JPS62121697A - Treatment of waste water by fluidized bed - Google Patents

Treatment of waste water by fluidized bed

Info

Publication number
JPS62121697A
JPS62121697A JP60259499A JP25949985A JPS62121697A JP S62121697 A JPS62121697 A JP S62121697A JP 60259499 A JP60259499 A JP 60259499A JP 25949985 A JP25949985 A JP 25949985A JP S62121697 A JPS62121697 A JP S62121697A
Authority
JP
Japan
Prior art keywords
particles
fluidized bed
microorganisms
wastewater
waste water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60259499A
Other languages
Japanese (ja)
Other versions
JPH0571320B2 (en
Inventor
Michio Futagawa
二川 道夫
Susumu Matsui
進 松井
Kazuo Kimoto
和雄 木本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP60259499A priority Critical patent/JPS62121697A/en
Publication of JPS62121697A publication Critical patent/JPS62121697A/en
Publication of JPH0571320B2 publication Critical patent/JPH0571320B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/10Biological treatment of water, waste water, or sewage

Landscapes

  • Biological Treatment Of Waste Water (AREA)

Abstract

PURPOSE:To well perform the release of adhered microorganisms from particles, by arranging a static mixer between treated water and a liquid cyclone and passing waste water preliminarily mixed with air through the static mixer. CONSTITUTION:Waste water is supplied to a treatment tank from a line 13 along with a recirculation liquid passing through a recirculation line 5. Waste water rises through a fluidized bed zone 2 in the treatment tank 1 and, during this time, a BOD component and a nitrogen component are given to microorganisms adhered particles. Grown particles with adhered microorganisms float to the interface of the fluidized bed zone 2 and a solid-liquid separation zone 3 and are taken out of the tank through the recirculation line 5 along with a part of recirculated waste water to be passed through a static mixer 4 from a line 14 in a state mixed with air. Waste water is violently stirred to perform the release of adhered microorganisms from particles. By this method, release can be efficiently performed.

Description

【発明の詳細な説明】 本発明は、微生物付着粒子によ多構成される流動層生物
膜法の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an improvement in a fluidized bed biofilm process consisting of a large number of microbially attached particles.

微生物を付着させた粒子により流動層を形成させ、流動
層内で廃水を処理し、流動層上方で微生物付着粒子と処
理済水との分離を行なう流動層生物膜法は公知である。
A fluidized bed biofilm method is known in which a fluidized bed is formed with particles to which microorganisms are attached, wastewater is treated within the fluidized bed, and the microorganism-adhered particles and treated water are separated above the fluidized bed.

このような流動層生物脱法においては、粒子に付着した
微生物が生長して肥大化し過ぎると粒子が処理槽から流
出するので、過剰付着の微生物を粒子から剥離しなけれ
ばならない。この際、従来法には、以下の如き欠点があ
る。
In such a fluidized bed biological removal method, if the microorganisms attached to the particles grow and become too large, the particles will flow out of the treatment tank, so the excessively attached microorganisms must be peeled off from the particles. In this case, the conventional method has the following drawbacks.

(i)  粒子をポンプ内に吸引通過させる場合には、
粒子が破損され、またポンプも摩耗される。
(i) When the particles are drawn through the pump,
The particles are damaged and the pump is also worn out.

(i)  処理槽上部に攪拌機を取付け、機械的に付着
微生物を剥離する場合には、やは多粒子の破損及び攪拌
機の摩耗を生ずる。
(i) If a stirrer is attached to the top of the treatment tank and attached microorganisms are mechanically removed, multi-particle breakage and abrasion of the stirrer may occur.

本発明者等は、上記の如^従来技術の欠点を解消すべく
種々研究を重ねた結果、粒子からの付着微生物の剥離手
段として液体サイクロンを使用することにより、その目
的をほぼ達成し得ることを見出し、すでに特許出願して
いる(特開昭60−139394号)。この本発明者等
による先願発明は、実用性を備えた優れた発明であるが
、粒子と付着微生物との剥離をより効率良く行なうとと
もに処理系内循環水の戸H調整に使用するアルカリ剤の
使用量を減少させることが出来れば、その有用性は更に
一層改善されることになる。
The inventors of the present invention have repeatedly conducted various studies to eliminate the drawbacks of the prior art as described above, and have found that by using a liquid cyclone as a means to remove attached microorganisms from particles, the objective can be almost achieved. They discovered this and have already filed a patent application (Japanese Unexamined Patent Publication No. 139394/1983). This prior invention by the present inventors is an excellent invention with practicality, but it also has an alkaline agent that is used to more efficiently separate particles from attached microorganisms and to adjust the amount of water circulating in the treatment system. If the amount used can be reduced, its usefulness will be further improved.

問題点を解決するための手段 本発明者は、上記の如き現状に鑑みて上記先願発明を更
に改良及び発展させるべく研究を重ねた結果、処理槽と
液体サイク0シとの間にスタテイックミ牛す一を配設し
、予め空気を混合した廃水をしてこのスタティック三十
す−中を通過させる場合には、粒子と付着微生物との剥
離がより良好に行なわれ、且つアルカリ剤の所要鼠も大
巾に減少することを見出した。即ち、本発明は、下記の
廃水処理法に係るものである。
Means for Solving the Problems In view of the above-mentioned current situation, the present inventor has conducted research to further improve and develop the above-mentioned prior invention. If wastewater mixed with air is passed through the static tank, particles and attached microorganisms can be separated more effectively, and the alkaline agent can be used more easily. It was also found that there was a significant decrease in That is, the present invention relates to the following wastewater treatment method.

[微生物を付着させた粒子により処理槽内に流動層を形
成させ、流動層内で廃水を処理し、流動層上方で微生物
付着肥大粒子と処理済水との分離を行なう廃水の流動層
処理法において、処理槽の上部から微生物付着肥大粒子
を含む廃水の一部を層外付設の循環ラインを通じて取り
出しながら、該取シ出された廃水に空気を混合して該ラ
イン上に設置したスタティック三十す−及び液体サイク
ロン内を順次通過させることにより、上記粒子より付着
微生物を剥離させ、混合気体を液体サイクロン上部開口
部から放散させるとともに液体サイクロンの上部出口よ
りの剥離微生物混合液は循環ラインを通じて処理槽下部
に戻し、一方下部出口よりの粒子混合液は、循園ボン′
)をλ■l過した後の循環液の一部とともに処理槽y 
t!rsに返送することを特徴とする廃水の流動層処理
法。」 以下図面に示すフo−fiイ17クラムを参照しつつ本
発明の詳細な説明する。
[A fluidized bed treatment method for wastewater in which a fluidized bed is formed in a treatment tank using particles to which microorganisms are attached, the wastewater is treated in the fluidized bed, and the enlarged microorganism-adhered particles are separated from the treated water above the fluidized bed. In this method, a part of the wastewater containing enlarged microorganism-adhering particles is taken out from the upper part of the treatment tank through a circulation line installed outside the layer, and air is mixed with the taken out wastewater. The attached microorganisms are separated from the particles by sequentially passing through the liquid cyclone and the liquid cyclone, and the mixed gas is dissipated from the upper opening of the liquid cyclone, and the separated microorganism mixture from the upper outlet of the liquid cyclone is processed through a circulation line. The particle mixture from the bottom outlet is returned to the bottom of the tank, while the particle mixture from the bottom outlet is sent to the circulation tank.
) in the treatment tank y together with a part of the circulating fluid after passing through λ■l.
T! A fluidized bed treatment method for wastewater, characterized in that the wastewater is returned to the rs. '' The present invention will be described in detail below with reference to the F-17 frame shown in the drawings.

第1図において、廃水処理槽(すには、流動層リーン(
2)及び固液分離リーン(3)が、形成されている。
In Figure 1, the wastewater treatment tank (fluidized bed lean)
2) and solid-liquid separation lean (3) are formed.

流動層は、予め微生物を砂、活性炭、コークス、アンス
ラサイト、プラスチック、ガラス、シリカゲル、シリカ
−アル!す等の粒子に付着させ、馴致させた亀のを浮遊
させることにより、形成されている。微生物付着用粒子
の粒径は、その材質、処理槽(1)の大きさ、廃水原水
の種類等により種々異なるが、コスト、入手の容易さ、
微生物付着の容易さ等の点で最適である砂の場合、通常
0.1〜3m程度である。廃水処理# (1)内に保持
さるべき粒子の量は、粒子に対する微生物付着等により
異なるが、通常槽内汚泥濃度(MLVSS)が1000
0〜15000岬/l程度となる様にするのが良い。廃
水は、供給ライン(2)から循環ライン(5)を通る循
環液とともに処理槽(1)内に供給され、処理槽(1)
内において、流動層リー:、I(2)を上昇する間に流
動層を形成している微生物付着粒子にそのBOD成分及
び/又は窒素成分を与え、更にその一部は、固液分離リ
ーン(3)内を上昇してライン(6)から処理済水とし
て糸外に取シ出される。微生物の生長により肥大した微
生物付着粒子は、流動層(2)と固液分離リーク(3)
との界面(7)に浮上するので、これを循環される廃水
の一部と一緒に循環ライン(5)を通じて層外に取シ出
し、ラインα→がら空気を混合した状態でスタティック
ミ十す−(4)を通過させる。空気の混入によ)増速さ
れた廃水は、スタティックミキサー(4)内での螺旋運
動により、激しく攪拌され、粒子と付着微生物との剥離
が行なわれる。スタティックミ十す−(4)を出た廃水
は、引続き循環ライン(5)の途中にV置された液体サ
イクロン(8)内を、該サイクロン(8)より後方設置
の循環ポンプ(9)の吸引作用により強制的に通過させ
られ、肥大粒子からの付着微生物の剥離が更に促進され
る。廃水に混合された空気は、廃水に沼解していた炭酸
ガスを随伴して、液体サイクロン(8)の上部開口部か
ら大気中に放出されるので、循環水延いては廃水処理槽
(1)内の液のplfを適正に調整するだめの中和剤の
使用量が減少する。液体サイクロン(8)の上部へは、
剥離微生物を含有する液が上昇するので、これを上部出
口から循環ライン(5)を通じて処理槽(1)の下部に
戻す。一方液体すイク0ン(8)の下部へは、粒子が降
下するので、循環ライン(5)を通過する循環液の一部
を分岐5イン0υを経て水エジェクター(12に送り、
5−(ンOQから液体サイクロン(8)内の粒子を吸引
除去し、分岐循環液とともに廃水処理槽(1)の下部に
返送する。この様な粒子の返送操作を繰返し行なうこと
により、粒子を再生しつつ循環使用する。
In the fluidized bed, microorganisms are added in advance to sand, activated carbon, coke, anthracite, plastic, glass, silica gel, silica-aluminum! It is formed by adhering to particles such as grass and floating turtles. The particle size of the particles for attaching microorganisms varies depending on the material, the size of the treatment tank (1), the type of wastewater raw water, etc., but it depends on cost, ease of acquisition,
In the case of sand, which is optimal in terms of ease of adhesion of microorganisms, the length is usually about 0.1 to 3 m. Wastewater treatment # (1) The amount of particles to be retained in the tank varies depending on the adhesion of microorganisms to the particles, but usually when the sludge concentration in the tank (MLVSS) is 1000
It is preferable to set it to about 0 to 15,000 capes/l. The wastewater is supplied from the supply line (2) into the treatment tank (1) together with the circulating liquid that passes through the circulation line (5).
In the fluidized bed, the BOD component and/or nitrogen component is given to the microorganism-adhered particles forming the fluidized bed while rising through the solid-liquid separation lean (I(2)). 3) It rises inside and is taken out from the line (6) as treated water. Microorganism-attached particles enlarged due to the growth of microorganisms are transferred to the fluidized bed (2) and solid-liquid separation leak (3).
This floats to the surface at the interface (7) with the wastewater, so it is taken out of the layer through the circulation line (5) along with a part of the recycled wastewater, and statically mixed with air from the line α. - Pass through (4). The wastewater whose speed has been increased (due to the mixing of air) is vigorously agitated by the spiral motion within the static mixer (4), and particles and attached microorganisms are separated. The wastewater that has exited the static mixer (4) continues to flow through the liquid cyclone (8) placed in the middle of the circulation line (5) and into the circulation pump (9) installed behind the cyclone (8). The suction action forces the particles to pass through, further promoting the detachment of attached microorganisms from the enlarged particles. The air mixed with the wastewater is released into the atmosphere from the upper opening of the liquid cyclone (8), accompanied by the carbon dioxide gas that had been dissolved in the wastewater, so that the circulating water and the wastewater treatment tank (1 ) The amount of neutralizing agent used to properly adjust the PLF of the liquid in the tank is reduced. To the top of the liquid cyclone (8),
As the liquid containing the detached microorganisms rises, it is returned to the lower part of the treatment tank (1) from the upper outlet through the circulation line (5). On the other hand, since particles fall to the lower part of the liquid suction line (8), a part of the circulating liquid passing through the circulation line (5) is sent to the water ejector (12) via the branch 5-in0υ.
5-The particles in the liquid cyclone (8) are removed by suction from the OQ and returned to the lower part of the wastewater treatment tank (1) together with the branch circulating liquid. By repeating this operation of returning the particles, the particles are removed. Recycle and use while regenerating.

戸If A整のだめのアルカリ剤添加は、例えば循環ラ
イン(5)中の循環水、廃水処理槽(1)内の処理水等
の任意の個所で行なうことができる。廃水処理槽(1)
内を好気性条件とするだめの酸素又は酸素含有カスの供
給も、循環ライン(5)等の任意の個所で行なうことが
できる。
The alkaline agent can be added at any point, such as to the circulating water in the circulation line (5) or to the treated water in the wastewater treatment tank (1). Wastewater treatment tank (1)
Supply of oxygen or oxygen-containing waste to maintain aerobic conditions within the chamber can also be carried out at any point such as the circulation line (5).

本発明によれば、以下の如き効果が奏される。According to the present invention, the following effects are achieved.

(i)  微生物付着粒子から微生物を効率良く剥離す
ることができる。因に、1例として、第1図に示すフロ
ーダイヤグラムにおいて、ライン(14)からの酸素を
供給せず且つスタティックミ十す−(4)を使用しない
場合の微生物剥離率は、最大約10%であったのに対し
、本発明による場合は、30%以上であった。
(i) Microorganisms can be efficiently separated from microorganism-adhered particles. Incidentally, as an example, in the flow diagram shown in Fig. 1, the microbial removal rate when oxygen is not supplied from the line (14) and the static mixer (4) is not used is about 10% at maximum. In contrast, in the case of the present invention, it was 30% or more.

(i)  処理槽な出た液中に含まれる炭酸カスが効果
的に除去されるので、中和用のアルカリ剤使用量が大巾
に減少する。因に、1例として、第1図に示すフo−4
イ1アタラムにおいて、ラインαΦがら空気を混和する
ことなく、処理済水を独立した曝気装置で曝気処理する
場合には、本発明方法に比して約5倍の中和用Na 0
11 が必要であった。
(i) Since the carbon dioxide scum contained in the liquid discharged from the treatment tank is effectively removed, the amount of alkaline agent used for neutralization is greatly reduced. Incidentally, as an example, the foo-4 shown in FIG.
In case of aerating the treated water using an independent aeration device without mixing air in the line αΦ, the amount of Na 0 for neutralization is about 5 times that of the method of the present invention.
11 was required.

(ii)  上記(i)及び(i)の結果として、建設
費、操作費等が大巾に低減されるとと本に、設備の所要
スペースも減少する。
(ii) As a result of (i) and (i) above, construction costs, operating costs, etc. are significantly reduced, and the space required for equipment is also reduced.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一部l111i態様を示すフローf
iイ?クラムである。 (1)・・・処理槽、(2)・・・流動層リーン、(3
)・・・固液分離ジーシ、(4)・・・スタティックミ
十す−、(5)・・・循環ライン、(6)・・・処理済
木取シ出しライン、(8)−−−流体サイクロン、(9
)−−−循環型:J′JJSa1)・・・ 分岐ライン
、(6)・・・水エジェクター、θ1・・・廃水供給ラ
イン。 (以 上) 代理人 弁理士 三  枝  英  二  9.・4−
−;j
FIG. 1 is a flow chart showing a part l111i aspect of the present invention.
I? It's a crumb. (1)...Treatment tank, (2)...Fluidized bed lean, (3
)...Solid-liquid separation unit, (4)...Static mixer, (5)...Circulation line, (6)...Treated wood removal line, (8)--- Fluid cyclone, (9
)---Circulating type: J'JJSa1)... Branch line, (6)... Water ejector, θ1... Waste water supply line. (That's all) Agent: Eiji Saegusa, patent attorney 9.・4-
−;j

Claims (1)

【特許請求の範囲】[Claims] (1)微生物を付着させた粒子により処理槽内に流動層
を形成させ、流動層内で廃水を処理し、流動層上方で微
生物付着肥大粒子と処理済水との分離を行なう廃水の流
動層処理法において、処理槽の上部から微生物付着肥大
粒子を含む廃水の一部を層外付設の循環ラインを通じて
取り出しながら、該取り出された廃水に空気を混合して
該ライン上に設置したスタティックミキサー及び液体サ
イクロン内を順次通過させることにより、上記粒子より
付着微生物を剥離させ、混合気体を液体サイクロン上部
開口部から放散させるとともに液体サイクロンの上部出
口よりの剥離微生物混合液は循環ラインを通じて処理槽
下部に戻し、一方下部出口よりの粒子混合液は、循環ポ
ンプを通過した後の循環液の一部とともに処理槽下部に
返送することを特徴とする廃水の流動層処理法。
(1) A fluidized bed of wastewater is formed by particles to which microorganisms are attached in a treatment tank, the wastewater is treated in the fluidized bed, and the enlarged particles with microorganisms are separated from the treated water above the fluidized bed. In the treatment method, a part of the wastewater containing enlarged particles attached to microorganisms is taken out from the upper part of the treatment tank through a circulation line installed outside the layer, and air is mixed with the taken out wastewater, and a static mixer installed on the line is used. By sequentially passing through the liquid cyclone, the attached microorganisms are separated from the particles, the mixed gas is dissipated from the upper opening of the liquid cyclone, and the separated microorganism mixture from the upper outlet of the liquid cyclone is passed through a circulation line to the lower part of the processing tank. A fluidized bed treatment method for wastewater, characterized in that the particle mixture liquid from the lower outlet is returned to the lower part of the treatment tank together with a part of the circulating liquid after passing through a circulation pump.
JP60259499A 1985-11-19 1985-11-19 Treatment of waste water by fluidized bed Granted JPS62121697A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60259499A JPS62121697A (en) 1985-11-19 1985-11-19 Treatment of waste water by fluidized bed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60259499A JPS62121697A (en) 1985-11-19 1985-11-19 Treatment of waste water by fluidized bed

Publications (2)

Publication Number Publication Date
JPS62121697A true JPS62121697A (en) 1987-06-02
JPH0571320B2 JPH0571320B2 (en) 1993-10-06

Family

ID=17334942

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60259499A Granted JPS62121697A (en) 1985-11-19 1985-11-19 Treatment of waste water by fluidized bed

Country Status (1)

Country Link
JP (1) JPS62121697A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080284A (en) * 2001-09-14 2003-03-18 Sumitomo Heavy Ind Ltd Wastewater treatment equipment
JP2006212636A (en) * 2006-05-16 2006-08-17 Maezawa Ind Inc Fluidized-bed waste water treating device
JP2010188268A (en) * 2009-02-17 2010-09-02 Asahi Kasei Engineering Kk Bioreactor fluidized-bed type biological treatment apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003080284A (en) * 2001-09-14 2003-03-18 Sumitomo Heavy Ind Ltd Wastewater treatment equipment
JP2006212636A (en) * 2006-05-16 2006-08-17 Maezawa Ind Inc Fluidized-bed waste water treating device
JP2010188268A (en) * 2009-02-17 2010-09-02 Asahi Kasei Engineering Kk Bioreactor fluidized-bed type biological treatment apparatus

Also Published As

Publication number Publication date
JPH0571320B2 (en) 1993-10-06

Similar Documents

Publication Publication Date Title
EP0225965B1 (en) Method of treating waste water and equipment therefor
JPS6352956B2 (en)
KR100273913B1 (en) Apparatus and method of biological wastewater treatment
CN110156263A (en) A kind of circulating water cultivation and tail water handle integrated water processing system
JPS62121697A (en) Treatment of waste water by fluidized bed
JP2002307088A (en) Wastewater treatment apparatus
JP2001009498A (en) Treatment of waste water and treating device therefor
US5853578A (en) Method for biological purification of liquids and biological filter for purification of liquids
JP2003053378A (en) Method and device for treating water by using separation membrane
JP2002177979A (en) Waste water treatment equipment
JPS59142897A (en) Nitrification and denitrification process
JPS6319239B2 (en)
JPS61271090A (en) Treating device for waste water using immobilized microorganism
JPH10296283A (en) Carrier separating method for biological reaction tank using carrier combinedly
JPH1110193A (en) Method and apparatus for shared carrier nitrification denitrification reaction
JPH0459040B2 (en)
JPS6323999Y2 (en)
JP3042057U (en) Integrated water treatment device
JP3155457B2 (en) Wastewater treatment equipment
JPH10296287A (en) Method and device for treating water containing organic matter
JPH0214118B2 (en)
JPH11151497A (en) Waste water treating device
JPS6321554B2 (en)
JPH0210719B2 (en)
JP2000202478A (en) Cleaning method of contaminated water and device therefor