller than the fluidization aeration amount, and the oxygen in the wastewater is reduced. Wastewater can be purified because the required amount is small, but when concentrated wastewater flows into the treatment tank and the BOD volume load increases, the oxygen demand of the wastewater increases,
Since the oxygen supply aeration amount is larger than the fluidization aeration amount, the aeration amount based on the fluidization aeration amount is too small,
There was a problem that the amount of dissolved oxygen in the wastewater was insufficient and the decomposition of organic substances in the wastewater did not proceed, resulting in insufficient purification of the wastewater.

また、酸素供給曝気量を基準にして廃水に対する曝気
量を決めれるよう、溶存酸素による曝気量制御(以下、
DO制御と言う。)を行なうと、BOD容積負荷が所定値よ
りも小さいときは酸素供給曝気量に比べて流動化曝気量
が大きくなるため、曝気量が不足し、廃水中の微生物担
体の一部が流動化せずに処理槽底部に沈積し、廃水処理
に有効に関与する微生物担体量が減少し、その結果処理
能力の低下を招く欠点があった。特に、廃水の流入が停
止した場合などに、曝気が極く少量しか行なわれなくな
り、微生物担体の多くが処理槽の底部に沈積してしま
い、次に廃水の流入が再開されて廃水が増しても微生物
担体の循環流動(再起動)を行なうことができない致命
的な欠点があった。
In addition, the aeration amount control by the dissolved oxygen (hereinafter,
It is called DO control. ), When the BOD volume load is smaller than the specified value, the fluidization aeration amount becomes larger than the oxygen supply aeration amount, so the aeration amount becomes insufficient and some of the microbial carriers in the wastewater are fluidized. However, there is a drawback that the amount of microbial carriers that are deposited on the bottom of the treatment tank and are effectively involved in wastewater treatment is reduced, resulting in a reduction in treatment capacity. Especially, when the inflow of wastewater is stopped, aeration is performed only in a very small amount, most of the microbial carriers are deposited on the bottom of the treatment tank, and then the inflow of wastewater is restarted and the wastewater increases. However, there was a fatal drawback that the circulation flow (restart) of the microbial carrier could not be performed.

このため、従来より、廃水の循環流動化および酸素要
求量などの諸条件の変化に対応して逐次、廃水処理中の
曝気量を適正となるように制御する必要があった。
Therefore, conventionally, it has been necessary to sequentially control the aeration amount during the wastewater treatment to be appropriate in response to changes in various conditions such as circulation and fluidization of wastewater and oxygen demand.

「問題点を解決するための手段」 そこで、この発明の廃水処理方法は、廃水中における
微生物担体の流動状態を把握しかつ廃水中の溶存酸素濃
度を測定するとともに、この溶存酸素濃度に基づいてそ
の時点の廃水のBOD容積負荷を推定し、この廃水のBOD容
積負荷が所定値よりも小さいときは微生物担体の流動化
を判断基準とし、BOD容積負荷が前記所定値よりも大き
いときは廃水の酸素要求量を判断基準として廃水に対す
る曝気量を制御するようにしたことにより、廃水処理
(有機物分解と微生物の内性呼吸)に必要な酸素要求量
に対応しかつ微生物担体の流動化を可能ならしめる最少
の曝気量を廃水に吹き込んで、上記問題点の解決を図っ
た。
"Means for solving the problem" Therefore, the wastewater treatment method of the present invention, based on this dissolved oxygen concentration, while grasping the flow state of the microbial carrier in the wastewater and measuring the dissolved oxygen concentration in the wastewater. The BOD volumetric load of the wastewater at that time is estimated, and when the BOD volumetric load of this wastewater is smaller than a predetermined value, the fluidization of the microbial carrier is used as a criterion, and when the BOD volumetric load is larger than the predetermined value, the wastewater is discharged. By controlling the amount of aeration to wastewater using the oxygen demand as a criterion, it is possible to respond to the oxygen demand necessary for wastewater treatment (organic matter decomposition and internal respiration of microorganisms) and to enable the mobilization of microbial carriers. The minimum amount of aeration required was blown into the wastewater to solve the above problems.

また、この発明の廃水処理装置は、処理槽に廃水中に
おける微生物担体の流動状態を把握する流動センサと、
廃水中の溶存酸素濃度を測定する溶存酸素計と、この溶
存酸素計により測定された溶存酸素濃度に基づいてその
時点の廃水のBOD容積負荷を推定するとともに、この廃
水のBOD容積負荷および上記微生物担体の流動化データ
を判断基準として廃水に対する曝気量を制御する制御装
置を設けたことにより、上記の廃水処理方法を実施する
ようにしたものである。
Further, the wastewater treatment apparatus of the present invention, a flow sensor for grasping the flow state of the microbial carrier in the wastewater in the treatment tank,
Dissolved oxygen meter to measure the dissolved oxygen concentration in the wastewater, and to estimate the BOD volume load of the wastewater at that time based on the dissolved oxygen concentration measured by this dissolved oxygen meter, the BOD volume load of this wastewater and the microorganisms The above-mentioned wastewater treatment method is carried out by providing a control device for controlling the amount of aeration of wastewater using the fluidization data of the carrier as a criterion.

以下、図面を参照してこの発明を詳しく説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、この発明の廃水処理装置の一例を示すもの
で、図中符号1は処理槽である。この処理槽1は、その
内部中央にドラフトチューブ2が立設され、上部に越流
堰3が設けられ、この越流堰3とチューブ2との間に固
液分離用円塔4が設けられてなるものである。そして、
このドラフトチューブ2の下方の処理槽1底部には、電
動ブロア5につながる散気装置6が配設されている。ま
た、処理槽1内の底部近傍には、廃水中における微生物
担体の流動状態を把握するための流動センサ7の検出端
が垂下された状態で設けられ、処理槽1の上部でかつド
ラフトチューブ2の外側部分には、廃水中の溶存酸素濃
度を検知する溶存酸素計8の検出端がやはり垂下された
状態で設けられている。
FIG. 1 shows an example of the wastewater treatment apparatus of the present invention, in which reference numeral 1 is a treatment tank. In this processing tank 1, a draft tube 2 is erected in the center of the inside thereof, an overflow weir 3 is provided in the upper part thereof, and a solid-liquid separation column 4 is provided between the overflow weir 3 and the tube 2. It will be. And
An air diffuser 6 connected to the electric blower 5 is arranged at the bottom of the processing tank 1 below the draft tube 2. Further, a detection end of a flow sensor 7 for grasping the flow state of the microorganism carrier in the wastewater is provided in the vicinity of the bottom of the treatment tank 1 in a suspended state, and is provided above the treatment tank 1 and in the draft tube 2. A detection end of a dissolved oxygen meter 8 for detecting the dissolved oxygen concentration in the wastewater is also provided in the outer portion of the in a suspended state.

上記の流動センサ7としては、処理槽1底部に沈積し
た微生物担体の沈積界面の位置を光学的に検知するフォ
トカプラが感度の点で好適に用いられるが、この他にも
例えば廃水中の処理槽1内底部の微生物担体密度を検出
する密度計、微生物担体の流動速度を例えばドップラ効
果等により測定する流速計なども用いることができる。
As the flow sensor 7, a photocoupler that optically detects the position of the deposition interface of the microbial carrier deposited on the bottom of the treatment tank 1 is preferably used in terms of sensitivity, but other than this, for example, treatment of wastewater It is also possible to use a densitometer for detecting the density of the microbial carrier at the bottom of the tank 1 or a velocity meter for measuring the flow rate of the microbial carrier by the Doppler effect or the like.

溶存酸素計8としては、通常の隔膜式のDOメータが好
適に用いられるが、この他に例えば廃水中の溶存酸素に
種々のオキシダーゼ等の酵素を反応させることによって
溶存酸素量を定量できる酵素電極を用いたものなどが用
いられる。また、廃水中の溶存酸素濃度を測定するに
は、例えば廃水を少量分取し、この分取された廃水に所
定の電圧を印加しその際に流れた電流の大きさから廃水
中の溶存酸素濃度を測定するポーラログラフィ技術も用
いることができる。
An ordinary diaphragm type DO meter is preferably used as the dissolved oxygen meter 8. In addition to this, for example, an enzyme electrode capable of quantifying the dissolved oxygen amount by reacting dissolved oxygen in waste water with various enzymes such as oxidase. And the like are used. Further, in order to measure the dissolved oxygen concentration in wastewater, for example, a small amount of wastewater is sampled, a predetermined voltage is applied to the sampled wastewater, and the dissolved oxygen in the wastewater is determined from the magnitude of the current flowing at that time. Polarographic techniques that measure density can also be used.

そして、これら流動センサ7および溶存酸素計8は、
電気的に制御装置9に接続されており、この接続装置9
は上記の電動ブロア5にインバータ10を介して電気的に
接続されている。
Then, the flow sensor 7 and the dissolved oxygen meter 8 are
This connection device 9 is electrically connected to the control device 9.
Is electrically connected to the electric blower 5 via an inverter 10.

この制御装置9は、上記の流動センサ7から送られた
廃水中の微生物担体の流動状況(例えば、微生物担体の
沈積界面の位置変化)を示すデータ(出力信号)および
上記溶存酸素計8から送られた廃水中の溶存酸素濃度デ
ータ(出力信号)をそれぞれ解析し、これらの各出力信
号に基づいて散気装置6からの処理槽1内への曝気量を
制御するものである。そして、このような制御装置9と
しては、例えば制御飽和形論理回路(CSL)を備えたも
の、シーケンサ、コンピュータなどが単独あるいはこれ
ら2種以上組み合わせて用いられる。
The control device 9 sends data (output signal) indicating the flow status of the microbial carrier in the wastewater sent from the flow sensor 7 (for example, the position change of the deposition interface of the microbial carrier) and the dissolved oxygen meter 8 from the dissolved oxygen meter 8. The dissolved oxygen concentration data (output signal) in the generated waste water is analyzed, and the amount of aeration from the air diffuser 6 into the processing tank 1 is controlled based on these output signals. As such a control device 9, for example, a device having a controlled saturation logic circuit (CSL), a sequencer, a computer, etc. may be used alone or in combination of two or more thereof.

次に、このような廃水処理装置を用いた廃水処理方法
の一例を説明する。まず、廃水(原水)は、図示しない
ポンプ等により処理槽1の上部開口部から微生物担体が
所定量充填された処理槽1内に供給される。次いで、こ
の廃水は、この廃水中に散気装置6から吹き込まれた所
定量の空気あるいは酸素富化ガスなどにより曝気され、
この曝気ガスの上昇作用により第1図中矢印方向に循環
流動せしめられる。そして、この廃水の循環流動に伴っ
て微生物担体も循環流動せしめられて廃水との接触機会
が増やされ、これによって廃水の浄化が行なわれる。こ
こで、この方法に用いられる微生物担体としては、珪藻
土、砂、アンスラサイト、活性炭、微生物包括体など比
重が1より大きい担体が挙げられ、この微生物担体の表
面には、微生物が付着あるいは包蔵されている。
Next, an example of a wastewater treatment method using such a wastewater treatment device will be described. First, waste water (raw water) is supplied from the upper opening of the treatment tank 1 into the treatment tank 1 filled with a predetermined amount of microbial carriers by a pump or the like (not shown). Next, this wastewater is aerated by a predetermined amount of air or oxygen-enriched gas blown into the wastewater from the air diffuser 6,
Due to the ascending action of the aeration gas, the gas is circulated in the direction of the arrow in FIG. Then, along with the circulation flow of the waste water, the microbial carrier is also circulated and flowed to increase the chances of contact with the waste water, thereby purifying the waste water. Here, examples of the microbial carrier used in this method include diatomaceous earth, sand, anthracite, activated carbon, microbial entrapment carriers having a specific gravity of greater than 1, and the microorganisms are adhered or contained on the surface of the microbial carrier. ing.

曝気処理中においては、常に流動センサ7により例え
ば処理槽1底部に沈積する微生物担体の沈積界面の位置
変化が検知され、この検知データの出力信号が制御装置
9に送られる。この制御装置9では、上記の出力信号か
ら、即座に流動化曝気量の最少量が割り出される。
During the aeration process, the flow sensor 7 always detects a change in the position of the deposition interface of the microbial carrier deposited on the bottom of the processing tank 1, and the output signal of this detection data is sent to the control device 9. In this control device 9, the minimum amount of fluidized aeration amount is immediately calculated from the above output signal.

また、溶存酸素計8により廃水中の溶存酸素濃度が測
定され、この測定データの出力信号も制御装置9に送ら
れる。この制御装置9では、上記の出力信号から即座に
その時点の廃水のBOD容積負荷が推定され、この負荷に
応じた廃水の酸素要求量が求められ、この酸素要求量に
応じた酸素供給曝気量の最少量が割り出される。
In addition, the dissolved oxygen concentration in the wastewater is measured by the dissolved oxygen meter 8, and the output signal of this measurement data is also sent to the control device 9. In this control device 9, the BOD volumetric load of the wastewater at that time is immediately estimated from the above output signal, the oxygen demand amount of the wastewater corresponding to this load is determined, and the oxygen supply aeration amount corresponding to this oxygen demand amount is determined. The minimum amount of is determined.

次いで、上記の制御装置9では、廃水中における微生
物担体の流動化および廃水の酸素要求量の2条件を同時
に満たすために、上記の二つの最少曝気量のうち、大き
い方が選択され、これを判断基準として廃水に対する曝
気量が決められる。すなわち、酸素供給曝気量の最少量
が流動化曝気量の最少量に比べて小さい(BOD容積負荷
が所定値よりも小さい)場合には、大きい方の流動化曝
気量を基準にして処理槽1内の廃水に対する曝気量を決
める。逆に、酸素供給曝気量の最少量が流動化曝気量の
最少量に比べて大きい場合には、やはり大きい方の酸素
供給曝気量を基準にして廃水に対する曝気量を決める。
そして、流動化曝気量の大きさと酸素供給曝気量の大き
さとが逆転する際のBOD容積負荷の所定値(以下、限界B
OD容積負荷と言う。)は、処理対象となる廃水中の基
質(例えば有機性汚物の種類および含有比率)、処理
槽の容積に対する微生物担体の添加量、廃水処理中の
処理温度、微生物担体の比重および径などの諸条件に
より変動するが、これらの諸条件を廃水処理前に予め設
定することができ、上記の限界BOD容積負荷を概略把握
することができる。例えば、比重2.2〜2.3、径0.4〜0.6
mm(平均0.5mm)の微生物担体を7〜20V/V%程度の範囲
で用いた場合の限界BOD容積負荷は、1〜4kg・BOD/m3/
日の範囲で定められる。そして、廃水処理時の廃水のBO
D容積負荷が上記の限界BOD容積負荷を経て変化する際に
は、制御装置9による廃水に対する曝気量の判断基準を
限界BOD容積負荷の前後において切り換えるようにす
る。この切り換えによって廃水に対する曝気量を常に過
不足のない適正なものに保てる。
Next, in the control device 9 described above, in order to simultaneously satisfy the two conditions of fluidization of the microbial carrier in the wastewater and the oxygen demand of the wastewater, the larger one of the two minimum aeration amounts is selected, and this is selected. The amount of aeration for wastewater is determined as a criterion. That is, when the minimum amount of oxygen supply aeration is smaller than the minimum amount of fluidization aeration (the BOD volume load is smaller than a predetermined value), the treatment tank 1 uses the larger amount of fluidization aeration as a reference. Determine the amount of aeration for the wastewater inside. On the contrary, when the minimum oxygen supply aeration amount is larger than the fluidization aeration amount minimum, the aeration amount for the wastewater is determined based on the larger oxygen supply aeration amount.
Then, when the magnitude of the fluidized aeration amount and the magnitude of the oxygen supply aeration amount are reversed, a predetermined value of the BOD volume load (hereinafter, the limit B
It is called OD volume load. ) Is a substrate (for example, the type and content ratio of organic waste) in the wastewater to be treated, the addition amount of the microbial carrier to the volume of the treatment tank, the treatment temperature during the treatment of the wastewater, the specific gravity and diameter of the microbial carrier, etc. Although varying depending on the conditions, these various conditions can be set in advance before the wastewater treatment, and the above-mentioned limit BOD volume load can be roughly grasped. For example, specific gravity 2.2-2.3, diameter 0.4-0.6
When the microbial carrier of mm (average 0.5 mm) is used in the range of 7 to 20 V / V%, the limit BOD volume load is 1 to 4 kg BOD / m 3 /
Determined in the range of days. And BO of wastewater at the time of wastewater treatment
When the D volume load changes through the above-mentioned limit BOD volume load, the controller 9 switches the criterion for determining the aeration amount for wastewater before and after the limit BOD volume load. By this switching, the amount of aeration for wastewater can be always maintained at an appropriate amount without excess or deficiency.

このようにして決められた適正量の曝気ガスは、上記
の制御装置9からの命令により作動するインバータ10を
用いて電動ブロア5の送風部分の回転数を制御すること
によって、この電動ブロア5から散気装置6を介して処
理槽1内の廃水に吹き込まれる。ここで、曝気量の制御
方法としては、上記のインバータ10による電動ブロア5
の送風部分の回転数を制御する方法の他に、電動ブロア
5の台数制御による方法、散気装置6を複数個設け、こ
れら複数の散気装置6の稼動数を増減する方法、散気装
置6の曝気ガス噴出弁の開度を変える方法なども利用で
きる。
The appropriate amount of aeration gas determined in this way is controlled from the electric blower 5 by controlling the rotation speed of the blower part of the electric blower 5 by using the inverter 10 which operates by a command from the control device 9 described above. It is blown into the wastewater in the treatment tank 1 via the air diffuser 6. Here, as a method for controlling the aeration amount, the electric blower 5 by the inverter 10 is used.
In addition to the method of controlling the number of revolutions of the blower part, a method of controlling the number of electric blowers 5, a method of providing a plurality of air diffusers 6 and increasing or decreasing the operating number of the plurality of air diffusers 6, an air diffuser A method of changing the opening of the aeration gas injection valve of No. 6 and the like can also be used.

このようにして曝気することによって廃水中の溶存酸
素濃度が高められ、これによって微生物担体に担持され
た微生物の生育環境が良好な状態に保たれ、廃水中の有
機物分解が促進され、好気的な廃水の浄化が行なわれ
る。
By aeration in this way, the dissolved oxygen concentration in the wastewater is increased, and thus the growth environment of the microorganisms supported on the microorganism carrier is maintained in a good state, the decomposition of organic matter in the wastewater is promoted, and aerobic Wastewater is purified.

次に、上記の曝気量により十分曝気処理された廃水
は、処理槽1内の固液分離円塔4で微生物担体が分離除
去されたのち、越流堰3を越えて処理水として処理槽1
の外部に排出される。
Next, in the wastewater that has been sufficiently aerated by the above aeration amount, the microbial carrier is separated and removed in the solid-liquid separation column 4 in the treatment tank 1 and then passed over the overflow weir 3 to be treated water as treatment water 1
Is discharged to the outside.

この方法によれば、流動センサ7により廃水中におけ
る微生物担体の流動状態を把握し、かつ溶存酸素計8に
より廃水中の溶存酸素濃度を測定するとともに、この溶
存酸素濃度に基づいて制御装置9によりその時点の廃水
中のBOD容積負荷を推定し、微生物担体の流動化および
廃水の酸素要求量を共に満たすことができるように制御
した曝気量を廃水中に吹き込むようにしたので、廃水に
対して常に過不足のない適正な曝気量を吹き込め、よっ
て曝気に要するエネルギーを節約できるとともに、処理
槽1を常に処理効率の高い状態で保持でき、微生物担体
の循環流動が停止してしまうなどのトラブルが生じない
などの効果が得られる。
According to this method, the flow sensor 7 grasps the flow state of the microbial carrier in the wastewater, the dissolved oxygen meter 8 measures the dissolved oxygen concentration, and the controller 9 controls the dissolved oxygen concentration based on the dissolved oxygen concentration. The BOD volume load in the wastewater at that time was estimated, and the aeration amount controlled so that both the mobilization of the microbial carrier and the oxygen demand of the wastewater could be satisfied was blown into the wastewater. There is always a proper amount of aeration to blow in, so that the energy required for aeration can be saved, and the treatment tank 1 can always be kept in a highly efficient state, causing problems such as circulatory flow of microbial carriers being stopped. The effect that it does not occur can be obtained.

「実施例」 第1図に示した処理装置を用いて廃水処理を行なっ
た。そして、この処理装置の処理槽の底部に6個の散気
装置を配設しかつ逆錐状の底部近傍に流動センサを配す
るとともに、処理槽の上部に溶存酸素計を配した。ま
た、微生物担体として比重2.2〜2.3で径0.4〜0.6mm(平
均0.5mm)の珪藻土を使用し、これを処理槽内の廃水に
対して12V/V%の添加率で添加した。
"Example" Wastewater treatment was performed using the treatment apparatus shown in FIG. Then, six air diffusers were arranged at the bottom of the processing tank of this processing apparatus, a flow sensor was arranged near the bottom of the inverted cone, and a dissolved oxygen meter was arranged at the upper part of the processing tank. Moreover, diatomaceous earth having a specific gravity of 2.2 to 2.3 and a diameter of 0.4 to 0.6 mm (average 0.5 mm) was used as a microorganism carrier, and this was added to the wastewater in the treatment tank at an addition rate of 12 V / V%.

次に、上記処理槽内の廃水を曝気量を変えながら曝気
するとともに、流動センサを用いて処理槽底部に沈積す
る微生物担体の沈積界面の変化を測定し、その結果は第
2図のグラスに示した。上記の流動センサは、その検出
端に2本の光ファイバの各々先端を互いに平行となるよ
うに配し、一方の光ファイバ(発光部)の後端に発光素
子(LED)を接続し、他方の光ファイバ(受光部)の後
端に受光素子(APD)を接続してなるフォトカプラであ
る。このフォトカプラによれば、発光部の光ファイバ先
端(発光端)から出射された光が微生物担体の沈積界面
で反射し、この反射光を受光部の光ファイバの後端に接
続され受光素子により受光し、この受光量の変化から検
出端と沈積界面との離間寸法の変化を検知することがで
きる。そして、第2図のグラフは、その横軸に流動セン
サの検出端からの沈積界面の離間寸法をとり、縦軸に流
動センサが光学的に検知した沈積界面の変化を示す出力
信号電圧をとった。出力信号電圧の最大スケールを0〜
3Vとした。
Next, the waste water in the treatment tank is aerated while changing the aeration amount, and the change of the deposition interface of the microbial carrier deposited on the bottom of the treatment tank is measured using a flow sensor, and the result is shown in the glass of FIG. Indicated. In the above flow sensor, the ends of two optical fibers are arranged at the detection end so as to be parallel to each other, and a light emitting element (LED) is connected to the rear end of one optical fiber (light emitting portion), and the other end is connected. Is a photocoupler in which a light receiving element (APD) is connected to the rear end of the optical fiber (light receiving portion). According to this photocoupler, the light emitted from the tip (light emitting end) of the optical fiber of the light emitting section is reflected at the sedimentation interface of the microorganism carrier, and the reflected light is connected to the rear end of the optical fiber of the light receiving section by the light receiving element. Light is received, and the change in the distance between the detection end and the deposition interface can be detected from the change in the amount of received light. In the graph of FIG. 2, the horizontal axis represents the distance of the deposition interface from the detection end of the flow sensor, and the vertical axis represents the output signal voltage indicating the change in the deposition interface optically detected by the flow sensor. It was Set the maximum scale of output signal voltage to 0
It was set to 3V.

このグラフから明らかなように、微生物担体の蓄積界
面と流動センサの検出端との離間寸法は、ある一定値ま
では流動センサの出力信号電圧の対数値にほぼ直線状に
対応しており、出力信号電圧を読み取ることで上記の離
間寸法の変化、すなわち微生物担体の流動状態を容易に
把握できることがわかる。
As is clear from this graph, the separation dimension between the accumulation interface of the microbial carrier and the detection end of the flow sensor corresponds to the logarithmic value of the output signal voltage of the flow sensor almost linearly up to a certain value. It can be seen that by reading the signal voltage, it is possible to easily grasp the above-mentioned change in the separation dimension, that is, the flow state of the microorganism carrier.

また、廃水を連続供給した状態において、微生物担体
の添加率(V/V%)とBOD容積負荷(1〜6kg・BOD/m3/
日)との関連で必要な曝気強度(単位時間当たり、処理
槽の単位容積当たりの曝気量)を測定し、その結果を第
3図のグラフに示した。
In addition, in the state where the wastewater is continuously supplied, the addition rate (V / V%) of the microbial carrier and the BOD volume load (1 to 6 kg · BOD / m 3 /
The required aeration intensity (per unit time, aeration amount per unit volume of the treatment tank) was measured in relation to (day), and the results are shown in the graph of FIG.

この例において、流動化曝気量の大きさと酸素供給曝
気量の大きさが逆転する限界BOD容積負荷は、微生物担
体の添加率が10V/V%である場合、1.6kg・BOD/m3/日
(第3図では(a))であった。そして、この1.6kg・B
OD/m3/日未満では、廃水処理にあたっての酸素要求量が
小さく、流動化曝気量に大きく依存し、1.6kg・BOD/m3/
日を越えると、廃水処理にあたっての酸素要求量が大き
くなり、酸素供給曝気量に依存していた。
In this example, the critical BOD volume load at which the size of the fluidized aeration amount and the size of the oxygen supply aeration amount are reversed is 1.6 kgBOD / m 3 / day when the addition rate of the microbial carrier is 10 V / V%. ((A) in FIG. 3). And this 1.6kg ・ B
If it is less than OD / m 3 / day, the oxygen demand for wastewater treatment is small and largely depends on the fluidization aeration amount, and 1.6 kg ・ BOD / m 3 /
Over a day, the oxygen demand for wastewater treatment increased, depending on the oxygen supply aeration amount.

次に、微生物担体の添加率を15V/V%に上げ、廃水のB
OD容積負荷が4kg・BOD/m3/日から0kg・BOD/m3/日となる
まで1日をかけて供給廃水の濃度を連続的に変化させて
廃水の連続処理を行なった。ここで、第3図のグラフか
ら、微生物担体の添加率が15V/V%のときの限界BOD容積
負荷が2.2kg・BOD/m3/日である。
Next, increase the microbial carrier addition rate to 15V / V% and
The wastewater was continuously treated by continuously changing the concentration of the supplied wastewater over a day until the OD volume load changed from 4 kg · BOD / m 3 / day to 0 kg · BOD / m 3 / day. Here, from the graph of FIG. 3, the limit BOD volume load when the addition rate of the microbial carrier is 15 V / V% is 2.2 kg · BOD / m 3 / day.

そして、本発明法の手段をとることにより、廃水処理
にあたって、曝気強度はほぼ次のようにして自動制御さ
れた。すなわち、BOD容積負荷が4kg・BOD/m3/日に相当
する廃水に対しては、まず酸素供給曝気量を基準として
曝気強度が約96.5m3/m3/日に設定され、BOD容積負荷が
2.2kg・BOD/m3/日程度まで減少するのに対応して曝気強
度が漸次弱まってゆき、廃水のBOD容積負荷が2.2kg・BO
D/m3/日を下回った後は、0kg・BOD/m3/日となるまで流
動化曝気量を基準として約62m3/m3/日に制御された。こ
のような廃水処理では、1日の総曝気量が約70m3/m3
あった。
Then, by taking the means of the method of the present invention, the aeration intensity was automatically controlled in the following manner during the wastewater treatment. That is, for wastewater with a BOD volume load of 4 kgBOD / m 3 / day, first, the aeration intensity is set to about 96.5 m 3 / m 3 / day based on the oxygen supply aeration amount. But
The aeration intensity gradually weakens in response to the decrease to 2.2 kg ・ BOD / m 3 / day, and the BOD volumetric load of wastewater is 2.2 kg ・ BO.
After falling below D / m 3 / day, it was controlled to about 62 m 3 / m 3 / day based on the fluidized aeration rate until it reached 0 kg BOD / m 3 / day. In such wastewater treatment, the total aeration amount per day was about 70 m 3 / m 3 .

これに対して従来の曝気量を最大負荷量に合わせる処
理方法により廃水の連続処理を行なった。すなわち、廃
水の最大BOD容積負荷(4kg・BOD/m3/日)に対応する酸
素供給曝気量を基準とした曝気強度(約96.5m3/m3/日)
で、廃水処理の最初から最後まで一定に処理し続けたと
ころ、1日の総曝気量が約96.5m3/m3であった。
On the other hand, the wastewater was continuously treated by the conventional treatment method of adjusting the aeration amount to the maximum load amount. That is, the maximum BOD volume load of the waste water (4kg · BOD / m 3 / day) aeration intensity relative to the oxygen supply aeration amount corresponding to (approximately 96.5m 3 / m 3 / day)
Then, when the wastewater treatment was continuously performed from the beginning to the end, the total aeration amount per day was about 96.5 m 3 / m 3 .

したがって、この発明の方法によれば、従来法に比べ
て曝気に要するエネルギーを約27.5%も節約することが
できた。
Therefore, according to the method of the present invention, the energy required for aeration can be saved by about 27.5% as compared with the conventional method.

また、上記の廃水の連続処理において、流動化曝気量
を基準とした曝気強度(約62m3/m3/日)で処理を行なっ
たところ、廃水のBOD容積負荷が2.4kg・BOD/m3/日以上
では廃水中の溶存酸素が不足し、処理水の水質が悪化し
た。
In the continuous treatment of the above wastewater, when the aeration intensity based on the fluidization aeration amount (about 62 m 3 / m 3 / day) was applied, the BOD volumetric load of the wastewater was 2.4 kg BOD / m 3 / More than a day, the dissolved oxygen in the wastewater was insufficient and the quality of the treated water deteriorated.

また、従来のDO制御による廃水処理を行なったとこ
ろ、限界BOD容積負荷である2.2kg・BOD/m3/日を下回っ
たあたりから、微生物担体の流動が悪くなり、しだいに
微生物担体が沈積し始め、BOD容積負荷が1.3kg・BOD/m3
/日で処理槽の底部に微生物担体の堆積槽が厚く形成さ
れ、この堆積槽を曝気により破壊することができず、微
生物担体の循環流動における再起動が不能になった。
In addition, when wastewater treatment by conventional DO control was performed, when the critical BOD volume load fell below 2.2 kgBOD / m 3 / day, the flow of the microbial carrier deteriorated and the microbial carrier gradually deposited. Initially, the BOD volume load was 1.3 kgBOD / m 3
In a day, a thick microbial carrier deposition tank was formed at the bottom of the treatment tank, and this aeration tank could not be destroyed by aeration, making it impossible to restart the circulation flow of the microbial carrier.

「発明の効果」 以上説明したように、この発明の廃水処理方法によれ
ば、廃水中における微生物担体の流動状態を把握しかつ
廃水中の溶存酸素濃度を測定するとともに、この溶存酸
素濃度に基づいてその時点の廃水中のBOD容積負荷を推
定し、この廃水のBOD容積負荷が所定値よりも小さいと
きは微生物担体の流動化を判断基準とし、BOD容積負荷
が前記所定値よりも大きいときは廃水の酸素要求量を判
断基準として廃水に対する曝気量を制御するようにした
ので、廃水に対して常に過不足のない適正な曝気量を吹
き込め、よって曝気に要するエネルギーを節約できると
ともに、処理槽を常に処理効率の高い状態に保持でき、
微生物担体が停止してしまうなどのトラブルが生じない
などの優れた効果が得られる。
"Effect of the invention" As described above, according to the wastewater treatment method of the present invention, the flow state of the microbial carrier in the wastewater is grasped and the dissolved oxygen concentration in the wastewater is measured, and based on the dissolved oxygen concentration, Estimate the BOD volumetric load of the wastewater at that time, when the BOD volumetric load of this wastewater is smaller than a predetermined value, the mobilization of the microbial carrier is used as a criterion, and when the BOD volumetric load is larger than the predetermined value, Since the aeration amount for wastewater is controlled based on the oxygen demand of wastewater, the proper aeration amount is always blown into the wastewater, so that the energy required for aeration can be saved and the treatment tank can be saved. You can always keep the processing efficiency high,
It is possible to obtain an excellent effect that troubles such as the stop of the microorganism carrier do not occur.

また、この発明の廃水処理装置は、処理槽に、廃水中
における微生物担体の流動状態を把握する流動センサ
と、廃水中の溶存酸素濃度を測定する溶存酸素計と、こ
の溶存酸素計により測定された溶存酸素濃度に基づいて
その時点の廃水のBOD容積負荷を推定するとともに、こ
の廃水のBOD容積負荷および微生物担体の流動化を判断
基準として廃水に対する曝気量を制御する制御装置が設
けられたものであるので、上記の廃水処理方法を確実に
実施できるものとなる。
Further, the wastewater treatment apparatus of the present invention, in the treatment tank, a flow sensor for grasping the flow state of the microbial carrier in the wastewater, a dissolved oxygen meter for measuring the dissolved oxygen concentration in the wastewater, and this dissolved oxygen meter is measured. In addition to estimating the BOD volumetric load of the wastewater at that time based on the dissolved oxygen concentration, a control device was installed to control the aeration amount of the wastewater based on the BOD volumetric load of this wastewater and the fluidization of the microbial carrier. Therefore, the above wastewater treatment method can be reliably implemented.

【図面の簡単な説明】[Brief description of drawings]

第1図は、この発明の廃水処理装置の一例を示す概略断
面図、第2図は、この発明の廃水処理装置に配設された
流動センサの検出端と処理槽底部に沈積した微生物担体
の沈積界面との離間寸法の変化を示すグラフ、第3図
は、この発明の廃水処理方法の作用を説明するための曝
気強度とBOD容積負荷との関係を示すグラフである。 1……処理槽、7……流動センサ、8……溶存酸素計、
9……制御装置。
FIG. 1 is a schematic cross-sectional view showing an example of a wastewater treatment apparatus of the present invention, and FIG. 2 is a detection end of a flow sensor arranged in the wastewater treatment apparatus of the present invention and a microorganism carrier deposited on the bottom of a treatment tank. FIG. 3 is a graph showing the change in the separation dimension from the deposition interface, and FIG. 3 is a graph showing the relationship between the aeration intensity and the BOD volume load for explaining the operation of the wastewater treatment method of the present invention. 1 ... Processing tank, 7 ... Flow sensor, 8 ... Dissolved oxygen meter,
9 ... Control device.

Claims (3)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】曝気することによって廃水中に微生物担体
を循環流動させ、上記微生物担体に担持された微生物に
より上記廃水を好気的に浄化する循環流動床式の廃水処
理方法において、 上記廃水中における微生物担体の流動状態を把握しかつ
廃水中の溶存酸素濃度を測定するとともに、この溶存酸
素濃度に基づいてその時点の廃水のBOD容積負荷を推定
し、この廃水のBOD容積負荷が所定値よりも小さいとき
は微生物担体の流動化を判断基準とし、BOD容積負荷が
前記所定値よりも大きいときは廃水の酸素要求量を判断
基準として廃水に対する曝気量を制御することを特徴と
する廃水処理方法。
1. A circulating fluidized bed-type wastewater treatment method in which a microorganism carrier is circulated and fluidized in the wastewater by aeration, and the wastewater is aerobically purified by the microorganisms carried by the microorganism carrier. In addition to grasping the flow state of the microbial carrier in and measuring the dissolved oxygen concentration in the wastewater, the BOD volumetric load of the wastewater at that time is estimated based on this dissolved oxygen concentration, and the BOD volumetric load of this wastewater exceeds the specified value. When the BOD volume load is larger than the predetermined value, the oxygen demand of the wastewater is used as the criterion to control the aeration amount to the wastewater when the BOD volume load is larger than the predetermined value. .
【請求項2】微生物担体が懸濁せしめられた廃水を保有
する処理槽と、この処理槽の底部に配設された散気装置
からなる流動床式の廃水処理装置において、 上記処理槽には、廃水中における微生物担体の流動状態
を把握する流動センサと、廃水中の溶存酸素濃度を測定
する溶存酸素計と、この溶存酸素計により測定された溶
存酸素濃度に基づいてその時点の廃水のBOD容積負荷を
推定するとともに、この廃水のBOD容積負荷および上記
微生物担体の流動化データを判断基準として廃水に対す
る曝気量を制御する制御装置が設けられたことを特徴と
する廃水処理装置。
2. A fluidized bed type wastewater treatment device comprising a treatment tank holding wastewater in which a microbial carrier is suspended, and an air diffuser arranged at the bottom of the treatment tank, wherein , A flow sensor for grasping the flow state of the microbial carrier in the wastewater, a dissolved oxygen meter for measuring the dissolved oxygen concentration in the wastewater, and the BOD of the wastewater at that time based on the dissolved oxygen concentration measured by the dissolved oxygen meter A wastewater treatment apparatus comprising a controller for estimating a volume load and controlling an aeration amount for the wastewater based on the BOD volume load of the wastewater and fluidization data of the microbial carrier as criteria.
【請求項3】流動センサがフォトカプラである特許請求
の範囲第2項記載の廃水処理装置。
3. The wastewater treatment device according to claim 2, wherein the flow sensor is a photocoupler.
JP8840287A 1987-04-10 1987-04-10 Wastewater treatment method and apparatus Expired - Lifetime JP2548561B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8840287A JP2548561B2 (en) 1987-04-10 1987-04-10 Wastewater treatment method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8840287A JP2548561B2 (en) 1987-04-10 1987-04-10 Wastewater treatment method and apparatus

Publications (2)

Publication Number Publication Date
JPS63256185A JPS63256185A (en) 1988-10-24
JP2548561B2 true JP2548561B2 (en) 1996-10-30

Family

ID=13941803

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8840287A Expired - Lifetime JP2548561B2 (en) 1987-04-10 1987-04-10 Wastewater treatment method and apparatus

Country Status (1)

Country Link
JP (1) JP2548561B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7017165B2 (en) 2020-03-31 2022-02-08 栗田工業株式会社 Aerobic biological membrane treatment methods and equipment
JP7017166B2 (en) 2020-03-31 2022-02-08 栗田工業株式会社 Aerobic biological membrane treatment methods and equipment
JP7006717B2 (en) * 2020-04-02 2022-01-24 栗田工業株式会社 Aerobic organism treatment methods and equipment
JP7014258B2 (en) * 2020-05-25 2022-02-15 栗田工業株式会社 Aerobic organism treatment methods and equipment

Also Published As

Publication number Publication date
JPS63256185A (en) 1988-10-24

Similar Documents

Publication Publication Date Title
WO1996029290A1 (en) Apparatus and treatment for wastewater
JP2548561B2 (en) Wastewater treatment method and apparatus
JP2009285582A (en) Membrane separation activated sludge treatment apparatus and its method
JP2003088355A (en) Culture apparatus for aerobic microorganism and cultivation using the same
JPH05154496A (en) Controlling method for operation in anaerobic and aerobic activated sludge treating equipment
JPS5835760B2 (en) How to purify sewage
JP2588712B2 (en) Wastewater treatment equipment
JPH05237488A (en) Treating apparatus for waste water
JP2579122B2 (en) Wastewater treatment equipment
JPH06206087A (en) Circulating fluidized bed type treatment of waste liquid and control of air amount for aeration in the treatment
JPH0210719B2 (en)
CN211004767U (en) Synchronous nitrification and denitrification sewage treatment equipment
JPS6323999Y2 (en)
JPS586555Y2 (en) Biological treatment equipment for wastewater
KR200188801Y1 (en) A scum treatment structure for a septic tank
JPS6340597B2 (en)
JPS6143599Y2 (en)
JPS6147595B2 (en)
JPH0128870Y2 (en)
JP2515256B2 (en) Automatic adjustment device for sludge concentration in sewage treatment tank
JPH05177196A (en) Active carbon feeding device in high grade water purification system
JPH05138185A (en) Treatment of organic sewage and equipment
JPS62121697A (en) Treatment of waste water by fluidized bed
JPS63256183A (en) Waste water treating apparatus
JP2515257B2 (en) Automatic adjustment device for sludge concentration in sewage treatment tank

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term