JPS59138058A - Separator for storage battery - Google Patents

Separator for storage battery

Info

Publication number
JPS59138058A
JPS59138058A JP58010059A JP1005983A JPS59138058A JP S59138058 A JPS59138058 A JP S59138058A JP 58010059 A JP58010059 A JP 58010059A JP 1005983 A JP1005983 A JP 1005983A JP S59138058 A JPS59138058 A JP S59138058A
Authority
JP
Japan
Prior art keywords
diameter
separator
glass fiber
small
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58010059A
Other languages
Japanese (ja)
Inventor
Jiyunsuke Mutou
武藤 純資
Masaru Masukawa
益川 勝
Harusaku Hamada
浜田 治策
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON GLASS SENI KK
Nippon Glass Fiber Co Ltd
Original Assignee
NIPPON GLASS SENI KK
Nippon Glass Fiber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON GLASS SENI KK, Nippon Glass Fiber Co Ltd filed Critical NIPPON GLASS SENI KK
Priority to JP58010059A priority Critical patent/JPS59138058A/en
Publication of JPS59138058A publication Critical patent/JPS59138058A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • H01M50/437Glass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0002Aqueous electrolytes
    • H01M2300/0005Acid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To enable a separator with good acid resistance to be manufactured without any necessity of complicate processes by sticking and tangling together large-diameter glass fiber and small-diameter glass fiber, which are made of silicate glass containing alkali and which are mixed in a specified ratio, by a wet method without using any adhesives. CONSTITUTION:A separator for a storage battery is prepared by sticking and tangling together large-diameter glass fiber and small-diameter glass fiber which have the composition of silicate glass containing alkali by a wet method without using any special adhesives. The large-diameter glass fiber has a mean diameter of 13-30mu (preferably 15-25mu) and the small-diameter glass fiber has a mean diameter of below 3mu (preferably 0.6-1.5mu). The proportion of the large- diameter fiber to the total amount of both fibers is adjusted to 20-80wt% (preferably 40-80wt%).

Description

【発明の詳細な説明】 本発明は蓄電池用隔離板、特にガラス繊維を主体とする
鉛蓄電池用隔離板に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a separator for a storage battery, and more particularly to a separator for a lead-acid battery mainly composed of glass fiber.

従来、平均直径が1s−isμのガラス繊維を交錯させ
て製造したいわゆるガラスマントと微孔セパレーターと
を張り合せたものが蓄電池用隔離板として用いられてい
る。しかし、この隔離板はガラスマントと微孔セパレー
ターとを別個に製造し、これを張り合わせるという複雑
な工程を要し、製造コストが比較的に高いという欠点が
ある。このような張り合せ工程を必要としない一体型の
隔離板として、例えば特開昭3;3−/3乙乙32には
繊維直径が/μ以下(たとえば0.3μ)のガラス繊維
50重量部、繊維直径が10〜30μ(たとえば//μ
)のガラス繊維its重量部および天然セルロース繊維
5重量部を含み、これらを互に絡み合わせてなる蓄電池
用隔離板が記載されている。しかしこの隔離板は耐酸性
がそれほど良いとは言えず、従ってこの隔離板を使った
蓄電池の寿命を長くするには限度があり、また隔離板の
製造コストもそれほど安いとは言えなかった。
BACKGROUND ART Conventionally, a separator for storage batteries has been used in which a so-called glass mantle made by interlacing glass fibers having an average diameter of 1 s-isμ and a microporous separator are laminated together. However, this separator requires a complicated process of manufacturing the glass mantle and the microporous separator separately and pasting them together, and has the disadvantage that the manufacturing cost is relatively high. As an integrated separator that does not require such a bonding process, for example, 50 parts by weight of glass fiber with a fiber diameter of /μ or less (for example, 0.3 μ) is used in JP-A-3-3-32. , the fiber diameter is 10-30μ (for example //μ
A separator for a storage battery is described, which contains glass fibers of 5 parts by weight and 5 parts by weight of natural cellulose fibers intertwined with each other. However, this separator did not have very good acid resistance, so there was a limit to how long the life of a storage battery using this separator could be extended, and the manufacturing cost of the separator was also not very low.

本発明はこのような従来の蓄電池用隔離板の欠点をなく
して、複雑な工程を要せず製造することができる奏耐酸
性のすぐれた製造コストの安価な蓄電池用隔離板を提供
することを目的とする。
The present invention aims to eliminate the drawbacks of conventional separators for storage batteries and to provide a separator for storage batteries that can be manufactured without the need for complicated processes, has excellent acid resistance, and is inexpensive to manufacture. purpose.

すなわち本発明は73〜30μの平均直径と3〜100
mmの平均長さとを有する大径のガラス繊維と、3μ以
下の平均直径を有する小径のガラス繊維とからなり、大
径ガラス繊維はそれと小径ガラス繊維との合語量に対し
て、20〜ざ0重量%になるように含まれ、大径ガラス
繊維および小径ガラス繊維はともに含アルカリ珪酸塩ガ
ラスの組成を有しており、これらは湿式抄造により特別
な接着剤なしは相互に接着され絡み合っている蓄電池用
隔離板である。
That is, the present invention has an average diameter of 73 to 30μ and a diameter of 3 to 100μ.
It consists of large-diameter glass fibers with an average length of mm and small-diameter glass fibers with an average diameter of 3μ or less. The large-diameter glass fibers and the small-diameter glass fibers both have the composition of alkali-containing silicate glass, and they are bonded and intertwined with each other during wet papermaking without a special adhesive. This is a separator for storage batteries.

本発明の蓄電池用隔離板は大径のガラス繊維と小径のガ
ラス繊維とから構成されており、大径のガラス繊維は7
3〜30μの平均直径、より好ましくは/3−、.25
μの平均直径と3〜100mmの平均長さを有する。大
径の繊維の直径が73μより小さいときには繊維の生産
性が低くなってコスト高となり、逆に30μよりも大き
くなると隔離板の可撓性が小さ過ぎて蓄電池の組立作業
が困難になり、かつ抄造が困難になる。大径繊維は紡糸
された連続状のガラス繊維をカッターにより3〜100
 mmの長さに切断することにより得られる。切断長さ
が3mm未満にした場合には切断コストが高くなり、ま
た抄造の際に孔あきコンベアネットから水と共に抜は落
ちて損失となる割合が増加するので好ましくなく、逆に
10ommを越えた長さに切断した場合には抄造のため
の水中への分散を均一にすることが容易でなくなるので
好ましくない。
The storage battery separator of the present invention is composed of large-diameter glass fibers and small-diameter glass fibers.
Average diameter of 3-30μ, more preferably /3-, . 25
It has an average diameter of μ and an average length of 3 to 100 mm. When the diameter of the large fiber is smaller than 73 μ, the productivity of the fiber is low and the cost is high; on the other hand, when it is larger than 30 μ, the flexibility of the separator is too small, making it difficult to assemble the storage battery. Papermaking becomes difficult. Large-diameter fibers are made by cutting continuous spun glass fibers into 3 to 100 pieces using a cutter.
Obtained by cutting into lengths of mm. If the cutting length is less than 3 mm, the cutting cost will increase, and the rate of loss due to the cutting falling off with water from the perforated conveyor net during papermaking will increase, which is undesirable. If the paper is cut into lengths, it becomes difficult to uniformly disperse the paper into water for papermaking, which is not preferable.

用いられる小径のガラス繊維は3μ以下、好ましくは0
.に〜/、夕μの平均直径を有する。3μよりも平均直
径の大きな小径ガラス繊維は隔離板の最大如孔径を増大
させ゛C1蓄電池電極間の短絡をひきおこす危険がある
ので好ましくない。しかしあまり小さな平均直径のガラ
ス繊維はその製造コストが高価となるので0168以上
であることが好ましい。この小径のガラス繊維はFA法
、遠心法その他いわゆるガラス短繊維製法によって製造
され、通常はq〜3Qmmの平均長さを有している。
The small diameter glass fiber used is less than 3μ, preferably 0
.. ~/, with an average diameter of μ. Small diameter glass fibers with an average diameter greater than 3 microns are not preferred since they increase the maximum through hole diameter of the separator and risk causing a short circuit between the C1 battery electrodes. However, glass fibers with an average diameter that is too small are expensive to manufacture, so it is preferable that the diameter is 0168 or more. This small-diameter glass fiber is manufactured by the FA method, centrifugation method, or other so-called short glass fiber manufacturing method, and usually has an average length of q to 3 Q mm.

本発明の隔離板を構成する大径ガラス繊維と小径ガラス
繊維との混合割合は、両繊維の合語量に対して大径繊維
が、20〜ざ0重量%、好ましくはグ0〜go重量%で
ある。大径繊維の混入割合が、20%未満の場合には隔
離板の機械的強度が減少するとともに、小径繊維量増加
による製造コストの増加をもたらすので好ましくない。
The mixing ratio of the large-diameter glass fibers and the small-diameter glass fibers constituting the separator of the present invention is such that the large-diameter fibers are 20 to 0% by weight, preferably 0 to 0% by weight, based on the combined amount of both fibers. %. If the proportion of large-diameter fibers is less than 20%, the mechanical strength of the separator decreases and manufacturing costs increase due to an increase in the amount of small-diameter fibers, which is not preferable.

逆に大径繊維量がgo%を越えると、隔離板の保液力の
低下および吸液度の悪化をもたらすので好ましくない。
On the other hand, if the amount of large-diameter fibers exceeds go %, this is not preferable because it causes a decrease in the liquid retention capacity of the separator and a deterioration in the liquid absorption.

本発明の隔離板の大径ガラス繊維および小径カラス繊維
はともに含アルカリ珪酸塩ガラス組成を有する。これら
のガラス繊維を用いて湿式抄造により隔離板を製造する
とき、ガラス繊維中のアルカリ成分およびンリカ成分が
、分散のための水と反応しておそらく水ガラス層がガラ
ス繊維表面に形成され、この水ガラス層が接着剤として
作用しガラス繊維を相互に接着させる。従って隔離板を
製造スルために従来必要とされた有機繊維、バインダー
等は本発明においては全く必要ではなく、本発明の隔離
板は有機繊維や、樹脂バインダーその他の特別の接着剤
を含有しない。
Both the large diameter glass fibers and the small diameter glass fibers of the separator of the present invention have an alkali-containing silicate glass composition. When these glass fibers are used to manufacture separators by wet papermaking, the alkali and phosphor components in the glass fibers probably react with water for dispersion, forming a water glass layer on the surface of the glass fibers. The water glass layer acts as an adhesive and bonds the glass fibers together. Therefore, organic fibers, binders, etc., which were conventionally required for manufacturing separators, are not required at all in the present invention, and the separators of the present invention do not contain organic fibers, resin binders, or other special adhesives.

これらの接着剤は隔離板の耐酸性を弱めるので、それ故
に本発明の隔離板は従来の隔離板に比して優れた耐酸性
を有する。
These adhesives weaken the acid resistance of the separator and therefore the separators of the present invention have superior acid resistance compared to conventional separators.

抄造のときに生ずる上記接着層の好ましい生成条件は次
の通りである。ともに含アルカリ珪酸塩ガラス組成を有
する大径のガラス繊維および小径のガラス繊維を、たと
えば硝酸を添加してPH値を2〜3に保った水の中に一
定時間たとえばs−,2゜分分散させておく。この間に
ガラス繊維表面に接着層が形成され、このガラス繊維を
抄造し、ついでこれを所定温度たとえばgo〜/llo
”cに加熱することにより、相互に絡み合った大径ガラ
ス繊維および小径のガラス繊維は強固な接着層によって
相互に接着される。大径ガラス繊維および小径ガラス繊
維は、同一のガラス組成を有していなくてもよいが、と
もに耐酸性の良好な含アルカリ珪酸塩ガラス組成のもの
が使用される。
Preferable conditions for forming the adhesive layer during papermaking are as follows. A large-diameter glass fiber and a small-diameter glass fiber, both of which have an alkali-containing silicate glass composition, are dispersed for a certain period of time, e.g., s-, 2°, in water to which nitric acid has been added to maintain the pH value at 2 to 3. I'll let it happen. During this time, an adhesive layer is formed on the surface of the glass fiber, and this glass fiber is made into paper and then heated to a predetermined temperature, e.g.
By heating to "c", the intertwined large diameter glass fibers and small diameter glass fibers are bonded to each other by a strong adhesive layer.The large diameter glass fibers and the small diameter glass fibers have the same glass composition. Although it is not necessary to use the glass, an alkali-containing silicate glass composition having good acid resistance is used.

この耐酸性の程度は、ガラス繊維の状態でJ工5Q−2
J!0.2  に従って測定した場合の重量減が2%以
下であるのが望ましい。抄造工程中にガラス繊維表面に
接着層が形成しやすく、かつ耐酸性のすぐれたガラス繊
維は、珪酸(SiO2)成分が重量比で乙O〜7j%で
あり、アルカリ成分R20(Na20 +に20などの
金側)がg〜、20%であり、ただし5102十R20
は75〜90%であり、その他の含まれてもよい成分と
しては、例えばGa、Cr M ’;’ O+ B 2
03 。
The degree of acid resistance is J-5Q-2 in the state of glass fiber.
J! Desirably, the weight loss when measured according to 0.2 is 2% or less. Glass fibers that easily form an adhesive layer on the glass fiber surface during the papermaking process and have excellent acid resistance have a silicic acid (SiO2) component of O~7j% by weight, and an alkali component R20 (Na20 + 20%). gold side) is g ~, 20%, where 51020R20
is 75 to 90%, and other components that may be included include, for example, Ga, Cr M';' O+ B 2
03.

Al2O3+ Zn○、 Fe2O3などのすくなくと
も7種であるような含アルカリ珪酸塩ガラスからなるこ
とが好ましい。好ましい含アルカリ珪酸塩ガラスの例を
第7表に示している。
It is preferable that the glass be made of an alkali-containing silicate glass containing at least seven types, such as Al2O3+ Zn○ and Fe2O3. Examples of preferred alkali-containing silicate glasses are shown in Table 7.

本発明の隔離板はそれが組み込まれる蓄電池の種類1寸
法などによって異なるが、通常はO,S−5mmの厚み
と、0./!r 〜0.2/ 9/Cm3の密度を有す
る。
The separator of the present invention differs depending on the type and dimensions of the storage battery in which it is incorporated, but usually has a thickness of O.S-5mm and a thickness of 0.5mm. /! It has a density of r ~0.2/9/Cm3.

次に本発明を実施例について説明する。Next, the present invention will be explained with reference to examples.

組成が第7表のCガラスの組成をもち平均直径が79μ
のガラス長繊維を紡糸しカッターにより長繊維を紡糸し
カッターにより長さ2Qmmに切断し大径のガラス繊維
を得る。また組成が第7表のAガラスの組成をもち平均
直径がo、gμで平均長さが9 mmのガラス短繊維を
FA法で製造し小径のガラス繊維を得る。この両方のガ
ラス繊維を水100重量部に対して、両繊維合泪でO,
S重量部の割合でかつ第2表に示す混合比をもって投入
、攪拌して均一に分散させ、更に硫酸を添加して水のP
Hを3.0に保ち、約70分間攪拌を続ける。
It has the composition of C glass in Table 7 and has an average diameter of 79μ.
A long glass fiber is spun using a cutter, and the long fiber is cut into a length of 2 Q mm using a cutter to obtain a large diameter glass fiber. In addition, short glass fibers having the composition of glass A shown in Table 7, having an average diameter of 0, gμ, and an average length of 9 mm are produced by the FA method to obtain small-diameter glass fibers. Both of these glass fibers are combined with 100 parts by weight of water to give O,
P of the water is added in the proportion of S parts by weight and at the mixing ratio shown in Table 2, stirred and dispersed uniformly, and further sulfuric acid is added to reduce the P of the water.
Maintain H at 3.0 and continue stirring for approximately 70 minutes.

その後に抄造をおこない100°Cに加熱してマット状
の蓄電池用隔離板を得た。この隔離板を構成する大径お
よび小径のガラス繊維はその表面に形成された水ガラス
により相互に接着されていることが観察された。
Thereafter, papermaking was carried out and the material was heated to 100°C to obtain a mat-like separator plate for storage batteries. It was observed that the large diameter and small diameter glass fibers constituting this separator were bonded to each other by water glass formed on the surface thereof.

これらの隔離板は第2表に示すような厚み、密度。These separators have thicknesses and densities as shown in Table 2.

引張強度、吸液度、保液力、電気抵抗、耐酸性および最
大姻孔径を有していた。
It had tensile strength, liquid absorption, liquid holding power, electrical resistance, acid resistance, and maximum pore size.

これらの特性値および繊維の平均直径、平均長さの測定
法は次の通りである。
The methods for measuring these characteristic values and the average diameter and average length of the fibers are as follows.

(1)厚み 試料をその厚み方向に20 Kg/C1m
2の第7表 〕3 荷重で押圧した状態で測定する。
(1) Thickness: 20 Kg/C1m in the thickness direction of the sample
Table 7 of 2] 3 Measured under pressure.

(J工SC−,220,2) (2)密度 試料100m×100mの面積(S)ニ2
0に9の荷! (W)を加えた時の試料の厚さTとした
時に、式: W/(sxT)<9/am3)で与えられ
る値で表わす。
(J Engineering SC-, 220, 2) (2) Density Area of sample 100m x 100m (S) 2
0 to 9 loads! When T is the thickness of the sample when (W) is added, it is expressed as a value given by the formula: W/(sxT)<9/am3).

(3)引張り強度幅10 tramの試料の両端を引張
りそれが切断するときの外力の値 (Kり)で表示する。
(3) Tensile strength width: 10 It is expressed as the value of the external force (K) when pulling both ends of a tram sample and causing it to break.

(4)吸液速度 試料を垂直にしてその下部を比重1.
2乙の希硫酸液に浸漬し、希硫 酸が1分間に上昇する距m<mm7 分)で表わす。
(4) Liquid absorption rate Hold the sample vertically and place the lower part with a specific gravity of 1.
It is expressed as the distance m < mm (7 minutes) that the dilute sulfuric acid rises per minute when immersed in a dilute sulfuric acid solution.

(5)保液性 試料に水を飽和するまで含ませ、その試
料を吊下げて氷がしたたり落ち なくなった時の水を含む試料の重さ W2と、水を含まないときの試料の 重さWlを遍定し、/(7(7X (W2−Wl)/W
2の値(%)で表わす。
(5) Liquid retention property The weight W2 of the sample containing water when the sample is soaked with water until it is saturated and the sample is hung until ice no longer drips, and the weight W2 of the sample when it does not contain water. Determine Wl, /(7(7X (W2-Wl)/W
Expressed as a value of 2 (%).

(6)電気抵抗 窓面積5drn2を有する試験電槽(
J工S Cr5t3)の電極間に複数電極間に/Aの直
流電流を流して 電圧降下v2を測定し、また試料 をセットせず希硫酸を入れた場合 の電圧降下v1を測定し、(V2− Vl)S/n を計算して電気抵抗 (Ω・dm2/枚)とする。
(6) Electrical resistance Test cell with a window area of 5drn2 (
The voltage drop v2 was measured by passing a DC current of /A between multiple electrodes of J Engineering S Cr5t3), and the voltage drop v1 was measured when dilute sulfuric acid was added without setting the sample. - Calculate S/n (Vl) and use it as the electrical resistance (Ω・dm2/piece).

(7)耐酸性 重量Wl (ダラム)の乾燥試料をg。(7) Acid resistance Weight Wl (Durham) dry sample in g.

1.2Q。1.2Q.

°Cに保った比重慄井写−〇″C)の希硫酸液中に5時
間浸漬し、その後試 料を洗浄・乾燥してその重量W2(グ ラム)を測定し、10O×(Wl−W2)/W1で計算
した重量減(%)で表わす。
The sample was immersed in a dilute sulfuric acid solution kept at °C for 5 hours, then washed and dried, and its weight W2 (grams) was measured. Expressed as weight loss (%) calculated by /W1.

この値が小さいほど耐酸性が良好で ある。The smaller this value, the better the acid resistance. be.

(8)平均直径 原料試料の3ケ所から、それぞれ約/
g−の繊維をとり、更にそれぞ れから、20本の繊維をとり、顕微 鏡によってその直径を測定し、こ れらの平均値をとることにより計 算される。
(8) Average diameter Approximately /
It is calculated by taking 20 fibers from each fiber, measuring their diameters using a microscope, and taking the average value of these.

(9)平均長さ 上記平均直径の測定で取り出した60
本の繊維の長さを測定しその 平均値で表わす。
(9) Average length 60 taken out from the above average diameter measurement
The length of the book fibers is measured and expressed as the average value.

比較のため、平均直径//μ、平均長さ2Qmm。For comparison, the average diameter is //μ and the average length is 2Qmm.

Cガラス組成のガラス繊維70% (重量%、以下同じ
)と、平均直径3.5μ、平均長さ/、2mm。
C glass composition of 70% glass fiber (weight %, same hereinafter), average diameter 3.5 μ, average length /, 2 mm.

Aガラス組成のガラス繊維ゲ5%と、平均直径0ざμ、
平均長さ9mm、Aガラス組成のガラス繊維qO%と、
リンク〜S%からなる隔離板(比較例/)、ならびに平
均直径79μ、平均長さ−2(7m m +オ  −表 Cガラス組成のガラス繊維IO%と、平均直径2Sμ、
平均長さ77mm、Aガラス組成のガラス繊維70%と
、平均直径O0gμ、平均長さ9mm。
A glass fiber composition of 5% and an average diameter of 0 μm,
Average length 9 mm, glass fiber qO% of A glass composition,
A separator consisting of a link ~S% (comparative example/) and an average diameter of 79μ, an average length of −2 (7 mm + O) and a glass fiber IO% of the glass composition of Table C and an average diameter of 2Sμ,
Average length 77mm, 70% glass fiber of A glass composition, average diameter O0gμ, average length 9mm.

Aガラス組成のガラス繊維、20%とからなる隔離板(
比較例、2)を実施例と同様に抄造法により製造し、そ
の特性をオコ表に示している。表かられかるように本発
明の隔離板は比較例のものに比較してすぐれた耐酸性を
有している。また隔離板を構成するガラス繊維はその直
径が犬であるほどその製造コストは安くなるが、本発明
の隔離板を構成するガラス繊維は従来の隔離板のガラス
繊維よりもその直径が大であり、従って本発明の隔離板
は従来に比して安価に製造することができる。
A separator consisting of 20% glass fiber of glass composition (
Comparative Example 2) was produced by the papermaking method in the same manner as in the Examples, and its properties are shown in the table below. As can be seen from the table, the separator of the present invention has superior acid resistance compared to that of the comparative example. Furthermore, the larger the diameter of the glass fibers that make up the separator, the cheaper the manufacturing cost, but the glass fibers that make up the separator of the present invention have a larger diameter than the glass fibers of conventional separators. Therefore, the separator of the present invention can be manufactured at a lower cost than in the past.

Claims (2)

【特許請求の範囲】[Claims] (1)  73〜30μの平均直径と3〜100mmの
平均長さとを有する大径のガラス繊維と、3μ以下の平
均直径を有する小径のガラス繊維とからなり、大径ガラ
ス繊維は、それと小径ガラス繊維との合計量に対して、
?0〜go重量%になるように含まれ、大径ガラス繊維
および小径ガラス繊維はともに含アルカリ珪酸塩ガラス
の組成を有しており、これらは湿式抄造により特別な接
着剤なしに相互に接着され絡み合っている蓄電池用隔離
板。
(1) Consists of large-diameter glass fibers having an average diameter of 73 to 30μ and average length of 3 to 100mm, and small-diameter glass fibers having an average diameter of 3μ or less; With respect to the total amount of fiber,
? The large-diameter glass fiber and the small-diameter glass fiber both have the composition of alkali-containing silicate glass, and are bonded to each other without a special adhesive by wet paper forming. Intertwined battery separators.
(2)前記大径ガラス繊維および小径ガラス繊維がそれ
ぞれ/j〜2Sμ、およびO1乙〜75μの平均直径を
有し、大径ガラス繊維がそれと小径ガラス繊維との合計
量に対してl1oep−ざ0重量%になるように含まれ
ている特許請求の範囲オ/項記載の蓄電池用隔離板。
(2) The large-diameter glass fiber and the small-diameter glass fiber have an average diameter of /j~2Sμ and O1~75μ, respectively, and the large-diameter glass fiber has an average diameter of l1oep-Zμ with respect to the total amount of it and the small-diameter glass fiber. A separator for a storage battery according to claim 5, wherein the separator is contained in an amount of 0% by weight.
JP58010059A 1983-01-25 1983-01-25 Separator for storage battery Pending JPS59138058A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58010059A JPS59138058A (en) 1983-01-25 1983-01-25 Separator for storage battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58010059A JPS59138058A (en) 1983-01-25 1983-01-25 Separator for storage battery

Publications (1)

Publication Number Publication Date
JPS59138058A true JPS59138058A (en) 1984-08-08

Family

ID=11739811

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58010059A Pending JPS59138058A (en) 1983-01-25 1983-01-25 Separator for storage battery

Country Status (1)

Country Link
JP (1) JPS59138058A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0191569A2 (en) * 1985-02-11 1986-08-20 Saft America Inc. Battery cell with woven glass fiber separator
JPS62195850A (en) * 1986-02-20 1987-08-28 Nippon Sheet Glass Co Ltd Separator for storage battery
JPS62252064A (en) * 1986-04-23 1987-11-02 Nippon Sheet Glass Co Ltd Separator for storage battery
JPS62281263A (en) * 1986-05-30 1987-12-07 Nippon Sheet Glass Co Ltd Separator for storage battery
JPS63266762A (en) * 1987-04-24 1988-11-02 Shin Kobe Electric Mach Co Ltd Retainer for sealed lead-acid battery
JP2003308819A (en) * 2002-04-17 2003-10-31 Nippon Muki Co Ltd Separator for sealed lead storage battery, its manufacturing method, and sealed lead storage battery
JP2016513861A (en) * 2013-03-07 2016-05-16 ダラミック エルエルシー Oxidation-resistant laminated separator

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445755A (en) * 1977-09-19 1979-04-11 Yuasa Battery Co Ltd Separator for storage battery

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5445755A (en) * 1977-09-19 1979-04-11 Yuasa Battery Co Ltd Separator for storage battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0191569A2 (en) * 1985-02-11 1986-08-20 Saft America Inc. Battery cell with woven glass fiber separator
EP0191569A3 (en) * 1985-02-11 1987-01-14 Saft America Inc. Battery cell with woven glass fiber separator
JPS62195850A (en) * 1986-02-20 1987-08-28 Nippon Sheet Glass Co Ltd Separator for storage battery
JPS62252064A (en) * 1986-04-23 1987-11-02 Nippon Sheet Glass Co Ltd Separator for storage battery
JPH0555975B2 (en) * 1986-04-23 1993-08-18 Nippon Sheet Glass Co Ltd
JPS62281263A (en) * 1986-05-30 1987-12-07 Nippon Sheet Glass Co Ltd Separator for storage battery
JPH0555977B2 (en) * 1986-05-30 1993-08-18 Nippon Sheet Glass Co Ltd
JPS63266762A (en) * 1987-04-24 1988-11-02 Shin Kobe Electric Mach Co Ltd Retainer for sealed lead-acid battery
JP2003308819A (en) * 2002-04-17 2003-10-31 Nippon Muki Co Ltd Separator for sealed lead storage battery, its manufacturing method, and sealed lead storage battery
JP2016513861A (en) * 2013-03-07 2016-05-16 ダラミック エルエルシー Oxidation-resistant laminated separator
JP2020115490A (en) * 2013-03-07 2020-07-30 ダラミック エルエルシー Oxidation resistant laminated separator

Similar Documents

Publication Publication Date Title
JPS59138058A (en) Separator for storage battery
US10879510B2 (en) Battery containing acid resistant nonwoven fiber mat with biosoluble microfibers
JP2546240B2 (en) Storage battery separator and manufacturing method thereof
JP2762446B2 (en) Storage battery separator
JP2632716B2 (en) Sealed lead-acid battery
JPS60221954A (en) Separator for storage battery
JP3705164B2 (en) Sealed lead-acid battery separator and sealed lead-acid battery
JPS5971255A (en) Separator for storage battery
JPS60119073A (en) Separator for storage battery
JPH0732007B2 (en) Storage battery separator
EP0044868B1 (en) Separator with improved tensile strength for starved electrolyte lead/acid battery
JPH0266850A (en) Sealed lead-acid battery
JPH06325744A (en) Separator for storage battery
JPH01294352A (en) Sealed lead-acid battery
JPH0381265B2 (en)
JPH0555977B2 (en)
JPS62195850A (en) Separator for storage battery
JPH0555974B2 (en)
JPS61269852A (en) Separator for storage battery
JPH0427672B2 (en)
JPS62252065A (en) Separator for storage battery
JPH02181362A (en) Separator for sealed lead-storage battery and manufacture thereof
JPH0756793B2 (en) Storage battery separator
JPH0381264B2 (en)
EP0025060A1 (en) Separator for starved electrolyte lead/acid battery.