JP4897994B2 - Sealed separator for sealed lead-acid battery - Google Patents

Sealed separator for sealed lead-acid battery Download PDF

Info

Publication number
JP4897994B2
JP4897994B2 JP2000295765A JP2000295765A JP4897994B2 JP 4897994 B2 JP4897994 B2 JP 4897994B2 JP 2000295765 A JP2000295765 A JP 2000295765A JP 2000295765 A JP2000295765 A JP 2000295765A JP 4897994 B2 JP4897994 B2 JP 4897994B2
Authority
JP
Japan
Prior art keywords
glass
separator
mass
sealed
acid battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2000295765A
Other languages
Japanese (ja)
Other versions
JP2002110124A (en
Inventor
芳信 柿崎
敬明 松波
正浩 川地
拓生 三谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Sheet Glass Co Ltd
Original Assignee
Nippon Sheet Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Sheet Glass Co Ltd filed Critical Nippon Sheet Glass Co Ltd
Priority to JP2000295765A priority Critical patent/JP4897994B2/en
Publication of JP2002110124A publication Critical patent/JP2002110124A/en
Application granted granted Critical
Publication of JP4897994B2 publication Critical patent/JP4897994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C13/00Fibre or filament compositions

Description

【0001】
【発明の属する分野】
本発明は、密閉型鉛蓄電池用セパレータに関する。
【0002】
【従来の技術】
従来密閉型鉛蓄電池用セパレータに使用されるガラス繊維の組成は、質量%で表示して下記成分のとおりである。
SiO 67.0
Al23 2.0
23 7.0
NaO+KO 15.0
MgO 3.0
CaO 5.0
BaO 0.1
その他 0.9
前記ガラス組成とした理由は、次の通りである。
(1)密閉型鉛蓄電池の電解液は硫酸のため、耐酸性の含アルカリガラスが好適であることから、アルカリ成分(NaO+KO)を15.0質量%とする。
(2)ガラスの骨格を成すSiO成分は、耐酸性を考慮すると多いほうがよいが、ガラスの液相温度が上昇し作業性が劣るため、67.0質量%を設定する。
(3)平均繊維径が0.7μmと細く、比表面積が大きいことから、空気中の水分や炭酸ガスによってアルカリ成分が溶出して、ガラス繊維が破壊されるいわゆる風化現象が起こるため、風化現象の防止のためB23を7.0質量%とする。
(4)耐水性及び耐酸性等の耐久性向上のため、SiO表面で錯塩化して保護膜として働かせるが、紡糸温度が高くなり繊維化が難しくなることから、Al23を2.0質量%とする。
(5)SiOと混合加熱され、ガラスの融点を下げて溶けやすくする作用が低くなり、作業性は向上するが、耐水性、耐酸性を悪くするので、MgO+CaO+BaO総量で8.1質量%とする。
【0003】
【発明が解決しようとする課題】
ところが、従来のガラス組成の密閉型鉛蓄電池用セパレータは、夏季など高温多湿時条件下で2ヶ月程度の保管後に使用する場合、ガラス繊維の風化(劣化)を生じて、セパレータを電池に組込む際に、折り曲げ部で割れて電池生産ができなくなったり、ロール裁断面が接着したりすることがある。更に、極板を包んで使用する密閉電池の場合、割れのため短絡を生じる問題があるので、在庫時には冷暗所で密閉し、乾燥剤を入れて保管する必要があるなどの問題がある。また、劣化したガラス繊維は折れやすくなるため、所定加圧をかけて組立てた密閉電池が長期の使用時に圧力が保てず、極板とセパレータの密着性が低下し、電池容量が出なくなり電池の寿命を短くする問題がある。
このため、本発明は前記課題を解決することを目的とする。
【0004】
【課題を解決するための手段】
本発明の密閉型鉛蓄電池用セパレータは、前記目的を達成するべく、請求項1に記載の通り、質量%で表示して下記成分
SiO 63.0〜66.0
Al 4.0〜 5.1
5.5〜 7.5
NaO+KO 14.6〜18.2
MgO 2.7〜 3.7
CaO 3.7〜 5.3
BaO 0〜 0.3
その他 0〜 0.2
のガラス組成からなり、遠心法または火炎法により紡糸された平均繊維径0.5〜1μmの極細ガラス繊維を主体とし、抄紙法により得られることを特徴とする。
【0005】
【発明の実施の形態】
ガラス組成と化学的な耐久性の順位は
(1)耐水性:ZrO2>Al23>TiO2>ZnO>MgO>CaO>BaO
(2)耐酸性:ZrO2>Al23>ZnO>MgO>CaO>TiO2>BaO
であることが知られている(成瀬省著 ガラス工学、共立出版(株)、287頁)。
ZrO2とAl23は耐水、耐酸性に対して最も優れるが、ZrO2は鉛蓄電池用セパレータ原料として非常に高価であり工業的に採用は難しいので、主としてAl成分を増量して改善を図るようにした。
【0006】
本発明の密閉型鉛蓄電池用セパレータに使用されるガラス繊維の組成は、質量%で表示して次の通りである。
SiO 63.0〜66.0
Al 4.0〜 5.1
5.5〜 7.5
NaO+KO 14.6〜18.2
MgO 2.7〜 3.7
CaO 3.7〜 5.3
BaO 0〜 0.3
その他 0〜 0.2
【0007】
SiOはBとAlと共にガラスの骨格を形成する。63質量%未満では、ガラスの化学的耐久性が低下して好ましくない。66質量%超では、ガラスの溶解性が低下すると共に、ガラスの作業温度・液相温度が上昇して好ましくない。
【0008】
Alは、ガラス繊維の劣化の原因の一つである化学的耐久性特に耐水性の低下を向上する。Alは、4.1質量%未満では、耐水性が低下して好ましくない。5.1質量%超では、耐水性の向上効果が変わらないこと、更に、ガラスの作業温度・液相温度が上昇して好ましくない。
【0009】
は、ガラス繊維の劣化の原因の一つである風化現象を防止する。風化現象とは、本発明のセパレータに使用するガラスの平均繊維径が0.7μmと細く比表面積が大きいことから、空気中の水分や炭酸ガスによってアルカリ成分が溶出して、ガラス繊維が破壊されることである。Bは、5.5質量%未満では、ガラスの粘度が増加し、作業温度・液相温度が上昇して好ましくない。7.5質量%超では、ガラスの作業温度と液相温度の改善効果は少なく、高価であるため好ましくない。
【0010】
CaOとMgOはガラスの融剤である。同時にこれらはガラスの粘度曲線を適切に保つため使用され、更に、化学的耐久性を維持するためにもなる。MgOは2.7〜3.7質量%の範囲で液相温度を下げるので、この範囲で使用する。CaOは、3.7質量%未満では、化学的耐久性を低下させるので好ましくない。5.3質量%超では、液相温度が上昇して好ましくない。
【0011】
NaOとKOはガラスの融剤である。また、同時に密閉型鉛蓄電池の電解液は硫酸のため、耐酸性の含アルカリガラスが好適であるため使用する。NaOに比べて は原料が高価なため、NaOを主体に使用する。NaO+KOの合計が14.6質量%未満では、ガラスの溶解性が低下し、同時に液相温度も上昇するので好ましくない。NaO+KOの合計が18.2質量%超では、化学的耐久性を低下させるので好ましくない。KOは原料として特別に調合する必要はないが、珪砂、長石等のKO以外の成分を調合するための原料に混入するので、1.5質量%を上限とする。
【0012】
本発明に使用するガラス繊維は、前記組成となるように調合したものを溶融炉で溶かして、遠心法、或いは、火炎法で紡糸して平均繊維径0.5〜1.0μmとする。
【0013】
本発明の密閉型鉛蓄電池用セパレータは、前記極細ガラス繊維を100質量%、或いは、5質量%以下を平均繊維径10〜20μm、繊維長3〜5mmのフィブリル状アクリル繊維等の有機バインダー、平均繊維径10〜20μm、繊維長3〜5mmのポリエステル樹脂・アクリル樹脂等の合成繊維、比表面積80〜300m/gのシリカ等の無機粉体、平均繊維径5〜20μm、繊維長5〜30mmのガラス長繊維で置換して構成することができる。
【0014】
前記構成材料を通常の抄紙技術で酸、或いは、中性により抄造して、厚さ0.5〜3.0mm、目付70〜500g/mの密閉型鉛蓄電池用セパレータを得る。また、必要に応じて、抄紙後にセパレータの表面、或いは、内部迄浸透させて樹脂処理することができる。
【0015】
【実施例】
本発明の密閉型鉛蓄電池用セパレータの実施例、比較例及び従来例を説明する。
本発明の実施例1は、平均繊維径0.7μmのガラス繊維を99質量%と、ガラス繊維のバインダーとしてフィブリル状アクリル繊維を1質量%の組成で、抄紙法により、厚さ2.0mm、目付320g/mの密閉型鉛蓄電池用セパレータを作成した。
以下、実施例2及び従来例は、ガラス組成の内、主としてAlの配合を変えて、それ以外は実施例1と同様にして作成した。
得られた各実施例、比較例のセパレータにつき、ガラス繊維の評価と、セパレータの評価を行った。
各セパレータの配合、ガラス組成、並びに評価結果を下記表に示した。
【0016】
【表1】

Figure 0004897994
【0017】
ガラス繊維評価の内、ガラス繊維の劣化性試験は次の通りである。
(1)強制劣化条件
▲1▼試料を約10g採取し、ガラスマット上に置く。
▲2▼50℃、95RH%に設定した恒温恒湿槽に試料を入れ、3日間静置する。
▲3▼3日後、試料を取り出し、130℃乾燥機で乾燥させる。
【0018】
(2)「劣化性レールス維持率」の測定
▲1▼乾燥後の試料を約2g採取し、水0.8リットル加え、ミキサで100秒離解する。
▲2▼離解後、メスシリンダに移し、水を加え1リットルにする。
▲3▼ショッパ型叩解度試験機(JISP8121に準拠)に試料水を投入した後、一定の速度で円錐弁を上方に持ち上げで流下させる。
▲4▼側管からの排水が停止した後、排水量(X)を正確に読み取る。
▲5▼ショッパろ水度(SR)は次式より求める。
SR(度)=(1000−X)/10 ・・・(1)式
▲6▼温度補正表よりSRを補正する。SR/レールス換算表よりレールス(繊度)を求める。
▲7▼「劣化性レールス維持率」は、強制劣化前のガラス繊維のレールスに対する強制劣化後のレールスの変化で表す。
劣化性レールス維持率(%)=
(強制劣化後のレールス/強制劣化前のレールス)×100・・・(2)式
【0019】
(3)「劣化性タフネス維持率」の測定
▲1▼乾燥後の試料3.33gを3回採取し、ミキサで2分間離解後、角型タッピで抄造する。
▲2▼抄造したシートを105℃で乾燥させ、幅25mm×長さ180mmの試験片を採取し、引張強度と伸びを測定する。タフネスは次式より求める。
タフネス(MPa%)=引張強度(MPa)×伸び(%) ・・・(3)式
▲3▼「劣化性タフネス維持率」は、強制劣化前のガラス繊維のタフネスに対する強制劣化後のタフネスの変化で表す。
劣化性タフネス維持率(%)=
(強制劣化後のタフネス/強制劣化前のタフネス)×100・・・(4)式
【0020】
(4)「耐酸性」の測定
▲1▼試料約2gを採取し、乾燥機(105℃)で乾燥後デシケータで冷却後重量(W)を精秤する。
▲2▼比重1.200の希硫酸200ml中に▲1▼の試料を入れ、80℃の恒温水槽中に5時間保持する。
▲3▼5時間後ガラスフィルタでろ過し、蒸留水で中性になるまで洗浄する。
▲4▼洗浄した試料を乾燥機(105℃)で乾燥、デシケータで冷却後重量(W1)を精秤する。
▲5▼耐酸性を次式より求める。
耐酸性(%)=(W−W1)/W×100 ・・・(5)式
【0021】
(5)「耐水性」の測定
▲1▼試料約2gを採取し、乾燥機(105℃)で乾燥後デシケータで冷却後重量(W)を精秤する。
▲2▼純水200ml中に▲1▼の試料を入れ、80℃の恒温水槽中に5時間保持する。
▲3▼5時間後ガラスフィルタでろ過し、蒸留水で洗浄する。
▲4▼洗浄した試料を乾燥機(105℃)で乾燥、デシケータで冷却後重量(W1)を精秤する。
▲5▼耐水性を次式より求める。
耐水性(%)=(W−W1)/W×100 ・・・(6)式
【0022】
(6)「劣化性折曲時割れ」の測定
▲1▼抄造したガラスセパレータを50℃、95RH%に設定した恒温恒湿槽に入れ、所定日数静置する。
▲2▼所定日数経過後、試料を取り出し、130℃乾燥機で乾燥させる。
▲3▼セパレータを折曲げ、曲げた個所の外側で生じる亀裂の状態を目視で観察する。
上記表1から下記のことが判明した。
(1)従来例は、Alが2質量%と少ないことから、ガラス繊維の耐久性に起因する劣化により、ガラス繊維評価の「劣化性タフネス維持率」、「劣化性レールス維持率」が低く、「耐酸性」、「耐水性」が大きく、セパ評価の「劣化性折曲時割れ」では折曲げによる割れが発生した。
(2)これに対して実施例1は、Alが5質量%と多いことから、ガラス繊維の耐久性に起因する劣化防止が向上し、ガラス繊維評価の「劣化性タフネス維持率」、「劣化性レールス維持率」が高く、「耐酸性」、「耐水性」が従来例に比べて小さく、セパ評価の「劣化性折曲時割れ」では折曲げによる割れがない。
(3)実施例2は、従来例に比べれば劣化防止の効果が観られるが、実施例1に比べると劣化防止効果が少し低下している。これはAlが2割少ないことに起因している。
(4)比較例2は、Alが実施例1に比べて4割少ないため、劣化防止効果が低いことがわかる。
(5)比較例1は、Alが実施例1に比べて2割多いが、劣化防止効果は実施例1と特に変わらないが、ガラスの作業温度・液相温度が上昇して繊維の紡糸性が困難になり好ましくない。
【0023】
【発明の効果】
本発明の密閉型鉛蓄電池用セパレータは、従来に比べてAlを倍増したため、耐水性等の耐久性を向上でき、劣化を防止できるため、折曲げ部の割れ発生を無くすることができる。
また、本発明の密閉型鉛蓄電池用セパレータは、Bは従来と同等であるため、極細ガラス繊維でみられる風化現象による劣化を防止できる。[0001]
[Field of the Invention]
The present invention relates to a sealed lead-acid battery separator.
[0002]
[Prior art]
The composition of the glass fiber conventionally used for the separator for sealed lead-acid batteries is expressed as mass% and is as follows.
SiO 2 67.0
Al 2 O 3 2.0
B 2 O 3 7.0
Na 2 O + K 2 O 15.0
MgO 3.0
CaO 5.0
BaO 0.1
Other 0.9
The reason for the glass composition is as follows.
(1) Since the electrolyte solution of the sealed lead-acid battery is sulfuric acid, an acid-resistant alkali-containing glass is suitable, so the alkali component (Na 2 O + K 2 O) is 15.0% by mass.
(2) Although it is better that the SiO 2 component constituting the skeleton of the glass is in consideration of acid resistance, 67.0% by mass is set because the liquidus temperature of the glass rises and the workability is inferior.
(3) Since the average fiber diameter is as thin as 0.7 μm and the specific surface area is large, the so-called weathering phenomenon occurs in which the alkali components are eluted by moisture and carbon dioxide in the air and the glass fiber is destroyed. In order to prevent this, B 2 O 3 is made 7.0 mass%.
(4) In order to improve durability such as water resistance and acid resistance, it is complexed on the SiO 2 surface and works as a protective film. However, since spinning temperature becomes high and fiberization becomes difficult, Al 2 O 3 is reduced to 2.0. Mass%.
(5) Mixing and heating with SiO 2 , the action of lowering the melting point of the glass to make it easy to melt is reduced and workability is improved, but the water resistance and acid resistance are deteriorated, so the total amount of MgO + CaO + BaO To do.
[0003]
[Problems to be solved by the invention]
However, when a conventional separator for a sealed lead-acid battery having a glass composition is used after being stored for about two months under hot and humid conditions such as summer, the glass fiber is weathered (deteriorated) and the separator is incorporated into the battery. In addition, the battery may not be able to be produced due to cracking at the bent portion, or the roll cut surface may adhere. Furthermore, in the case of a sealed battery that wraps and uses an electrode plate, there is a problem that a short circuit occurs due to cracking, and therefore there is a problem that it is necessary to seal in a cool and dark place and store with a desiccant when in stock. In addition, since the deteriorated glass fiber is easily broken, the sealed battery assembled by applying a predetermined pressure cannot maintain the pressure during long-term use, the adhesion between the electrode plate and the separator is lowered, and the battery capacity is not released. There is a problem of shortening the lifespan.
For this reason, an object of this invention is to solve the said subject.
[0004]
[Means for Solving the Problems]
In order to achieve the above object, the separator for a sealed lead-acid battery of the present invention is represented by mass% as described in claim 1 and contains the following components: SiO 2 63.0 to 66.0.
Al 2 O 3 4.0 to 5.1
B 2 O 3 5.5~ 7.5
Na 2 O + K 2 O 14.6 to 18.2
MgO 2.7 to 3.7
CaO 3.7 to 5.3
BaO 0 to 0.3
Other 0-0.2
It is characterized by being obtained by a papermaking method mainly composed of ultrafine glass fibers having an average fiber diameter of 0.5 to 1 μm spun by a centrifugal method or a flame method .
[0005]
DETAILED DESCRIPTION OF THE INVENTION
The order of glass composition and chemical durability is (1) water resistance: ZrO 2 > Al 2 O 3 > TiO 2 >ZnO>MgO>CaO> BaO
(2) Acid resistance: ZrO 2 > Al 2 O 3 >ZnO>MgO>CaO> TiO 2 > BaO
(Glass Engineering by Naruse, Kyoritsu Publishing Co., Ltd., page 287).
ZrO 2 and Al 2 O 3 are the most excellent in water resistance and acid resistance, but ZrO 2 is very expensive as a raw material for lead-acid battery separators and is difficult to adopt industrially, so the amount of Al 2 O 3 component is mainly increased. To improve it.
[0006]
The composition of the glass fiber used for the sealed lead-acid battery separator of the present invention is as follows expressed in mass%.
SiO 2 63.0~66.0
Al 2 O 3 4.0 to 5.1
B 2 O 3 5.5~ 7.5
Na 2 O + K 2 O 14.6 to 18.2
MgO 2.7 to 3.7
CaO 3.7 to 5.3
BaO 0 to 0.3
Other 0-0.2
[0007]
SiO 2 forms a glass skeleton together with B 2 O 3 and Al 2 O 3 . If it is less than 63 mass%, the chemical durability of glass will fall and it is not preferable. If it exceeds 66% by mass, the solubility of the glass decreases, and the working temperature and the liquidus temperature of the glass increase, which is not preferable.
[0008]
Al 2 O 3 improves the chemical durability, particularly water resistance, which is one of the causes of glass fiber deterioration. If Al 2 O 3 is less than 4.1% by mass, the water resistance decreases, which is not preferable. If it exceeds 5.1% by mass, the effect of improving water resistance is not changed, and the working temperature and liquidus temperature of the glass are increased, which is not preferable.
[0009]
B 2 O 3 is to prevent the weathering phenomenon which is one of the causes of the deterioration of the glass fibers. The weathering phenomenon is that the average fiber diameter of the glass used in the separator of the present invention is as thin as 0.7 μm and the specific surface area is large, so that alkali components are eluted by moisture and carbon dioxide in the air, and the glass fiber is destroyed. Is Rukoto. If B 2 O 3 is less than 5.5% by mass, the viscosity of the glass increases, and the working temperature and liquidus temperature rise, which is not preferable. If it exceeds 7.5% by mass, the effect of improving the working temperature and liquidus temperature of the glass is small and expensive, which is not preferable.
[0010]
CaO and MgO are glass fluxes. At the same time, they are used to keep the viscosity curve of the glass adequate, and also to maintain chemical durability. Since MgO lowers the liquidus temperature in the range of 2.7 to 3.7% by mass, it is used in this range. If CaO is less than 3.7% by mass, chemical durability is lowered, which is not preferable. If it exceeds 5.3 mass%, the liquidus temperature rises, which is not preferable.
[0011]
Na 2 O and K 2 O are glass fluxes. At the same time, the electrolytic solution of the sealed lead-acid battery is sulfuric acid, and therefore, acid-resistant alkali-containing glass is suitable. K 2 O as compared to Na 2 O because the raw material is expensive, use mainly of Na 2 O. If the total of Na 2 O + K 2 O is less than 14.6% by mass, the solubility of the glass is lowered and the liquidus temperature is also increased at the same time, which is not preferable. If the total of Na 2 O + K 2 O exceeds 18.2% by mass, the chemical durability is lowered, which is not preferable. K 2 O does not need to be specially formulated as a raw material, but is mixed with raw materials for preparing components other than K 2 O such as silica sand and feldspar, so 1.5 mass% is the upper limit.
[0012]
The glass fiber used in the present invention is prepared so as to have the above composition, melted in a melting furnace, and spun by a centrifugal method or a flame method to have an average fiber diameter of 0.5 to 1.0 μm.
[0013]
The separator for a sealed lead-acid battery according to the present invention is an organic binder such as a fibrillar acrylic fiber having an average fiber diameter of 10 to 20 μm and a fiber length of 3 to 5 mm. Synthetic fibers such as polyester resin and acrylic resin having a fiber diameter of 10 to 20 μm and a fiber length of 3 to 5 mm, inorganic powder such as silica having a specific surface area of 80 to 300 m 2 / g, an average fiber diameter of 5 to 20 μm, and a fiber length of 5 to 30 mm It can be constituted by substituting with a long glass fiber.
[0014]
The constituent material is made by acid or neutrality by a normal papermaking technique to obtain a sealed lead-acid battery separator having a thickness of 0.5 to 3.0 mm and a basis weight of 70 to 500 g / m 2 . Further, if necessary, it can be permeated to the surface or the inside of the separator after paper making and resin treatment can be performed.
[0015]
【Example】
Examples of the separator for a sealed lead-acid battery of the present invention, comparative examples, and conventional examples will be described.
Example 1 of the present invention has a composition of 99% by mass of glass fiber having an average fiber diameter of 0.7 μm and 1% by mass of fibrillar acrylic fiber as a binder of glass fiber, and a thickness of 2.0 mm by a papermaking method. A separator for a sealed lead-acid battery having a basis weight of 320 g / m 2 was prepared.
Hereinafter, Example 2 and the conventional example were produced in the same manner as in Example 1 except that the composition of Al 2 O 3 was mainly changed in the glass composition.
About the obtained separator of each Example and a comparative example, evaluation of glass fiber and evaluation of the separator were performed.
The composition of each separator, the glass composition, and the evaluation results are shown in the following table.
[0016]
[Table 1]
Figure 0004897994
[0017]
Among the glass fiber evaluations, the glass fiber deterioration test is as follows.
(1) Forced deterioration conditions (1) About 10 g of a sample is collected and placed on a glass mat.
(2) Put a sample in a thermo-hygrostat set to 50 ° C. and 95 RH% and let stand for 3 days.
(3) After 3 days, the sample is taken out and dried with a 130 ° C. dryer.
[0018]
(2) Measurement of “degradable rails maintenance ratio” (1) About 2 g of the dried sample is collected, 0.8 liter of water is added, and the mixture is disaggregated for 100 seconds with a mixer.
(2) After disaggregation, transfer to a measuring cylinder and add water to make 1 liter.
(3) After supplying sample water to a shopper type beating degree tester (based on JISP8121), the conical valve is lifted upward at a constant speed to flow down.
(4) After the drainage from the side pipe stops, read the drainage amount (X) accurately.
(5) The shopper freeness (SR) is obtained from the following equation.
SR (degree) = (1000−X) / 10 (1) Equation (6) SR is corrected from the temperature correction table. The rails (fineness) is obtained from the SR / Rails conversion table.
{Circle around (7)} “Degradable Rails Maintenance Rate” is represented by the change in the rails after forced deterioration relative to the glass fiber rails before forced deterioration.
Degradable rails maintenance rate (%) =
(Railus after forced deterioration / Railus before forced deterioration) × 100 (2) formula
(3) Measurement of “deterioration toughness maintenance rate” (1) Take 3.33 g of the dried sample three times, disintegrate with a mixer for 2 minutes, and make a paper with a square tappy.
(2) The sheet thus produced is dried at 105 ° C., a test piece having a width of 25 mm and a length of 180 mm is collected, and the tensile strength and elongation are measured. Toughness is obtained from the following equation.
Toughness (MPa%) = tensile strength (MPa) × elongation (%) (3) Formula (3) “Deterioration toughness maintenance ratio” is the toughness after forced deterioration with respect to the toughness of the glass fiber before forced deterioration. Expressed by change.
Deterioration toughness maintenance rate (%) =
(Toughness after forced deterioration / Toughness before forced deterioration) × 100 (4) Formula
(4) Measurement of “acid resistance” (1) About 2 g of a sample is collected, dried with a dryer (105 ° C.), cooled with a desiccator, and accurately weighed (W).
(2) The sample of (1) is placed in 200 ml of diluted sulfuric acid having a specific gravity of 1.200 and kept in a constant temperature water bath at 80 ° C. for 5 hours.
(3) After 5 hours, filter with a glass filter and wash with distilled water until neutral.
(4) The washed sample is dried with a dryer (105 ° C.), cooled with a desiccator, and the weight (W1) is precisely weighed.
(5) The acid resistance is obtained from the following formula.
Acid resistance (%) = (W−W1) / W × 100 (5) Formula
(5) Measurement of “water resistance” (1) About 2 g of a sample is collected, dried with a dryer (105 ° C.), cooled with a desiccator, and accurately weighed (W).
(2) Put the sample of (1) in 200 ml of pure water and hold it in a constant temperature water bath at 80 ° C. for 5 hours.
(3) After 5 hours, filter with a glass filter and wash with distilled water.
(4) The washed sample is dried with a dryer (105 ° C.), cooled with a desiccator, and the weight (W1) is precisely weighed.
(5) The water resistance is obtained from the following formula.
Water resistance (%) = (W−W1) / W × 100 (6) formula
(6) Measurement of “degradable bending cracking” (1) Place the paper separator into a constant temperature and humidity chamber set at 50 ° C. and 95 RH% and leave it for a predetermined number of days.
(2) After a predetermined number of days have passed, the sample is taken out and dried with a 130 ° C. dryer.
(3) The separator is bent, and the state of the crack generated outside the bent portion is visually observed.
From Table 1 above, the following was found.
(1) In the conventional example, since Al 2 O 3 is as low as 2% by mass, “degradability toughness maintenance rate” and “degradability rails maintenance rate” of glass fiber evaluation due to deterioration due to durability of glass fiber. Is low, "acid resistance" and "water resistance" are large, and cracks due to bending occurred in the "degradable bending crack" of the Sepa evaluation.
(2) On the other hand, since Example 1 has a large amount of Al 2 O 3 of 5% by mass, the deterioration prevention due to the durability of the glass fiber is improved, and the “degradability toughness maintenance rate” of the glass fiber evaluation is improved. The “degradable rails maintenance rate” is high, the “acid resistance” and “water resistance” are smaller than those of the conventional example, and the “degradable bending crack” of the Sepa evaluation has no cracks due to bending.
(3) Although the effect of preventing deterioration is observed in Example 2 compared to the conventional example, the effect of preventing deterioration is slightly reduced compared to Example 1. This is because Al 2 O 3 is 20% less.
(4) Since Comparative Example 2 has 40% less Al 2 O 3 than Example 1, it can be seen that the effect of preventing deterioration is low.
(5) Although Comparative Example 1 has 20% more Al 2 O 3 than Example 1, the effect of preventing deterioration is not particularly different from Example 1, but the working temperature and liquidus temperature of the glass are increased and the fiber is increased. This is not preferable because the spinnability becomes difficult.
[0023]
【Effect of the invention】
Since the sealed lead-acid battery separator of the present invention has doubled Al 2 O 3 compared to the conventional one, durability such as water resistance can be improved and deterioration can be prevented. it can.
Further, sealed lead-acid battery separator of the present invention, since B 2 O 3 is equal to that of the conventional, can prevent deterioration due to weathering phenomena seen with ultrafine glass fibers.

Claims (1)

質量%で表示して下記成分
SiO 63.0〜66.0
Al 4.0〜 5.1
5.5〜 7.5
NaO+KO 14.6〜18.2
MgO 2.7〜 3.7
CaO 3.7〜 5.3
BaO 0〜 0.3
その他 0〜 0.2
のガラス組成からなり、遠心法または火炎法により紡糸された平均繊維径0.5〜1μmの極細ガラス繊維を主体とし、抄紙法により得られることを特徴とする密閉型鉛蓄電池用セパレータ。
The following components expressed in mass% SiO 2 63.0-66.0
Al 2 O 3 4.0 to 5.1
B 2 O 3 5.5~ 7.5
Na 2 O + K 2 O 14.6 to 18.2
MgO 2.7 to 3.7
CaO 3.7 to 5.3
BaO 0 to 0.3
Other 0-0.2
A sealed lead-acid battery separator characterized in that it is made of ultrafine glass fibers having an average fiber diameter of 0.5 to 1 μm spun by a centrifugal method or a flame method , and obtained by a papermaking method .
JP2000295765A 2000-09-28 2000-09-28 Sealed separator for sealed lead-acid battery Expired - Lifetime JP4897994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000295765A JP4897994B2 (en) 2000-09-28 2000-09-28 Sealed separator for sealed lead-acid battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000295765A JP4897994B2 (en) 2000-09-28 2000-09-28 Sealed separator for sealed lead-acid battery

Publications (2)

Publication Number Publication Date
JP2002110124A JP2002110124A (en) 2002-04-12
JP4897994B2 true JP4897994B2 (en) 2012-03-14

Family

ID=18778138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000295765A Expired - Lifetime JP4897994B2 (en) 2000-09-28 2000-09-28 Sealed separator for sealed lead-acid battery

Country Status (1)

Country Link
JP (1) JP4897994B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7144633B2 (en) 2002-07-29 2006-12-05 Evanite Fiber Corporation Glass compositions
WO2004011379A2 (en) 2002-07-29 2004-02-05 Evanite Fiber Corporation Glass compositions
US9105908B2 (en) * 2010-03-29 2015-08-11 Schott Ag Components for battery cells with inorganic constituents of low thermal conductivity
FR3053965B1 (en) * 2016-07-13 2018-08-17 Saint-Gobain Isover GLASS FIBERS
JP7005130B2 (en) * 2016-09-01 2022-01-21 北越コーポレーション株式会社 A method for manufacturing a glass fiber sheet for a sealed lead-acid battery separator, a sealed lead-acid battery separator, and a glass fiber sheet for a sealed lead-acid battery separator.
CN113307499B (en) * 2021-06-11 2022-11-25 王喜才 Superfine glass microfiber and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63147843A (en) * 1986-12-10 1988-06-20 Nippon Sheet Glass Co Ltd Glass composition
JPS643972A (en) * 1987-06-26 1989-01-09 Shin Kobe Electric Machinery Lead-acid battery

Also Published As

Publication number Publication date
JP2002110124A (en) 2002-04-12

Similar Documents

Publication Publication Date Title
US7160824B2 (en) Glass compositions
US6933045B2 (en) Heat-resistant glass fiber and process for the production thereof
US4363878A (en) Alkali- and heat-resistant inorganic fiber
CN101687691B (en) Be applicable to the glass yarn strengthening organic/inorganic materials
US6794322B2 (en) Low-boron glass fibers and glass compositions for making the same
US7704902B2 (en) Glass fibre compositions
JP2013500939A (en) Lithium-free glass with improved modulus
US20070135291A1 (en) Mineral wool composition
US20030166446A1 (en) High temperature glass fiber insulation
US20100184581A1 (en) Glass yarns capable of reinforcing organic and/or inorganic materials
KR20140074336A (en) Glass compositions and fibers made therefrom
JP4897994B2 (en) Sealed separator for sealed lead-acid battery
CA1106413A (en) Glass composition for fiberization
JP3957348B2 (en) Fire glass
JP3132234B2 (en) Glass long fiber
US20180277812A1 (en) Battery containing acid resistant nonwoven fiber mat with biosoluble microfibers
US4142906A (en) Glass composition for alkali-resistant glass fiber
US6265335B1 (en) Mineral wool composition with enhanced biosolubility and thermostabilty
JPH0461820B2 (en)
JP3801293B2 (en) Corrosion resistant glass fiber
CN207699452U (en) Basalt fiber drawing bushing plate
JP3771073B2 (en) Glass fiber
JPS5857385B2 (en) Alkali-resistant inorganic fiber reinforced cement products
JPH06325744A (en) Separator for storage battery
JPS623777B2 (en)

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20041227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070809

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111220

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111226

R150 Certificate of patent or registration of utility model

Ref document number: 4897994

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250