JP2546240B2 - Storage battery separator and manufacturing method thereof - Google Patents

Storage battery separator and manufacturing method thereof

Info

Publication number
JP2546240B2
JP2546240B2 JP61224616A JP22461686A JP2546240B2 JP 2546240 B2 JP2546240 B2 JP 2546240B2 JP 61224616 A JP61224616 A JP 61224616A JP 22461686 A JP22461686 A JP 22461686A JP 2546240 B2 JP2546240 B2 JP 2546240B2
Authority
JP
Japan
Prior art keywords
glass fibers
softening point
storage battery
glass fiber
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP61224616A
Other languages
Japanese (ja)
Other versions
JPS6380472A (en
Inventor
嘉晟 三輪
宏紀 北脇
純資 武藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP61224616A priority Critical patent/JP2546240B2/en
Publication of JPS6380472A publication Critical patent/JPS6380472A/en
Application granted granted Critical
Publication of JP2546240B2 publication Critical patent/JP2546240B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は蓄電池用セパレータ及びその製造方法に係
り、特に実質的にガラス繊維のみからなる蓄電池用セパ
レータ及びその製造方法に関する。
Description: TECHNICAL FIELD The present invention relates to a storage battery separator and a manufacturing method thereof, and more particularly to a storage battery separator substantially made of glass fibers and a manufacturing method thereof.

[従来の技術] ガラス繊維を含んでなる蓄電池用セパレータとして
は、既に種々のタイプのものが提案され実用化されてい
るが、これを大別すると次の3種類となる。即ち、 ガラス短繊維を主体とするもの、 ガラス短繊維と合成繊維を混合、成形したもの、 ガラス短繊維に粉体を保持させたもの、 である。
[Prior Art] Various types of storage battery separators containing glass fibers have already been proposed and put into practical use, but they are roughly classified into the following three types. That is, those mainly containing short glass fibers, those obtained by mixing and molding short glass fibers and synthetic fibers, and those holding powder in short glass fibers.

このうち、のガラス繊維と粉体との混合物からなる
ものとしては、例えば特開昭58−206046号に記載される
ものがあるが、このものは吸液性は良好であるものの、
粉体がセパレータから剥離、脱落し易く、また、引張強
度も小さいという問題がある。
Of these, examples of those composed of a mixture of glass fiber and powder include those described in, for example, JP-A-58-206046, which has good liquid absorption,
There is a problem that the powder easily peels off from the separator, and also has a low tensile strength.

一方、のガラス短繊維と合成繊維とを混抄したもの
としては、特開昭49−38126号、特開昭54−22531号、特
開昭56−99968号、特開昭53−136632号及び特公昭58−6
63号に記載のものがあるが、これらは機械的強度(引張
強さ及び剛性等)が高いため、蓄電池組立作業を行ない
易いという長所を有するものの、吸液性、保液性に劣
る、系内に有機物が存在することから電池寿命が短い、
という欠点を有する。
On the other hand, as a mixture of short glass fiber and synthetic fiber, Japanese Patent Laid-Open Nos. 49-38126, 54-22531, 56-99968, 53-136632 and Kosho 58-6
Although there are those described in No. 63, these have the advantage that they are easy to perform battery assembly work because they have high mechanical strength (tensile strength and rigidity, etc.), but they are inferior in liquid absorption and liquid retention properties. Battery life is short due to the presence of organic matter inside,
It has the drawback.

一方、のガラス繊維を主体とするものとしては、液
体接着剤等のバインダを使用したものと、これらのバイ
ンダを使用しないものとがある。
On the other hand, as those mainly composed of glass fibers, there are those using a binder such as a liquid adhesive and those not using these binders.

[発明が解決しようとする問題点] ガラス繊維を主体とするセパレータのうち、バインダ
を使用しないものは、液の吸収による自由な体積膨張が
可能で、電解液の保液性、吸液性が最も良く、電池特性
の面で好適であるが、反面、この種のセパレータは単に
ガラス繊維表面の水ガラス化と絡みの力のみで賦形され
ているため、強度や硬度が低く、機械を使用した電池組
立作業には十分に耐えることができず、作業能率が悪い
という不都合がある。
[Problems to be Solved by the Invention] Among separators mainly composed of glass fibers, those not using a binder are capable of free volume expansion due to absorption of a liquid, and have electrolyte retention and liquid absorption properties. It is the best and is suitable in terms of battery characteristics, but on the other hand, this type of separator is shaped only by the water vitrification of the glass fiber surface and the force of entanglement, so the strength and hardness are low, and the machine is used. The battery assembly work described above cannot be sufficiently endured, and the work efficiency is poor.

これに対し、バインダを使用した場合には、その接着
効果により強度、硬度は向上されるが、液吸収による体
積膨張がバインダにより阻害され、セパレータの保液性
や吸液性が悪くなる。しかも液可溶性のバインダでは、
電解液中に溶け出し、電池性能低下の原因となるいう問
題があり、その他耐酸化性の面からも好ましいものとは
いえない。
On the other hand, when a binder is used, its adhesive effect improves the strength and hardness, but the volume expansion due to liquid absorption is hindered by the binder, and the liquid retention and liquid absorption of the separator deteriorate. Moreover, with a liquid-soluble binder,
There is a problem that it dissolves in the electrolytic solution and causes deterioration of battery performance, and it is not preferable from the viewpoint of oxidation resistance.

このような問題点を解消する、強度、硬度も良好であ
ると共に、保液性、吸液性にも優れた蓄電池用セパレー
タとして、本出願人は実質的にガラス繊維のみから構成
される蓄電池用セパレータであって、ガラス繊維同志が
熱融着されている蓄電池用セパレータにつき、先に特許
出願した(特願昭61−94083。以下、「先願」とい
う。)。
As a storage battery separator that solves such problems and has excellent strength and hardness as well as excellent liquid retention and liquid absorption properties, the applicant of the present invention has a storage battery separator substantially composed of only glass fibers. A patent application was previously filed for a separator for a storage battery, in which glass fibers are heat-sealed together (Japanese Patent Application No. 61-94083, hereinafter referred to as "first application").

先願に係る蓄電池用セパレータは、実質的にガラス繊
維のみからなり、有機繊維やバインダを用いないため極
めて吸液性、保液性に優れたものとなる上に、セパレー
タ構成するガラス繊維は熱融着により互いに接着されて
いるため、その強度、硬度は著しく高い。
The storage battery separator according to the prior application consists essentially of glass fibers, and since it does not use organic fibers or binders, it is extremely liquid-absorbing and liquid-retaining, and the glass fibers constituting the separator are heat-resistant. Since they are adhered to each other by fusion, their strength and hardness are extremely high.

しかしながら、実質的にガラス繊維のみからなるセパ
レータにおいて、セパレータを構成するガラス繊維をそ
の特性を損うことなく繊維の表面のガラスを溶かして熱
融着させ、所望の強度を得ることができる加熱速度、時
間等の範囲が狭い範囲に限られているために、加熱温度
や時間等の熱融着条件の厳密なコントロールが必要とな
り、熱融着処理が難しいという問題がある。
However, in a separator consisting essentially of glass fibers, a glass fiber forming the separator is melted by heat melting the glass on the surface of the fiber without deteriorating its characteristics, and a heating rate capable of obtaining a desired strength. Since the range of time, etc. is limited to a narrow range, strict control of heat fusion conditions such as heating temperature and time is required, and there is a problem that the heat fusion treatment is difficult.

[問題点を解決するための手段] 本発明は上記先願に基いてなされたものであって、保
液性、吸液性、強度等が共に優れる実質的にガラス繊維
のみからなる蓄電池用セパレータであって、極めて容易
に製造することが可能な蓄電池用セパレータ及びその製
造方法を提供するものであり、 実質的にガラス繊維のみから構成される蓄電池用セパ
レータであって、主体とするガラス繊維の軟化点よりも
50〜400℃低い軟化点の低軟化点ガラス繊維が全ガラス
繊維の3〜20重量%混合され、かつ、ガラス繊維同志が
熱融着されてなることを特徴とする蓄電池用セパレー
タ、 実質的にガラス繊維のみから構成される蓄電池用セパ
レータを製造する方法において、主体とするガラス繊維
と、該主体ガラス繊維の軟化点よりも50〜400℃低い軟
化点の低軟化点ガラス繊維とを、該低軟化点ガラス繊維
の割合が全ガラス繊維の3〜20重量%となるように混合
し、主体ガラス繊維の軟化点と低軟化点ガラス繊維の軟
化点との中間の温度を加熱してガラス繊維同志を熱融着
させることを特徴とする蓄電池用セパレータの製造方
法、 を要旨とするものである。
[Means for Solving Problems] The present invention has been made based on the above-mentioned prior application, and is a separator for a storage battery, which is substantially composed of only glass fiber and is excellent in liquid retention, liquid absorption, strength and the like. Is to provide a separator for a storage battery that can be manufactured extremely easily and a method for manufacturing the same, which is a separator for a storage battery substantially composed of only glass fibers, Than the softening point
A storage battery separator, characterized in that low softening point glass fibers having a low softening point of 50 to 400 ° C. are mixed in an amount of 3 to 20% by weight of all glass fibers, and the glass fibers are heat-sealed. In a method for producing a storage battery separator composed only of glass fibers, a glass fiber as a main component, and a low softening point glass fiber having a softening point lower than the softening point of the main glass fiber by 50 to 400 ° C., The glass fibers are mixed by mixing so that the proportion of the softening point glass fibers is 3 to 20% by weight of the total glass fibers, and heating the intermediate temperature between the softening point of the main glass fibers and the softening point of the low softening point glass fibers. A method for manufacturing a storage battery separator, characterized in that the above is heat-sealed.

以下本発明につき更に詳細に説明する。 Hereinafter, the present invention will be described in more detail.

本発明の蓄電池用セパレータは、主体とするガラス繊
維と該主体ガラス繊維の軟化点より50〜400℃低い軟化
点の低軟化点ガラス繊維3〜20重量%とから構成されて
いる。
The storage battery separator of the present invention is composed of glass fiber as a main component and 3 to 20% by weight of a low softening point glass fiber having a softening point lower by 50 to 400 ° C. than the softening point of the main glass fiber.

本発明において、セパレータを構成する主体ガラス繊
維及び低融点ガラス繊維の組成としては、特に制限はな
いが、好ましくは含アルカリ珪酸塩ガラス繊維を用いる
のが望ましい。即ち、含アルカリ珪酸塩ガラス繊維を用
いると、製造工程の抄造工程でガラス繊維の表面に水ガ
ラス状物質が生成し、この水ガラス状物質の粘着性によ
って繊維同志がより良好に接着される。本発明において
は、含アルカリ珪酸塩ガラス繊維のうちでも、蓄電池に
使用されることから、耐酸性の良好なものが好適に使用
される。この耐酸性の程度は、平均繊維径1mμ以下のガ
ラス繊維の状態で、JIS C−2202に従って測定した場合
の重量減が2%以下であるのが望ましい。また、このよ
うなガラス繊維の組成としては重量比で60〜75%のSiO2
及び8〜20%のR2O(Na2O、K2Oなどのアルカリ金属酸化
物)を主として含有し(ただしSiO2+R2Oは75〜90
%)、その他に例えばCaO、MgO、B2O3、Al2O3、ZnO、Fe
2O3などの1種又は2種以上を含んだものが挙げられ
る。含アルカリ珪酸塩ガラスは、その組成を変えること
により、容易にその軟化点を変えることができ、主体ガ
ラス繊維及び低軟化点ガラス繊維を提供することができ
る。例えば、成分のうち、SiO2を減らし、その分CaO、M
gO、B2O3、Na2O等を増すことにより軟化点を下げること
ができる。
In the present invention, the composition of the main glass fiber and the low-melting point glass fiber constituting the separator is not particularly limited, but it is preferable to use alkali-containing silicate glass fiber. That is, when alkali silicate-containing glass fibers are used, water glassy substances are produced on the surface of the glass fibers in the paper making step of the manufacturing process, and the adhesiveness of the water glassy substances allows the fibers to be better bonded together. In the present invention, among alkali-containing silicate glass fibers, those having good acid resistance are preferably used since they are used for storage batteries. It is desirable that the degree of acid resistance is 2% or less in weight loss when measured according to JIS C-2202 in the state of glass fibers having an average fiber diameter of 1 mμ or less. Further, the composition of such glass fiber is 60 to 75% by weight of SiO 2
And 8 to 20% of R 2 O (alkali metal oxide such as Na 2 O and K 2 O) is mainly contained (provided that SiO 2 + R 2 O is 75 to 90).
%) And others such as CaO, MgO, B 2 O 3 , Al 2 O 3 , ZnO, Fe
Examples include those containing one kind or two or more kinds such as 2 O 3 . The alkali-containing silicate glass can easily change its softening point by changing its composition, and can provide a main glass fiber and a low softening point glass fiber. For example, of the components, SiO 2 is reduced, and CaO and M
The softening point can be lowered by increasing gO, B 2 O 3 , Na 2 O and the like.

このような好ましい含アルカリ珪酸塩の主体ガラス繊
維の組成及び低融点ガラス繊維の組成の例を第1表に示
す。
Table 1 shows examples of the composition of the main glass fiber and the composition of the low-melting glass fiber of such a preferable alkali silicate.

一方、本発明の蓄電池用セパレータを構成するガラス
繊維は、主体ガラス繊維及び低軟化点ガラス繊維のいず
れの繊維も、平均直径10〜30μmの太径のガラス繊維0
〜35重量%、平均直径2μmを超え10μm未満の中細径
のガラス繊維0〜30重量%、残部平均直径2μm以下の
細径ガラス繊維を含むものであることが好ましい。この
ような中細径、太径のガラス繊維は細径ガラス繊維に比
べ安価であり、特に太径のガラス繊維はこれを併用する
ことによりセパレータの引張強さを向上させることがで
きるという利点がある。
On the other hand, as the glass fibers constituting the storage battery separator of the present invention, both the main glass fibers and the low softening point glass fibers have a large diameter of 10 to 30 μm.
.About.35% by weight, and an average diameter of more than 2 .mu.m and less than 10 .mu.m, medium to fine glass fibers 0 to 30% by weight, and the balance preferably containing fine diameter glass fibers having an average diameter of 2 .mu.m or less. Such medium-thin diameter, large-diameter glass fibers are less expensive than thin-diameter glass fibers, and in particular, large-diameter glass fibers have the advantage that the tensile strength of the separator can be improved by using them together. is there.

細径のガラス繊維の好ましい平均直径は0.5〜1.0μ
m、より好ましくは0.6〜0.9μmである。直径が1.0μ
mを超えるとセパレータの孔径が大きくなり、逆に0.5
μmよりも小さくなるとその製造コストが高価となる。
The preferred average diameter of fine glass fibers is 0.5-1.0μ
m, more preferably 0.6 to 0.9 μm. Diameter is 1.0μ
If it exceeds m, the pore size of the separator will increase, and conversely 0.5
If it is smaller than μm, its manufacturing cost becomes high.

この細径のガラス繊維の好ましい含有量は、ガラス繊
維重量の60重量%以上であり、とりわけ65重量%以上が
特に好ましい。含有量が60重量%よりも少ないと吸液
性、保液性が不足し易くなるからである。
The preferable content of the glass fiber having the small diameter is 60% by weight or more, and particularly preferably 65% by weight or more based on the weight of the glass fiber. This is because if the content is less than 60% by weight, the liquid absorbing property and the liquid retaining property tend to be insufficient.

又、この細径のガラス繊維の平均長さは好ましくは7
〜50mm、より好ましくは10〜40mmである。平均長さが10
mmよりも短くなるとセパレータの強度が小さくなり、50
mmよりも長くなると抄造時に水中へ均一に分散するのが
困難になる。
Also, the average length of the glass fibers having a small diameter is preferably 7
It is -50 mm, more preferably 10-40 mm. Average length is 10
If the length is shorter than mm, the strength of the separator will decrease and
If it is longer than mm, it becomes difficult to uniformly disperse it in water during papermaking.

このような細径のガラス繊維はFA法(火炎法)、遠心
法その他のガラス短繊維製造法によって製造できる。
The glass fiber having such a small diameter can be produced by the FA method (flame method), the centrifugal method or other glass short fiber producing methods.

なお本発明においてガラス繊維の平均直径は、試料の
3ケ所について電子顕微鏡で写真撮影し、それぞれ20本
の繊維についてその直径を0.1μm単位で測定し、これ
らの平均値をとることにより計算される。
In the present invention, the average diameter of the glass fibers is calculated by taking photographs of three places of the sample with an electron microscope, measuring the diameter of each of the 20 fibers in 0.1 μm units, and taking the average value of these. .

中細径のガラス繊維を用いる場合、その好ましい平均
直径は2.0〜5.0μm、とりわけ3.0〜4.0μmである。ま
た、含有量はガラス繊維重量の5.0〜30.0重量%、とり
わけ10.0〜25.0重量%とするのが好ましい。中細径のガ
ラス繊維の配合により細径ガラス繊維量を減らすことが
でき、コスト的に有利となる。なお、この中細径のガラ
ス繊維の長さは7〜50mmとりわけ10〜40mmが好ましい。
When using medium to small diameter glass fibers, the preferred average diameter is 2.0 to 5.0 μm, especially 3.0 to 4.0 μm. Further, the content is preferably 5.0 to 30.0% by weight, and more preferably 10.0 to 25.0% by weight of the glass fiber weight. By blending medium and small diameter glass fibers, the amount of small diameter glass fibers can be reduced, which is advantageous in terms of cost. The length of the medium-diameter glass fiber is preferably 7 to 50 mm, more preferably 10 to 40 mm.

太径のガラス繊維を用いる場合、その好ましい平均直
径は10〜20μm、とりわけ12〜19μmである。また、含
有量はガラス繊維重量の8〜35重量%、とりわけ10〜30
重量%とするのが好ましい。平均直径が10μmよりも小
さいと、あるいは含有量が8重量%よりも少ないと、引
張強さ改善効果が小さくなり、平均直径が20μmを超え
ると、あるいは含有量が35重量%を超えるとセパレータ
の吸液性、保液性が小さくなる。この太径のガラス繊維
の長さは5〜80mmとりわけ6〜40mmが好ましい。
When using large diameter glass fibers, the preferred average diameter is 10 to 20 μm, especially 12 to 19 μm. The content is 8 to 35% by weight of the glass fiber, especially 10 to 30%.
It is preferably set to wt%. If the average diameter is less than 10 μm or the content is less than 8% by weight, the effect of improving tensile strength becomes small, and if the average diameter exceeds 20 μm or the content exceeds 35% by weight, the separator Liquid absorption and liquid retention are reduced. The length of the large diameter glass fiber is preferably 5 to 80 mm, particularly preferably 6 to 40 mm.

本発明の蓄電池用セパレータは、好適には、前述のよ
うな組成の細径、中径、太径の含アルカリ珪酸塩ガラス
繊維が、湿式抄造により絡み合わされると共に、好まし
くは低軟化点ガラス繊維のみが加熱により軟化ないし溶
解されることにより、特別な接着剤なしに相互に熱融着
されている、実質的にガラス繊維のみからなるものであ
る。
The storage battery separator of the present invention is preferably a thin-diameter, medium-diameter, and large-diameter alkali-containing silicate glass fiber having the above-described composition, which is entangled by wet papermaking, and preferably has a low softening point glass fiber. Only the glass fibers are substantially fused to each other by being softened or melted by heating so that they are heat-sealed to each other without any special adhesive.

即ち、本発明においては、好ましくは、加熱による熱
融着により、主体ガラス繊維は殆ど軟化ないし溶解させ
ることなく、低軟化点ガラス繊維のみを軟化ないし溶解
させ、軟化ないし溶解した低軟化点ガラス繊維によりガ
ラス繊維同志を接着する。
That is, in the present invention, preferably, by heat fusion by heating, the main glass fiber is hardly softened or melted, only the low softening point glass fiber is softened or melted, and the softened or melted low softening point glass fiber is preferably used. Adhere glass fiber comrades together.

本発明の方法においては、このような蓄電池セパレー
タを製造するために、熱融着時の加熱温度を主体ガラス
繊維と低軟化点ガラス繊維の中間の温度とする。この加
熱温度コントロールの面から、主体ガラス繊維と低軟化
点ガラス繊維との軟化点の差があまりに小さ過ぎると不
利である。また、両ガラス繊維の軟化点の差があまりに
大き過ぎると、両ガラス繊維の組成や物性等の違いが大
きく開きすぎるために得られるセパレータに悪影響を及
ぼす可能性がでてくる。このため、本発明においては、
低軟化点ガラス繊維は主体ガラス繊維の軟化点よりも50
〜400℃、好ましくは60〜200℃近い軟化点を有するもの
とする。
In the method of the present invention, in order to manufacture such a storage battery separator, the heating temperature at the time of heat fusion is set to an intermediate temperature between the main glass fiber and the low softening point glass fiber. From the viewpoint of controlling the heating temperature, it is disadvantageous if the difference in softening point between the main glass fiber and the low softening point glass fiber is too small. Further, if the difference in softening point between both glass fibers is too large, the difference in composition, physical properties, etc. of both glass fibers may be too wide open, which may adversely affect the obtained separator. Therefore, in the present invention,
The low softening point glass fiber is 50 than the softening point of the main glass fiber.
It has a softening point of about 400 to 400 ° C, preferably about 60 to 200 ° C.

また、加熱による熱融着処理により軟化ないし溶解す
る低軟化点ガラス繊維の割合があまりに少な過ぎると、
得られるセパレータに十分な強度が得られず、逆に多過
ぎると、保液性、吸液性を低下させる原因となる。この
ため、本発明においては、低軟化点ガラス繊維の割合を
全ガラス繊維の3〜20重量%、好ましくは7〜18重量%
とする。
Further, if the proportion of the low softening point glass fiber that is softened or melted by the heat fusion treatment by heating is too small,
Sufficient strength cannot be obtained in the obtained separator, and conversely, if it is too large, it causes a decrease in liquid retention and liquid absorption. Therefore, in the present invention, the proportion of the low softening point glass fiber is 3 to 20% by weight, preferably 7 to 18% by weight of the total glass fiber.
And

このような本発明の蓄電池用セパレータを製造するに
は、主体ガラス繊維及び低軟化点ガラス繊維を所望の割
合に配合して混抄して製造すれば良い。
In order to manufacture such a storage battery separator of the present invention, the main glass fiber and the low softening point glass fiber may be mixed in a desired ratio and mixed and manufactured.

なお、ガラス繊維はネット上に抄紙されるのである
が、その際、離解機内のpH及び/又は抄造タンク内のpH
を約3未満例えば2.5程度とするのが好ましい。このよ
うな酸性域で離解及び又は湿式抄造することにより、ガ
ラス繊維の表面に水ガラスの接着層を形成せしめ、つい
でこれを所定温度例えば80〜160℃に加熱することによ
り、ガラス繊維をその表面の水ガラスによって相互に接
着することが可能となる。
The glass fiber is paper-made on the net. At that time, the pH in the disintegrator and / or the pH in the paper-making tank is
Is preferably less than about 3, for example about 2.5. By defibration and / or wet papermaking in such an acidic region, an adhesive layer of water glass is formed on the surface of the glass fiber, and then the glass fiber is heated to a predetermined temperature, for example, 80 to 160 ° C. It becomes possible to adhere to each other by the water glass of.

即ち、セパレータを構成するガラス繊維が含アルカリ
珪酸塩ガラス組成を有するものであれば、ガラス繊維中
のアルカリ成分及びシリカ成分が、pH2.5程度の酸性域
で分散のための水と反応し水ガラス層がガラス繊維表面
に形成され、この水ガラス層が接着剤として作用しガラ
ス繊維が相互に強固に接着される。
That is, if the glass fiber constituting the separator has an alkali silicate glass composition, the alkali component and the silica component in the glass fiber react with water for dispersion in an acidic region of about pH 2.5, and water. A glass layer is formed on the glass fiber surface, and this water glass layer acts as an adhesive to firmly bond the glass fibers to each other.

通常、このようにして湿式抄造されたガラス繊維抄造
体は、ドラムドライヤに沿わせて乾燥され製品とされる
が、本発明のセパレータの製造においては、得られた抄
造体を乾燥後、主体ガラス繊維の軟化点と低軟化点ガラ
ス繊維の軟化点との中間の温度で高温加熱することによ
り低軟化点ガラス繊維のみを溶融させて、ガラス繊維同
志を熱融着する。この加熱処理時間はガラス繊維組成等
によっても異なるが、長すぎるとセパレータの吸液性が
低下する原因となり、逆に短すぎると熱融着が不十分と
なる。通常は、加熱時間は1〜5分間程度、好ましくは
2〜3分間程度が適当である。加熱は、ガラス繊維同志
は熱融着されて強固に接着し、セパレータの硬度及び強
度は大幅に向上されるが、吸液性が悪くならない程度と
する。
Usually, the glass fiber papermaking product thus wet-processed is dried along the drum dryer to be a product, but in the production of the separator of the present invention, after the obtained papermaking product is dried, the main glass By heating at a temperature between the softening point of the fiber and the softening point of the low-softening point glass fiber at a high temperature, only the low-softening point glass fiber is melted and the glass fibers are heat-sealed. This heat treatment time varies depending on the glass fiber composition and the like, but if it is too long, it causes the liquid absorption of the separator to decrease, and if it is too short, heat fusion becomes insufficient. Usually, the heating time is about 1 to 5 minutes, preferably about 2 to 3 minutes. The heating is performed to such an extent that the glass fibers are heat-sealed and firmly bonded to each other, and the hardness and strength of the separator are significantly improved, but the liquid absorbency is not deteriorated.

なお、本発明のセパレータの製造にあたっては、前述
の乾燥のための加熱をこの熱融着のための高温加熱で兼
ねて行ない乾燥処理を省略しても良く、また予め乾燥処
理した後熱融着処理しても良い。
In the production of the separator of the present invention, the above-mentioned heating for drying may be combined with the high-temperature heating for this heat fusion, and the drying treatment may be omitted. Alternatively, the heat treatment may be performed after the drying treatment in advance. You may process.

また、抄造にあたり、繊維を水中に分散させるに際し
分散剤を使用しても良い。
In addition, a dispersant may be used in dispersing the fibers in water for papermaking.

本発明のセパレータ自体の厚さは、使用される蓄電池
によって異なるが、一般には、0.3〜3mmであることが好
ましい。
The thickness of the separator of the present invention itself varies depending on the storage battery used, but is generally preferably 0.3 to 3 mm.

このようにして得られる本発明の蓄電池用セパレータ
は、その密度が0.16±0.03g/cm3、引張強さが400g/15mm
幅×1mm厚以上、座屈強度が30g/10mm幅×1mm厚以上であ
ることが好ましい。
The storage battery separator of the present invention thus obtained has a density of 0.16 ± 0.03 g / cm 3 and a tensile strength of 400 g / 15 mm.
It is preferable that the width is 1 mm or more and the buckling strength is 30 g / 10 mm width 1 mm or more.

[作用] 本発明の蓄電池用セパレータは、実質的にガラス繊維
のみからなり、有機繊維やバインダを用いるため極めて
吸液性、保液性に優れたものとなる。また、セパレータ
の強度向上のために通常使用される有機繊維やその他の
接着剤は、セパレータの耐酸性を弱めることがあるのに
対し、本発明の如く、ガラス繊維よりなるセパレータ
は、極めて優れた耐酸性を有するものとなる。
[Operation] The separator for a storage battery of the present invention is substantially made of only glass fibers, and since it uses organic fibers and a binder, it is extremely excellent in liquid absorption and liquid retention. Further, while organic fibers and other adhesives that are usually used for improving the strength of the separator may weaken the acid resistance of the separator, the separator made of glass fiber as in the present invention is extremely excellent. It has acid resistance.

また、本発明においては、セパレータを構成するガラ
ス繊維は熱融着により互いに接着されているため、その
強度、硬度は著しく向上される。
Further, in the present invention, the glass fibers constituting the separator are bonded to each other by heat fusion, so that the strength and hardness thereof are significantly improved.

しかも、この熱融着に際し、主体ガラス繊維は溶解せ
ず、低軟化点ガラス繊維のみを軟化、溶解する加熱温
度、加熱時間は、幅広い範囲から選定することができる
ため、本発明の蓄電池用セパレータは厳密な条件コント
ロールを要することなく、容易に製造することが可能で
ある。
Moreover, during this heat fusion, the main glass fibers are not melted, and only the low softening point glass fibers are softened, the heating temperature and the heating time for melting can be selected from a wide range, and therefore the storage battery separator of the present invention. Can be easily produced without requiring strict control of conditions.

[実施例] 以下実施例及び比較例について説明する。[Examples] Examples and comparative examples will be described below.

実施例1〜3、比較例1〜4 第2表に示す配合の構成繊維を水中に投入して水流型
分散機により撹拌して分散させ、更に硫酸を加えて水の
pHを2.7とし約10分間保持した。次いで抄造を行ない150
℃に加熱して乾燥した後、比較例1以外は第2表に示す
条件で高温加熱することによりガラス繊維を熱融着させ
て、マット状の蓄電池用セパレータを製造した。
Examples 1 to 3 and Comparative Examples 1 to 4 The constituent fibers having the formulations shown in Table 2 were put into water and stirred by a water-flow type disperser to disperse, and sulfuric acid was further added to the water.
The pH was adjusted to 2.7 and kept for about 10 minutes. Then papermaking is performed 150
After heating at 0 ° C. and drying, the glass fibers were heat-fused by heating at high temperature under the conditions shown in Table 2 except for Comparative Example 1 to manufacture a mat-shaped storage battery separator.

このセパレータの灼熱減量、吸液速度、引張強さ、座
屈強度、加圧下の保液性について測定した結果を第2表
に示す。
Table 2 shows the results of measuring the loss on ignition, liquid absorption rate, tensile strength, buckling strength, and liquid retention under pressure of this separator.

第2表より、下記のことが明らかである。 The following is clear from Table 2.

即ち、ガラス繊維Aのみからなるセパレータでは、高
温加熱による熱融着処理を行わない場合(比較例1)と
同様に熱融着処理の加熱温度が630℃と低い場合(比較
例2)にも、十分な強度が得られない。また、熱融着処
理の加熱温度が670℃と高い場合には強度は向上するも
のの吸液性が低下する。ガラス繊維Aのみからなるセパ
レータでは、良い結果が得られるものは650℃の加熱温
度で熱融着処理を行ったもの(比較例3)のみで、適切
な処理条件の範囲は極めて狭く、条件コントロールが難
しいことがわかる。
That is, in the case where the separator made of only the glass fiber A is used when the heating temperature of the heat fusion treatment is as low as 630 ° C. (Comparative Example 2) as in the case where the heat fusion treatment by high temperature heating is not performed (Comparative Example 1). , Cannot obtain sufficient strength. Further, when the heating temperature in the heat fusion treatment is as high as 670 ° C., the strength is improved but the liquid absorbing property is lowered. Among the separators composed only of glass fiber A, the ones that give good results are only those that have been subjected to heat fusion treatment at a heating temperature of 650 ° C. (Comparative Example 3), and the range of suitable treatment conditions is extremely narrow, and condition control Finds it difficult.

これに対し、本発明に係るガラス繊維Aを主体とし、
ガラス繊維Bの低軟化点ガラスを併用したセパレータで
は、560℃(実施例1)、580℃(実施例2)、600℃
(実施例3)と幅広い加熱温度による熱融着処理によっ
ても、常に、優れた吸液性、保液性が得られ、その引張
強さや座屈強度についても、良好な結果を得ることがで
きる。
On the other hand, mainly the glass fiber A according to the present invention,
In the case of using the low softening point glass of the glass fiber B in combination, 560 ° C. (Example 1), 580 ° C. (Example 2), 600 ° C.
Even with the heat fusion treatment at a wide range of heating temperatures as in (Example 3), excellent liquid absorbing properties and liquid retaining properties can always be obtained, and good results can also be obtained regarding its tensile strength and buckling strength. .

なお、第2表中*1〜*2の繊維は次の通りである。 The fibers * 1 to * 2 in Table 2 are as follows.

*1 ガラス繊維A:組成=第1表のA 平均直径=0.8μm *2 ガラス繊維B:組成=第1表のB 平均直径=0.8μm また、実施例及び比較例における各種特性値の測定法
は次の通りである。
* 1 Glass fiber A: Composition = A in Table 1 average diameter = 0.8 µm * 2 Glass fiber B: Composition = B in Table 1 Average diameter = 0.8 µm Further, the measuring methods of various characteristic values in Examples and Comparative Examples. Is as follows.

厚さ(mm) 試料をその厚み方向に20kg/dm2の荷重で押圧した状態
で測定する。(JISC−2202) 目付(g/cm3) 試料重量を試料面積で除して得られる値である。
Thickness (mm) Measure the sample while pressing it in the thickness direction with a load of 20 kg / dm 2 . (JISC-2202) Unit weight (g / cm 3 ) A value obtained by dividing the sample weight by the sample area.

密度(g/cm3) 試料(重量W)10cm×10cmの面積(S)に20kgの荷重
を加えた時の試料の厚さをTとした時に、式:W/(S×
T)(g/cm3)で与えられる値で表わす。
Density (g / cm 3 ) Sample (weight W) Area (S) of 10 cm × 10 cm (S) When the load of 20 kg is applied to the thickness of the sample, the formula: W / (S ×
It is represented by the value given by T) (g / cm 3 ).

灼熱減量(%) 試料を空気中で600℃に恒量となるまで加熱し、その
減量分を元の試料重量で除して求める。
Loss on ignition (%) The sample is heated in air to 600 ° C until a constant weight is reached, and the loss is divided by the original sample weight.

吸液速度(mm/5分) 試料を垂直にしてその下部を比重1.3の希硫酸液に浸
漬し、5分後に経時的に上昇する液位を測定することに
より求める。
Liquid absorption speed (mm / 5 minutes) The liquid absorption rate is determined by making the sample vertical and immersing the lower part in a dilute sulfuric acid solution having a specific gravity of 1.3, and measuring the liquid level that rises with time after 5 minutes.

引張強さ(g/15mm幅) 幅15mmの試料の両端を引張り、それが切断するときの
外力の値を求め、厚さで除して幅15mm、厚さ1mm当りの
値(g)で表示する。
Tensile strength (g / 15mm width) Pull both ends of a sample with a width of 15mm, find the value of the external force when it cuts, divide by the thickness, and display with width 15mm, value per 1mm of thickness (g) To do.

座屈強度(g/10mm幅) 幅50mm、長さ100mmの試料を準備し、長さの上方50mm
分をホルダで挟み、下方50mmは付き出ているように保持
し、試料の下方先端を秤に接触させ、ホルダを静かに下
降させることにより試料を秤に押し付け、座屈したとき
の荷重(g)を求める。そして、幅10mm、厚さ1mm当り
の値に換算して表示する。
Buckling strength (g / 10mm width) Prepare a sample with a width of 50mm and a length of 100mm, 50mm above the length
Hold the sample with a holder, hold it so that the lower 50 mm is protruding, make the lower tip of the sample contact the scale, and gently lower the holder to press the sample against the scale, and load when buckling (g ). Then, the value is converted into a value per width 10 mm and thickness 1 mm and displayed.

加圧下保液性(g/cc) 20kg/dm2加重での厚さが1mmで寸法が10cm×10cmの試
料に水を含ませ、厚さ方向に20kgの加重を加えた時の試
料中の含水量(g)を求め、これを試料の体積(cc)で
除した値で示す。
Liquid retentivity under pressure (g / cc) 20kg / dm 2 A sample with a thickness of 1mm and dimensions of 10cm × 10cm was made to contain water, and a weight of 20kg was applied in the thickness direction. The water content (g) was determined and is shown by the value divided by the volume (cc) of the sample.

[発明の効果] 以上詳述した通り、本発明の蓄電池用セパレータは、
実質的にガラス繊維のみから構成されるものであって、
主体ガラス繊維の軟化点より50〜400℃低い軟化点の低
軟化点ガラス繊維が全ガラス繊維の3〜20重量%混抄さ
れ、かつ、ガラス繊維同志が熱融着されてなるものであ
り、 ガラス繊維のみよりなることから、吸液性、保液性
が良好で、特に加圧下における保液性に優れる。また、
耐酸化性にも優れる。
[Effects of the Invention] As described in detail above, the storage battery separator of the present invention is
Consisting essentially of glass fibers,
A glass is made by mixing 3 to 20% by weight of all glass fibers with a low softening point glass fiber having a softening point of 50 to 400 ° C. lower than the softening point of the main glass fiber, and glass fibers are heat-sealed together. Since it is composed of only fibers, it has good liquid absorption and liquid retention properties, and particularly excellent liquid retention properties under pressure. Also,
Excellent in oxidation resistance.

熱融着によりガラス繊維は安定に接着されているた
め、高い強度及び硬度を得ることができる。
Since the glass fibers are stably bonded by heat fusion, high strength and hardness can be obtained.

等の優れた効果を有する。And so on.

しかも、その製造に当っては、本発明の方法に従っ
て、厳密な熱融着処理条件のコントロールを要さず、極
めて高特性なセパレータを容易かつ効率的に製造するこ
とができる。
Moreover, in its production, according to the method of the present invention, it is possible to easily and efficiently produce an extremely high-performance separator without requiring strict control of the heat fusion treatment conditions.

このような本発明のセパレータによれば、高性能の蓄
電池を優れた作業性のもとに製造することができ、その
工業的有用性は極めて高い。
According to such a separator of the present invention, a high-performance storage battery can be manufactured with excellent workability, and its industrial utility is extremely high.

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】実質的にガラス繊維のみから構成される蓄
電池用セパレータであって、主体とするガラス繊維の軟
化点よりも50〜400℃低い軟化点の低軟化点ガラス繊維
が全ガラス繊維の3〜20重量%混合され、かつ、ガラス
繊維同志が熱融着されてなることを特徴とする蓄電池用
セパレータ。
1. A storage battery separator comprising substantially only glass fibers, wherein the low softening point glass fiber having a softening point lower than that of the main glass fiber by 50 to 400 ° C. is all glass fibers. A storage battery separator, characterized in that it is mixed in an amount of 3 to 20% by weight, and glass fibers are fused together.
【請求項2】平均直径10〜30μmのガラス繊維0〜35重
量%、平均直径2μmを超え10μm未満のガラス繊維0
〜30重量%、残部平均直径2μm以下のガラス繊維より
構成される特許請求の範囲第1項に記載の蓄電池用セパ
レータ。
2. Glass fibers having an average diameter of 10 to 30 μm, 0 to 35% by weight, glass fibers having an average diameter of more than 2 μm and less than 10 μm 0
The storage battery separator according to claim 1, wherein the storage battery separator is composed of glass fibers having a balance of -30% by weight and a balance average diameter of 2 μm or less.
【請求項3】密度が0.16±0.03g/cm3である特許請求の
範囲第1項又は第2項に記載の蓄電池用セパレータ。
3. The storage battery separator according to claim 1, which has a density of 0.16 ± 0.03 g / cm 3 .
【請求項4】引張強さが400g/15mm幅×1mm厚以上である
特許請求の範囲第1項ないし第3項のいずれか1項に記
載の蓄電池用セパレータ。
4. The storage battery separator according to any one of claims 1 to 3, which has a tensile strength of 400 g / 15 mm width × 1 mm thickness or more.
【請求項5】座屈強度が30g/10mm幅×1mm厚以上である
特許請求の範囲第1項ないし第4項のいずれか1項に記
載の蓄電池用セパレータ。
5. The storage battery separator according to claim 1, which has a buckling strength of 30 g / 10 mm width × 1 mm thickness or more.
【請求項6】実質的にガラス繊維のみから構成される蓄
電池用セパレータを製造する方法において、主体とする
ガラス繊維と、該主体ガラス繊維の軟化点よりも50〜40
0℃低い軟化点の低軟化点ガラス繊維とを、該低軟化点
ガラス繊維の割合が全ガラス繊維の3〜20重量%となる
ように混合し、主体ガラス繊維の軟化点と低軟化点ガラ
ス繊維の軟化点との中間の温度で加熱してガラス繊維同
志を熱融着させることを特徴とする蓄電池用セパレータ
の製造方法。
6. A method for producing a storage battery separator consisting essentially of glass fibers, which comprises glass fibers as a main component and a softening point of 50 to 40 higher than the softening point of the main glass fibers.
A low softening point glass fiber having a low softening point of 0 ° C. is mixed so that the ratio of the low softening point glass fiber is 3 to 20% by weight of all the glass fibers, and the softening point and the low softening point glass of the main glass fiber are mixed. A method for manufacturing a separator for a storage battery, comprising heating the glass fibers by heating at a temperature midway between the softening point of the fibers and the glass fibers.
JP61224616A 1986-09-22 1986-09-22 Storage battery separator and manufacturing method thereof Expired - Fee Related JP2546240B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61224616A JP2546240B2 (en) 1986-09-22 1986-09-22 Storage battery separator and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61224616A JP2546240B2 (en) 1986-09-22 1986-09-22 Storage battery separator and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS6380472A JPS6380472A (en) 1988-04-11
JP2546240B2 true JP2546240B2 (en) 1996-10-23

Family

ID=16816504

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61224616A Expired - Fee Related JP2546240B2 (en) 1986-09-22 1986-09-22 Storage battery separator and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2546240B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098013A1 (en) * 2016-11-23 2018-05-31 Hollingsworth & Vose Company Battery separators and related methods
US10135051B2 (en) 2016-12-15 2018-11-20 Hollingsworth & Vose Company Battery components comprising fibers

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4874664B2 (en) * 2006-02-08 2012-02-15 株式会社フジクラ heat pipe
DE102014218779A1 (en) * 2014-09-18 2016-03-24 Robert Bosch Gmbh Separator with glass shut-down effect

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018098013A1 (en) * 2016-11-23 2018-05-31 Hollingsworth & Vose Company Battery separators and related methods
CN110023258A (en) * 2016-11-23 2019-07-16 霍林斯沃思和沃斯有限公司 Battery separator and correlation technique
US10135051B2 (en) 2016-12-15 2018-11-20 Hollingsworth & Vose Company Battery components comprising fibers
US11289771B2 (en) 2016-12-15 2022-03-29 Hollingsworth & Vose Company Battery components comprising fibers
US11804634B2 (en) 2016-12-15 2023-10-31 Hollingsworth & Vose Company Battery components comprising fibers

Also Published As

Publication number Publication date
JPS6380472A (en) 1988-04-11

Similar Documents

Publication Publication Date Title
JP2743438B2 (en) Sealed lead-acid battery
JP2005534599A (en) Glass composition
KR20140074336A (en) Glass compositions and fibers made therefrom
GB2247343A (en) Glass fibre separator for sealed lead acid battery having reduced electrolyte stratification
JP2546240B2 (en) Storage battery separator and manufacturing method thereof
JP2762446B2 (en) Storage battery separator
JPH06325744A (en) Separator for storage battery
JPS59138058A (en) Separator for storage battery
JP2632716B2 (en) Sealed lead-acid battery
JPH0381266B2 (en)
JPH0732007B2 (en) Storage battery separator
JPH0756793B2 (en) Storage battery separator
JP3705164B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
JPH07201310A (en) Separator for sealed lead-acid battery and its manufacture and sealed lead-acid battery
JP4897994B2 (en) Sealed separator for sealed lead-acid battery
JP3060694B2 (en) Sheet separator and sealed lead-acid battery
JPH0555977B2 (en)
JPH0427672B2 (en)
JPH0760674B2 (en) Storage battery separator
JPS5971255A (en) Separator for storage battery
JPS62252065A (en) Separator for storage battery
JPS60119073A (en) Separator for storage battery
JPH0555974B2 (en)
JPH0555975B2 (en)
JPH0381265B2 (en)

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees