JP2544488B2 - 3'-hydroxybenzoxazinorifamycin derivative - Google Patents

3'-hydroxybenzoxazinorifamycin derivative

Info

Publication number
JP2544488B2
JP2544488B2 JP1239677A JP23967789A JP2544488B2 JP 2544488 B2 JP2544488 B2 JP 2544488B2 JP 1239677 A JP1239677 A JP 1239677A JP 23967789 A JP23967789 A JP 23967789A JP 2544488 B2 JP2544488 B2 JP 2544488B2
Authority
JP
Japan
Prior art keywords
group
formula
carbon atoms
represented
derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1239677A
Other languages
Japanese (ja)
Other versions
JPH037291A (en
Inventor
毅彦 山根
卓士 橋爪
勝治 山下
和典 細江
文幸 久世
清 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanegafuchi Chemical Industry Co Ltd
Original Assignee
Kanegafuchi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanegafuchi Chemical Industry Co Ltd filed Critical Kanegafuchi Chemical Industry Co Ltd
Priority to JP1239677A priority Critical patent/JP2544488B2/en
Publication of JPH037291A publication Critical patent/JPH037291A/en
Application granted granted Critical
Publication of JP2544488B2 publication Critical patent/JP2544488B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Nitrogen And Oxygen Or Sulfur-Condensed Heterocyclic Ring Systems (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、新規なリファマイシン誘導体またはその塩
およびその製造法、並びにこれを有効成分とする抗菌剤
に関する。更に詳しくは、本発明は式(I): {式中、Rは水素原子またはアセチル基を表わし、Aは [式中、R1は炭素数4〜8のアルキル基、炭素数2〜8
のアルケニル基、炭素数2〜8のアルキニル基、炭素数
1〜4のアミノアルキル基、炭素数2〜6のモノアルキ
ルアミノアルキル基、炭素数3〜8のジアルキルアミノ
アルキル基、炭素数2〜8のアルコキシアルキル基、炭
素数3〜8のアルコキシアルキルオキシアルキル基、炭
素数2〜6のチオアルコキシアルキル基、炭素数3〜8
のジアルコキシアルキル基、炭素数1〜6のハロゲン化
アルキル基、炭素数1〜6のアシル基、式: −(CH2−CONHR2(式中、aは0〜3の整数を表わ
し、更にR2は水素原子または炭素数1〜6のアルキル基
を表わす)で示される基、炭素数1〜3のアルコキシ基
または: で示される基を表わす]で示される基、式: (式中、bは2〜6の整数を表わす)で示される基また
は式: (式中、nは2〜6の整数を表わし、更にR3はアミノ
基、炭素数1〜6のモノアルキルアミノ基、炭素数2〜
10のジアルキルアミノ基または炭素数1〜6のアシルア
ミノ基を表わす)で示される基を表わす}で示される新
規なリファマイシン誘導体またはその塩およびその製造
法、並びに前記リファマイシン誘導体またはその薬理学
的に許容される塩を有効成分とする抗菌剤に関する。
TECHNICAL FIELD The present invention relates to a novel rifamycin derivative or a salt thereof, a method for producing the same, and an antibacterial agent containing the same as an active ingredient. More specifically, the invention is of formula (I): {In the formula, R represents a hydrogen atom or an acetyl group, and A is [In the formula, R 1 is an alkyl group having 4 to 8 carbon atoms, and 2 to 8 carbon atoms.
Alkenyl group, C2-C8 alkynyl group, C1-C4 aminoalkyl group, C2-C6 monoalkylaminoalkyl group, C3-C8 dialkylaminoalkyl group, C2-C2 8 alkoxyalkyl group, C3-8 alkoxyalkyloxyalkyl group, C2-6 thioalkoxyalkyl group, C3-8
Dialkoxy alkyl group, a halogenated alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, the formula: - (CH 2) a -CONHR 2 ( wherein, a represents an integer of 0 to 3 Further, R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), an alkoxy group having 1 to 3 carbon atoms, or: Represents a group represented by], a group represented by the formula: (In the formula, b represents an integer of 2 to 6) or a group represented by the formula: (In the formula, n represents an integer of 2 to 6, and R 3 is an amino group, a monoalkylamino group having 1 to 6 carbon atoms, or 2 to 2 carbon atoms.
Represents a dialkylamino group having 10 carbon atoms or an acylamino group having 1 to 6 carbon atoms), a novel rifamycin derivative or a salt thereof, a process for producing the same, and the rifamycin derivative or a pharmacological agent thereof. The present invention relates to an antibacterial agent containing an acceptable salt as an active ingredient.

[従来の技術・発明が解決しようとする課題] 本発明によるリファマイシン誘導体は文献などに記載
のない新規化合物である。
[Prior Art / Problems to be Solved by the Invention] The rifamycin derivative according to the present invention is a novel compound not described in the literature.

本発明者らは、新しい優れた抗菌剤を見出すために式
(I): (式中、RおよびAは前記と同じ)で示される新規リフ
ァマイシン誘導体を合成し、その抗菌力および薬理学的
特性を調べた。その結果、式(I)で示される新規リフ
ァマイシン誘導体が強い抗菌作用を有し、優れた薬理学
的特性を有することを見出し本発明に到達した。
In order to find new and superior antibacterial agents, we have to formula (I): A novel rifamycin derivative represented by the formula (wherein R and A are the same as above) was synthesized, and its antibacterial activity and pharmacological properties were investigated. As a result, they have found that the novel rifamycin derivative represented by the formula (I) has a strong antibacterial action and excellent pharmacological properties, and thus reached the present invention.

[課題を解決するための手段] 本発明は、式(I): {式中、Rは水素原子またはアセチル基を表わし、Aは [式中、R1は炭素数4〜8のアルキル基、炭素数2〜8
のアルケニル基、炭素数2〜8のアルキニル基、炭素数
1〜4のアミノアルキル基、炭素数2〜6のモノアルキ
ルアミノアルキル基、炭素数3〜8のジアルキルアミノ
アルキル基、炭素数2〜8のアルコキシアルキル基、炭
素数3〜8のアルコキシアルキルオキシアルキル基、炭
素数2〜6のチオアルコキシアルキル基、炭素数3〜8
のジアルコキシアルキル基、炭素数1〜6のハロゲン化
アルキル基、炭素数1〜6のアシル基、式: −(CH2−CONHR2(式中、aは0〜3の整数を表わ
し、更にR2は水素原子または炭素数1〜6のアルキル基
を表わす)で示される基、炭素数1〜3のアルコキシ基
または で示される基を表わす]で示される基、式: (式中、bは2〜6の整数を表わす)で示される基また
は式: (式中、nは2〜6の整数を表わし、更にR3はアミノ
基、炭素数1〜6のモノアルキルアミノ基、炭素数2〜
10のジアルキルアミノ基または炭素数1〜6のアシルア
ミノ基を表わす)で示される基を表わす}で示される新
規リファマイシン誘導体またはその塩、式(II): (式中、Rは水素原子またはアセチル基を表わす)で示
されるリファマイシン誘導体に、式AH(式中、Aは前記
と同じ)で示されるアミンを反応させることを特徴とす
る前記式(I)で示されるリファマイシン誘導体または
その塩の製造法および前記式(I)で示されるリファマ
イシン誘導体またはその薬理学的に許容される塩を有効
成分とする抗菌剤に関する。
Means for Solving the Problems The present invention provides a compound of formula (I): {In the formula, R represents a hydrogen atom or an acetyl group, and A is [In the formula, R 1 is an alkyl group having 4 to 8 carbon atoms, and 2 to 8 carbon atoms.
Alkenyl group, C2-C8 alkynyl group, C1-C4 aminoalkyl group, C2-C6 monoalkylaminoalkyl group, C3-C8 dialkylaminoalkyl group, C2-C2 8 alkoxyalkyl group, C3-8 alkoxyalkyloxyalkyl group, C2-6 thioalkoxyalkyl group, C3-8
Dialkoxy alkyl group, a halogenated alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, the formula: - (CH 2) a -CONHR 2 ( wherein, a represents an integer of 0 to 3 Further, R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), an alkoxy group having 1 to 3 carbon atoms, or Represents a group represented by], a group represented by the formula: (In the formula, b represents an integer of 2 to 6) or a group represented by the formula: (In the formula, n represents an integer of 2 to 6, and R 3 is an amino group, a monoalkylamino group having 1 to 6 carbon atoms, or 2 to 2 carbon atoms.
Represents a dialkylamino group having 10 carbon atoms or an acylamino group having 1 to 6 carbon atoms), and a novel rifamycin derivative represented by the formula (II): A rifamycin derivative represented by the formula (wherein R represents a hydrogen atom or an acetyl group) is reacted with an amine represented by the formula AH (in the formula, A is the same as above). And a method for producing a rifamycin derivative represented by the formula (1) or a salt thereof, and an antibacterial agent containing the rifamycin derivative represented by the formula (I) or a pharmaceutically acceptable salt thereof as an active ingredient.

本発明による前記式(I)で示される新規リファマイ
シン誘導体は、多くの有機溶剤、クロロホルムなどのハ
ロゲン化炭化水素類;エチルアルコールなどのアルコー
ル類;酢酸エチルなどのエステル類;ベンゼンなどの芳
香族炭化水素類;テトラヒドロフランなどのエーテル類
に可溶である。
The novel rifamycin derivative represented by the above formula (I) according to the present invention includes many organic solvents, halogenated hydrocarbons such as chloroform; alcohols such as ethyl alcohol; esters such as ethyl acetate; aromatic compounds such as benzene. Hydrocarbons; soluble in ethers such as tetrahydrofuran.

本発明による式(I)で示される新規リファマイシン
誘導体の置換基Aの具体例をあげれば次のものがある。
即ち、Aが (R1は前記と同じ)で表わされる基としては、 などをあげることができる。
Specific examples of the substituent A of the novel rifamycin derivative represented by the formula (I) according to the present invention are as follows.
That is, A The group represented by (R 1 is the same as above) includes And so on.

Aが式 (式中、bは前記と同じ)で示される基としては などがあげられる。A is the formula (Wherein b is the same as above) And so on.

Aが式 (式中、nおよびR3は前記と同じ)で表わされる基とし
ては などをあげることができる。
A is the formula (In the formula, n and R 3 are the same as above) And so on.

本発明による前記式(I)で示される新規リファマイ
シン誘導体は塩基または酸のいずれとも塩を形成するこ
とが可能である。塩を形成するために用いることができ
る塩基または酸としては、式(I)で示されるリファマ
イシン誘導体と造塩可能な任意のものを選ぶことができ
る。具体的な塩基との塩と例としては(1)金属塩、と
くにアルカリ金属、アルカリ土類金属との塩、(2)ア
ンモニウム塩、(3)アミン塩、とくにメチルアミン、
エチルアミン、ジエチルアミン、トリエチルアミン、ピ
ロリジン、モルホリン、ヘキサメチレンイミンなどとの
塩がある。また、酸との塩の例としては(1)硫酸、塩
酸などの鉱酸との塩、(2)p−トルエンスルホン酸、
トリフルオロ酢酸、酢酸などの有機塩との塩がある。
The novel rifamycin derivative represented by the above formula (I) according to the present invention can form a salt with either a base or an acid. As the base or acid that can be used for forming a salt, any base or acid that can form a salt with the rifamycin derivative represented by the formula (I) can be selected. Specific salts with bases, for example, (1) metal salts, especially salts with alkali metals and alkaline earth metals, (2) ammonium salts, (3) amine salts, especially methylamine,
There are salts with ethylamine, diethylamine, triethylamine, pyrrolidine, morpholine, hexamethyleneimine and the like. Examples of salts with acids include (1) salts with mineral acids such as sulfuric acid and hydrochloric acid, (2) p-toluenesulfonic acid,
There are salts with organic salts such as trifluoroacetic acid and acetic acid.

本発明による前記式(I)で示される新規リファマイ
シン誘導体の製造は次のようにして行なうことができ
る。
The novel rifamycin derivative represented by the above formula (I) according to the present invention can be produced as follows.

すなわち、(A)米国特許第4,690,919号明細書記載
の方法により合成した式(II): で示される3′−ヒドロキシベンゾキサジノリファマイ
シンをメタノール、エタノール、テトラヒドロフラン、
N,N−ジメチルホルムアミド、ジメチルスルホキシドな
どの有機溶媒に溶解し、−20℃から溶媒の沸点までの温
度で、式AH(式中、Aは前記と同じ)で示されるアミン
を塩酸などの酸共存下あるいは非共存下に、二酸化マン
ガンなどの酸化剤存在下あるいは非存在下に1時間ない
し1カ月間反応させることによって得ることが出来る。
That is, (A) Formula (II) synthesized by the method described in US Pat. No. 4,690,919: 3'-hydroxybenzoxazinorifamycin represented by
It is dissolved in an organic solvent such as N, N-dimethylformamide or dimethylsulfoxide, and the amine represented by the formula AH (in the formula, A is the same as above) is dissolved in an acid such as hydrochloric acid at a temperature from -20 ° C to the boiling point of the solvent. It can be obtained by reacting in the presence or absence of an oxidizing agent such as manganese dioxide in the presence or absence of coexistence with or without coexistence for 1 hour to 1 month.

なお、式(II)で示されるリファマイシン誘導体は1
モルに対して式AHで示されるアミンを0.5〜10モル、な
かでも1〜3モル用いれば良い結果が得られる。
The rifamycin derivative represented by the formula (II) is 1
Good results are obtained by using 0.5 to 10 moles, especially 1 to 3 moles, of the amine represented by the formula AH with respect to moles.

反応溶媒としては、メタノール、エタノール、イソプ
ロピルアルコール、テトラヒドロフラン、ピリジン、ア
セトン、酢酸エチル、クロロホルム、N,N−ジメチルホ
ルムアミド、N,N−ジメチルアセトアミド、ヘキサメチ
ルホスホリツクトリアミド、N−メチル−2−ピロリド
ン、ジメチルスルホキシドなどを用いることが出来る
が、ピリジン、N,N−ジメチルホルムアミド、N,N−ジメ
チルアテトアミド、ヘキサメチルホスホリツクトリアミ
ド、ジメチルスルホキシドなどを用いればより良い結果
が得られる。反応温度としては−20℃から溶媒の沸点ま
での温度を選ぶことが出来るが、−5℃〜50℃で反応さ
せればより良い結果が得られる。反応時間は1時間から
1カ月間程度であるが、最適の反応時間は反応に用いる
アミンの種類と量、酸化剤の有無、種類および量、反応
温度などの反応条件により異なるので、反応の進行を薄
層クロマトグラフィーなどで追跡して決めるべきであ
る。酸化剤共存下に行なる反応において、用いることが
出来る酸化剤としては、空気、酸素、二酸化マンガン、
二酸化鉛、酸化銀、フェリシアン化カリウム、過酸化水
素などがあるが、二酸化マンガン、酸化銀、フェリシア
ン化カリウムなどを選べばより良い結果が得られる。
As the reaction solvent, methanol, ethanol, isopropyl alcohol, tetrahydrofuran, pyridine, acetone, ethyl acetate, chloroform, N, N-dimethylformamide, N, N-dimethylacetamide, hexamethylphosphoric triamide, N-methyl-2- Pyrrolidone, dimethylsulfoxide and the like can be used, but better results can be obtained by using pyridine, N, N-dimethylformamide, N, N-dimethylacetamide, hexamethylphosphoric triamide, dimethylsulfoxide and the like. As the reaction temperature, a temperature from -20 ° C to the boiling point of the solvent can be selected, but better results can be obtained by carrying out the reaction at -5 ° C to 50 ° C. The reaction time is about 1 hour to 1 month, but the optimum reaction time depends on the reaction conditions such as the type and amount of amine used in the reaction, the presence or absence of oxidizing agent, the type and amount, and the reaction temperature. Should be tracked and determined by thin layer chromatography. In the reaction carried out in the presence of an oxidant, as an oxidant that can be used, air, oxygen, manganese dioxide,
There are lead dioxide, silver oxide, potassium ferricyanide, hydrogen peroxide, etc., but better results can be obtained by selecting manganese dioxide, silver oxide, potassium ferricyanide, etc.

(B)前記式(I)で示されるリファマイシン誘導体
は、(A)で述べた方法で用いた式(II)で示されるリ
ファマイシン誘導体に代えて、下記の式(III): (式中、Rは水素原子またはアセチル基を表わし、Xは
ハロゲン原子、炭素数1〜6のアルコキシ基またはニト
ロ基を表わす)で示されるリファマイシン誘導体を用い
て(A)で述べた方法に従って合成することが出来る。
反応溶媒、反応温度など合成条件は合成法(A)に記載
したものと同様でよい。
(B) The rifamycin derivative represented by the above formula (I) has the following formula (III) instead of the rifamycin derivative represented by the formula (II) used in the method described in (A): (Wherein R represents a hydrogen atom or an acetyl group, X represents a halogen atom, an alkoxy group having 1 to 6 carbon atoms or a nitro group), and a rifamycin derivative represented by the following method (A) is used. Can be synthesized.
The synthesis conditions such as reaction solvent and reaction temperature may be the same as those described in the synthesis method (A).

本合成法の出発原料となる式(III)で示されるリフ
ァマイシン誘導体は、リファマイシンSと式: (式中、Xは前記と同じ)で示される化合物とを米国特
許第4,690,919号明細書の記載の3′−ヒドロキシベン
ゾキサジノリファマイシンの合成法に従って反応させる
ことにより得ることが出来る。
The rifamycin derivative represented by the formula (III), which is the starting material of this synthetic method, is the rifamycin S and the formula: It can be obtained by reacting a compound represented by the formula (wherein X is the same as above) according to the method for synthesizing 3'-hydroxybenzoxazinorifamycin described in U.S. Pat. No. 4,690,919.

Rが水素である式(I)で表わされるリファマイシン
誘導体は、Rがアセチル基である式(I)で表わされる
リファマイシン誘導体を酸または塩基を用いて加水分解
することによっても得ることが出来る。加水分解に用い
ることが出来る酸としては、硫酸、塩酸等の鉱酸、p−
トルエンスルホン酸、トリフルオロ酢酸等の有機酸があ
る。同様に用いることが出来る塩基としては水酸化ナト
リウム、水酸化カリウム等のアルカリ金属水酸化物;水
酸化カルシウム、水酸化バリウム等のアルカリ土類金属
水酸化物;1,5−ジアザビシクロ[4.3.0]ノン−5−エ
ン、1,8−ジアザビシクロ[5.4.0]ウンデク−7−エン
等の有機塩基がある。水酸化ナトリウム、水酸化カリウ
ム等のアルカリ金属水酸化物を用い、含水メタノール、
含水ピリジン等の溶媒を用い、室温で反応を行なえば良
い結果が得られる。
The rifamycin derivative represented by the formula (I) in which R is hydrogen can also be obtained by hydrolyzing the rifamycin derivative represented by the formula (I) in which R is an acetyl group with an acid or a base. . Acids that can be used for hydrolysis include mineral acids such as sulfuric acid and hydrochloric acid, p-
There are organic acids such as toluenesulfonic acid and trifluoroacetic acid. Examples of bases that can be used in the same manner include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide; alkaline earth metal hydroxides such as calcium hydroxide and barium hydroxide; 1,5-diazabicyclo [4.3.0]. ] There are organic bases such as non-5-ene, 1,8-diazabicyclo [5.4.0] undec-7-ene. Using alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, hydrous methanol,
Good results can be obtained by carrying out the reaction at room temperature using a solvent such as hydrous pyridine.

本発明による式(I)で示されるリファマイシン誘導
体は暗紫色を呈する固体であるが、反応生成物からの分
離精製は比較的容易である。即ち過剰量の反応に用いた
前記式AH(式中、Aは前記と同じ)で示されるアミン、
反応溶媒などを除去し、得られた粗生成物を晶析、カラ
ムクロマトグラフィーなどにより精製し、目的とするリ
ファマイシン誘導体を得ることが出来る。
The rifamycin derivative represented by the formula (I) according to the present invention is a dark purple solid, but it is relatively easy to separate and purify it from the reaction product. That is, the amine represented by the above formula AH (in the formula, A is the same as above) used in the excess amount of the reaction,
The reaction solvent and the like are removed, and the obtained crude product is purified by crystallization, column chromatography and the like to obtain the intended rifamycin derivative.

式(I)で示される新規リファマイシン誘導体は、ア
スコルビン酸、ハイドロサルファイトナトリウムなどの
還元剤で還元することにより、式(IV): (式中、RおよびAは前記と同じ)で示されるリファマ
イシン誘導体に変換することも可能である。式(IV)で
示されるリファマイシン誘導体も新規であり、強い抗菌
作用を有する。
The novel rifamycin derivative represented by the formula (I) is reduced by a reducing agent such as ascorbic acid or sodium hydrosulfite to give the formula (IV): It is also possible to convert to a rifamycin derivative represented by the formula (wherein R and A are the same as above). The rifamycin derivative represented by the formula (IV) is also novel and has a strong antibacterial action.

本発明による新規リファマイシン誘導体の代表例を第
1表に示す。第1表において、赤外吸収スペクトルの測
定は臭化カリウム錠剤法で行なった。薄膜クロマトグラ
フィーはメルク社製シリカゲル60F254、薄層クロマトグ
ラフィー用プレート(20cm×20cm)を用いて実施した。
核磁気共鳴スペクトルの測定はテトラメチルシランを内
部標準として、試料の重水素化クロロホルム溶液を用い
て行なった。
Representative examples of novel rifamycin derivatives according to the present invention are shown in Table 1. In Table 1, the infrared absorption spectrum was measured by the potassium bromide tablet method. Thin-layer chromatography was carried out using silica gel 60F 254 manufactured by Merck & Co., Inc. using a thin-layer chromatography plate (20 cm × 20 cm).
The nuclear magnetic resonance spectrum was measured using tetramethylsilane as an internal standard and a deuterated chloroform solution of the sample.

本発明によるリファマイシン誘導体は、グラム陽性菌
および抗酸菌に対して強い抗菌力を示す。
The rifamycin derivative according to the present invention exhibits strong antibacterial activity against Gram-positive bacteria and mycobacteria.

本発明による新規リファマイシン誘導体の抗菌力を日
本化学療法学会標準法[日本化学療法学会誌、第29巻、
76頁(1981)]に準じた方法により調べた。代表例を第
2表に示す。第2表から明らかなように本発明による新
規リファマイシン誘導体はグラム陽性菌および抗酸菌に
対して強い抗菌力を示すことが分る。このことは、本発
明による新規リファマイシン誘導体は、グラム陽性菌、
たとえばブドウ球菌、レンサ球菌、バチルスなどに有効
であり、抗菌酸たとえば結核菌、非定型抗酸菌、らい菌
などに有効な抗菌剤であることを示すものである。な
お、第2表中の誘導体番号は第1表の誘導体番号と対応
するものである。
The antibacterial activity of the novel rifamycin derivative according to the present invention is determined by the standard method of the Japanese Society of Chemotherapy [Journal of the Japanese Society of Chemotherapy, Vol.
Page 76 (1981)]. Table 2 shows a representative example. As is clear from Table 2, the novel rifamycin derivative according to the present invention has a strong antibacterial activity against Gram-positive bacteria and acid-fast bacteria. This means that the novel rifamycin derivative according to the present invention is
For example, it is effective against Staphylococcus, Streptococcus, Bacillus, etc., and is an effective antibacterial agent against antibacterial acid such as tubercle bacillus, atypical acid-fast bacterium, and Lepra bacillus. The derivative numbers in Table 2 correspond to the derivative numbers in Table 1.

本発明による式(I)で示されるリファマイシン誘導
体は結核菌に対しても強い抗菌作用を示す。結核菌ミコ
バクテリウム・ツベルキュロシス菌(Mycobacterium tu
berculosis H37Rv株)をデュボス(Dubos)培地で培養
し、1mg/mlの菌液を作製し、その10倍希釈液0.05mlを2m
lの10%牛血清添加キルヒナー(Kirchner)液体培地に
接種した。判定は常法に従い被検誘導体を含有した倍数
希釈系列を作製し、37℃、4週間培養後、肉眼的に菌の
発育が完全に阻止されている濃度を最小発育阻止濃度と
した。結果を第3表および第4表に示す。ここに示した
結果から、本発明による新規なリファマイシン誘導体は
結核菌に対して強い抗菌力を示すことが分かる。なお第
3表および第4表中の誘導体番号は第1表の誘導体番号
と対応するものである。
The rifamycin derivative represented by the formula (I) according to the present invention exhibits a strong antibacterial action against Mycobacterium tuberculosis. Mycobacterium tuberculosis bacterium (Mycobacterium tu
berculosis H 37 Rv strain) is cultivated in Dubos medium to prepare a 1 mg / ml bacterial solution, and a 10-fold diluted solution of 0.05 ml is added to 2 m.
l of 10% bovine serum was inoculated into Kirchner liquid medium. For determination, a multiple dilution series containing the test derivative was prepared according to a conventional method, and after culturing at 37 ° C. for 4 weeks, the concentration at which the growth of the bacteria was completely macroscopically inhibited was defined as the minimum inhibitory concentration. The results are shown in Tables 3 and 4. From the results shown here, it can be seen that the novel rifamycin derivative according to the present invention exhibits a strong antibacterial activity against Mycobacterium tuberculosis. The derivative numbers in Tables 3 and 4 correspond to the derivative numbers in Table 1.

本発明による式(I)で示されるリファマイシン誘導
体は経口投与により、実験感染症に対して優れた治療効
果を示す。一例として、マウスを用いる結核症の治療効
果について示す。
The rifamycin derivative represented by the formula (I) according to the present invention shows an excellent therapeutic effect against experimental infectious diseases by oral administration. As an example, the therapeutic effect of tuberculosis using mice will be shown.

ddy雄性マウス5週令のものを1群20匹使用した。デ
ュボス(Dubos)培地で培養した結核菌ミコバクテリウ
ム・ツベルキュロシス菌(Mycobacterium tuberculosis
H37Rv株)濃厚菌液0.2ml(生菌単位数2.4×108)をマ
ウス尾静脈に接種感染させた。感染翌日から、各被検誘
導体を0.2%ツイーン(Tween)80を含む2.5%アラビア
ゴム懸濁液とし、0.2mlずつ、すなわち200μg/マウス経
口投与した。対照には被検化合物を含まない0.2%ツイ
ーン80を含む2.5%アラビアゴム溶液を投与した。治療
は1日1回、週6日実施し、治療効果を感染したマウス
の延命により評価した。
One group of 20 ddy male mice of 5 weeks old was used. Mycobacterium tuberculosis Mycobacterium tuberculosis cultivated in Dubos medium
H 37 Rv strain) 0.2 ml of concentrated bacterial solution (the number of viable cells was 2.4 × 10 8 ) was inoculated into the tail vein of the mouse for infection. From the day after infection, each test derivative was made into a 2.5% gum arabic suspension containing 0.2% Tween 80, and 0.2 ml each, that is, 200 μg / mouse was orally administered. As a control, a 2.5% gum arabic solution containing 0.2% Tween 80 containing no test compound was administered. The treatment was carried out once a day for 6 days a week, and the therapeutic effect was evaluated by prolonging the life of infected mice.

その結果を第1図に示す。図中、aは感染させた時点
を示し、bは処置開始時点を示す。この結果より本発明
による誘導体2による治療では治療38日まで死亡例は認
められず、誘導体2は対照薬としたリファンピシン、米
国特許第4,690,919号明細書に記載された下記の構造を
有する誘導体Aに比べきわめて優れた治療効果を示すこ
とが分る。また、米国特許第4,690,919号明細書に記載
された下記の構造を有する誘導体Bおよびヨーロッパ特
許出願第0253340号明細書に記載された下記の構造を有
する誘導体Cは治療試験においてその治療効果は、リフ
ァンピシンには及ばないことが判明している。
The results are shown in FIG. In the figure, a indicates the time of infection, and b indicates the start of treatment. From these results, no deaths were observed by the treatment with the derivative 2 according to the present invention until 38 days after the treatment, and the derivative 2 was rifampicin as a control drug and the derivative A having the following structure described in US Pat. No. 4,690,919. It can be seen that it shows an extremely superior therapeutic effect. In addition, derivative B having the following structure described in US Pat. No. 4,690,919 and derivative C having the following structure described in European Patent Application No. 0253340 have rifampicin therapeutic effects in therapeutic tests. It has been proved that it is not equal to.

更に、1群10匹のddY雄性マウスを用い、前記と全く
同様な系で結核菌感染治療試験を行ない、試験開始40日
後の生存率を求めた。結果を第5表および第6表に示
す。
Further, a test for treating Mycobacterium tuberculosis infection was carried out using 10 ddY male mice per group in the same system as above, and the survival rate 40 days after the start of the test was determined. The results are shown in Tables 5 and 6.

第5表に示した実験では、薬物を投与しない対照群が
30%の生存率であり、対照薬のリファンピシン投与群が
80%の生存率であるのに対し、本発明による誘導体2、
3、5、10、12または29を投与した群では死亡例は認め
られなかった。
In the experiment shown in Table 5, the control group without drug administration was
The survival rate of 30%, the control drug rifampicin administration group
Derivative 2, according to the present invention, while having a survival rate of 80%,
No deaths were observed in the groups administered with 3, 5, 10, 12 or 29.

第6表に示した実験では、薬物を投与しない対照群は
総て死亡し、対照薬のリファンピシン投与群が40%の生
存率であるのに対し、本発明による誘導体1、4、6ま
たは11を投与した群では死亡例は認められなかった。こ
の結果は本発明によるリファマイシン誘導体が結核に対
して極めて有利な薬剤であることを示すものである。
In the experiments shown in Table 6, all the control groups that did not receive the drug died, whereas the control group that received rifampicin had a survival rate of 40%, while the derivative 1, 4, 6 or 11 according to the present invention had a survival rate. No deaths were observed in the group treated with. This result shows that the rifamycin derivative according to the present invention is an extremely advantageous drug against tuberculosis.

本発明による第1表に示された新規リファマイシン誘
導体を1000mg/kgの割合でマウスに経口投与したが、何
らの毒性を示さず、本発明による新規リファマイシン誘
導体は低毒性であることが分った。
The novel rifamycin derivative according to the present invention shown in Table 1 was orally administered to mice at a rate of 1000 mg / kg, but it did not show any toxicity, indicating that the novel rifamycin derivative according to the present invention has low toxicity. It was.

本発明による新規リファマイシン誘導体を有効成分と
して含有する抗菌剤の製剤としては、経口、経腸または
非経口的投与による製剤のいずれをも選ぶことが出来
る。具体的製剤としては、錠剤、カプセル剤、細粒剤、
シロップ剤、坐薬、軟膏剤などをあげることが出来る。
本発明による抗菌剤の製剤の担体としては、経口、経
腸、その他非経口的に投与するために適した有機または
無機の固体または液体の、通常は不活性な薬学的担体材
料が用いられる。具体的には、例えば結晶性セルロー
ス、ゼラチン、乳糖、澱粉、ステアリン酸マグネシウ
ム、タルク、植物性および動物性脂肪および油、ガム、
ポリアルキレングリコールがある。製剤中の担体に対す
る本発明の抗菌剤の割合は0.2〜100%の間で変化させる
ことが出来る。また、本発明による抗菌剤は、これと両
立性の他の抗菌剤その他の医薬を含むことが出来る。こ
の場合、本発明による抗菌剤が、その製剤中の主成分で
なくても良いことはいうまでもない。
As the preparation of the antibacterial agent containing the novel rifamycin derivative according to the present invention as an active ingredient, any preparation prepared by oral, enteral or parenteral administration can be selected. Specific formulations include tablets, capsules, fine granules,
Examples include syrups, suppositories, ointments and the like.
As carriers for the formulation of the antibacterial agents according to the invention, organic or inorganic solid or liquid, usually inert pharmaceutical carrier materials suitable for oral, enteral or other parenteral administration are used. Specifically, for example, crystalline cellulose, gelatin, lactose, starch, magnesium stearate, talc, vegetable and animal fats and oils, gums,
There are polyalkylene glycols. The ratio of the antibacterial agent of the present invention to the carrier in the preparation can be varied from 0.2 to 100%. In addition, the antibacterial agent according to the present invention may include other antibacterial agents and other drugs compatible with the antibacterial agent. In this case, it goes without saying that the antibacterial agent according to the present invention does not have to be the main component in the preparation.

本発明による抗菌剤は、一般に所望の作用が副作用を
伴うことなく達成される投与量で投与される。その具体
的な値は医師の判断で決定されるべきであるが、一般に
成人1人当り10mg〜10g、好ましくは20mg〜5g程度で投
与されるのが普通であろう。なお、本発明の抗菌剤は有
効成分として1mg〜5g、好ましくは3mg〜1gの単位の薬学
的製剤として投与することが出来る。
The antibacterial agent according to the invention is generally administered in a dose such that the desired effect is achieved without side effects. Although the specific value should be determined by the judgment of a doctor, it is usual to administer 10 mg to 10 g, preferably about 20 mg to 5 g per adult. The antibacterial agent of the present invention can be administered as an active ingredient as a pharmaceutical preparation in a unit of 1 mg to 5 g, preferably 3 mg to 1 g.

[実施例] 以下に本発明の理解を一層明確なものとするため実施
例をあげて説明するが、これらは例示に過ぎず、本発明
を限定するものではない。なお、実施例中の誘導体の番
号は第1表中の誘導体番号と対応するものである。
[Examples] Examples will be described below to make the understanding of the present invention clearer, but these are merely examples and do not limit the present invention. The derivative numbers in the examples correspond to the derivative numbers in Table 1.

実施例1 (誘導体1の合成) 米国特許第4,690,919号明細書記載の方法に従って合
成した3′−ヒドロキシベンゾキサジノリファマイシン
8.0gを80mlのジメチルスルホキシド(以下、DMSOとい
う)に溶解し、1−n−ブチルピペラジン2.85gを20ml
のDMSOに溶かした溶液を加えた。この溶液を二酸化マン
ガン9.0gを加え室温で40時間攪拌反応させた。反応液に
酢酸エチル600mlを加え、希釈後、二酸化マンガンを濾
別除去した。濾液を飽和食塩水で3回洗浄し、無水硫酸
ナトリウムで脱水後、溶媒を減圧留去した。残渣をワコ
ーゲル C−200を用いるシリカゲルカラムクロマトグ
ラフィーで2回[展開溶媒:1回目クロロホルム−アセト
ン(4:1)、2回目クロロホルム−メタノール(50:
1)]精製後、酢酸エチル−n−ヘキサンの系より晶析
し、目的とする誘導体1を3.58g得た。
Example 1 (Synthesis of Derivative 1) According to the method described in US Pat. No. 4,690,919.
3'-hydroxybenzoxazinorifamycin made
8.0 g of 80 ml of dimethyl sulfoxide (hereinafter referred to as DMSO
20 ml of 1-n-butylpiperazine 2.85 g.
Solution in DMSO was added. Manganese dioxide solution
Gun (9.0 g) was added and the reaction was allowed to stir at room temperature for 40 hours. In the reaction solution
Add 600 ml of ethyl acetate, dilute, and filter the manganese dioxide.
Separately removed. The filtrate was washed 3 times with saturated saline, and anhydrous sulfuric acid was used.
After dehydration with sodium, the solvent was distilled off under reduced pressure. Waco the residue
Gel Silica gel column chromatography using C-200
2 times with Raffy [Developing solvent: 1st chloroform-aceto
(4: 1), second time chloroform-methanol (50:
1)] After purification, crystallization from ethyl acetate-n-hexane system
Then, 3.58 g of the desired derivative 1 was obtained.

実施例2 (誘導体2の合成) 3′−ヒドロキシベンゾキサジノリファマイシン3.0g
をDMSO 30mlに溶解し、1−イソブチルピペラジン1.05g
を加え、次いで二酸化マンガン3.0gを加え、室温で25時
間攪拌反応させた。反応液に酢酸エチルを加え二酸化マ
ンガンを濾別後、水、飽和食塩水で順次洗浄し、無水硫
酸ナトリウムで一晩乾燥させ、溶媒を減圧留去した。残
渣をワコーゲル C−200を用いるシリカゲルカラムク
ロマトグラフィー[展開溶媒:クロロホルム−アセトン
(8:2)]で精製した後、酢酸エチル−n−ヘキサンの
系より晶析し誘導体2を0.82g得た。
Example 2 (Synthesis of Derivative 2) 3'-hydroxybenzoxazinorifamycin 3.0 g
Dissolved in 30 ml of DMSO, 1.05 g of 1-isobutylpiperazine
Was added, and then 3.0 g of manganese dioxide was added at room temperature for 2 hours.
The reaction was carried out with stirring. Add ethyl acetate to the reaction mixture and
After filtering off the gangan, wash with water and saturated saline solution in that order.
It was dried over sodium acidate overnight and the solvent was evaporated under reduced pressure. The rest
Wako gel with residue Silica gel column using C-200
Romanography [Developing solvent: chloroform-acetone
(8: 2)] and then purified with ethyl acetate-n-hexane.
Crystallization from the system yielded 0.82 g of derivative 2.

実施例3 (誘導体3の合成) 3′−ヒドロキシベンゾキサジノリファマイシン6.0g
をDMSO 60mlに溶解し、1−シクロプロピルメチルピペ
ラジン2.13gを加え、次いで二酸化マンガンを6.0g加え
室温で30時間攪拌反応させた。反応液を実施例2と同様
に処理した後に残渣をワコーゲル C−200を用いるシ
リカゲルカラムクロマトグラフィー[展開溶媒:クロロ
ホルム−アセトン(8:2)]で3回精製し誘導体3を4.0
g得た。
Example 3 (Synthesis of Derivative 3) 6.0 g of 3'-hydroxybenzoxazinorifamycin
Is dissolved in 60 ml of DMSO and 1-cyclopropylmethylpipet
Add 2.13 g of azine, then add 6.0 g of manganese dioxide
The reaction was allowed to stir at room temperature for 30 hours. The reaction solution was the same as in Example 2.
After processing into the residue the Wako gel Using C-200
Rica gel column chromatography [Developing solvent: chloro
Form-acetone (8: 2)] and purified derivative 3 to 4.0
g got.

実施例4 (誘導体4の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
をDMSO 45mlに溶解し、1−sec−ブチルピペラジン1.56
gを加え、次いで二酸化マンガン4.5gを加え室温で22時
間攪拌反応させた。反応液を実施例2と同様に処理後、
残渣をワコーゲル C−200を用いるシリカゲルカラム
クロマトグラフィーで2回[展開溶媒:1回目クロロホル
ム−アセトン(8:2)、2回目クロロホルム−メタノー
ル(98:2)]精製し目的とする誘導体4を3.9g得た。
Example 4 (Synthesis of Derivative 4) 4.5 g of 3'-hydroxybenzoxazinorifamycin
Was dissolved in 45 ml of DMSO and 1-sec-butylpiperazine 1.56
g, and then 4.5 g of manganese dioxide at room temperature at 22:00
The reaction was carried out with stirring. After treating the reaction mixture as in Example 2,
Wako gel residue Silica gel column using C-200
Chromatography twice [developing solvent: first chloroform
Mu-acetone (8: 2), 2nd chloroform-methanone
(98: 2)] to obtain 3.9 g of the desired derivative 4.

実施例5 (誘導体5の合成) 3′−ヒドロキシベンゾキサジノリファマイシン8.0g
をDMSO 80mlに溶解し、1−イソアミルピペラジン3.13g
を20mlのDMSOに溶解した溶液を加えた。この溶液に二酸
化マンガン9.0gを加え室温で40時間攪拌反応させた。反
応液を実施例1と同様に処理した後、残渣をワコーゲル
C−200を用いるシリカゲルカラムクロマトグラフィ
ーで3回[展開溶媒:1回目クロロホルム−アセトン(5:
1)、2回目クロロホルム−酢酸エチル(2:1)、3回目
クロロホルム−酢酸エチル−メタノール(15:10:1)]
精製後、クロロホルム−n−ヘキサンの系より晶析し、
誘導体5を3.38g得た。
Example 5 (Synthesis of Derivative 5) 8.0 g of 3'-hydroxybenzoxazinorifamycin
Was dissolved in 80 ml of DMSO and 3.13 g of 1-isoamylpiperazine
Was added to a solution of 20 ml in DMSO. Diacid in this solution
9.0 g of manganese iodide was added and the reaction was allowed to stir at room temperature for 40 hours. Anti
After treating the reaction solution in the same manner as in Example 1, the residue was treated with Wako gel.
Silica gel column chromatography using C-200
3 times [Developing solvent: 1st time chloroform-acetone (5:
1) Second time, chloroform-ethyl acetate (2: 1), third time
Chloroform-ethyl acetate-methanol (15: 10: 1)]
After purification, crystallized from a system of chloroform-n-hexane,
3.38 g of derivative 5 was obtained.

実施例6 (誘導体6の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.38
gをDMSO 30mlに溶解し、1−tert−ブチルピペラジン3.
10gと二酸化マンガン1.0gを加え室温で21時間攪拌反応
させた。反応液にクロロホルムを加え希釈し不溶物を濾
別し、濾液を水飽和食塩水で順次洗浄し、無水硫酸ナト
リウムで脱水後、クロロホルムを減圧下に留去した。残
渣をワコーゲル C−200を用いるシリカゲルカラムク
ロマトグラフィー[展開溶媒:クロロホルム−メタノー
ル(98:2)]で精製し、次いで酢酸エチル−n−ヘキサ
ンより晶析し、目的とする誘導体6を2.97g得た。
Example 6 (Synthesis of Derivative 6) 3'-Hydroxybenzoxazinorifamycin 4.38
g in DMSO 30 ml and 1-tert-butylpiperazine 3.
Add 10 g and 1.0 g manganese dioxide and stir for 21 hours at room temperature
Let Chloroform was added to the reaction solution to dilute it, and insoluble materials were filtered off.
Separately, the filtrate is washed successively with saturated aqueous sodium chloride solution and dried over anhydrous sodium sulfate.
After dehydration with lithium, chloroform was distilled off under reduced pressure. The rest
Wako gel with residue Silica gel column using C-200
Romanography [Developing solvent: Chloroform-Methano]
(98: 2)] and then ethyl acetate-n-hexa
To give 2.97 g of the desired derivative 6.

実施例7 (誘導体7の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.38
gをDMSO 30mlに溶解し、1−シクロブチルピペラジン3.
06gと二酸化マンガン1.0gを加え室温で17時間攪拌反応
させた。反応液にクロロホルムを加え希釈し不溶物を濾
別し、濾液を水、飽和食塩水で順次洗浄し、無水硫酸ナ
トリウムで脱水後、クロロホルムを減圧下に留去した。
残渣をワコーゲル C−200を用いるシリカゲルカラム
クロマトグラフィー[展開溶媒:クロロホルム−メタノ
ール(99:1)]で精製し、次いでクロロホルム−n−ヘ
キサンより晶析し、目的とする誘導体7を2.77g得た。
Example 7 (Synthesis of Derivative 7) 3'-hydroxybenzoxazinorifamycin 4.38
g in 30 ml DMSO and 1-cyclobutylpiperazine 3.
Add 06g and 1.0g manganese dioxide and stir at room temperature for 17 hours.
Let Chloroform was added to the reaction solution to dilute it, and insoluble materials were filtered off.
Separately, the filtrate is washed successively with water and saturated brine, and dried over anhydrous sodium sulfate.
After dehydration with thorium, chloroform was distilled off under reduced pressure.
Wako gel residue Silica gel column using C-200
Chromatography [Developing solvent: chloroform-methano]
(99: 1)] and then chloroform-n-hexane.
Crystallization from xane gave 2.77 g of the desired derivative 7.

実施例8 (誘導体8の合成) 3′−ヒドロキシベンゾキサジノリファマイシン2.6g
を20mlのDMSOに溶解し1−ネオペンチルピペラジン2.04
gを加え次いで二酸化マンガン0.5gを加え室温で67時間
攪拌反応させた。反応液にクロロホルムを加え二酸化マ
ンガンをろ別後、水、飽和食塩水で順次洗浄し無水硫酸
ナトリウムで一晩乾燥させ溶媒を減圧留去した。残渣を
ワコーゲル C−200を用いるシリカゲルカラムクロマ
トグラフィーで5回[展開溶媒:1、2および5回目クロ
ロホルム:メタノール(99:1)、3回目クロロホルム:
メタノール(199:1)、4回目酢酸エチル:n−ヘキサン
(1:1)]精製し目的とする誘導体8を0.44g得た。
Example 8 (Synthesis of derivative 8) 2.6 g of 3'-hydroxybenzoxazinorifamycin
Was dissolved in 20 ml of DMSO and 1-neopentylpiperazine 2.04
g, then 0.5 g of manganese dioxide, and room temperature for 67 hours
The reaction was carried out with stirring. Add chloroform to the reaction mixture and
After removing the cancer, it is washed with water and saturated saline solution in that order and sulfuric acid is removed.
It was dried over sodium overnight and the solvent was distilled off under reduced pressure. The residue
Wako gel Silica gel column chroma using C-200
5 times by tography [Developing solvent: 1, 2 and 5 times
Loform: methanol (99: 1), 3rd chloroform:
Methanol (199: 1), 4th time Ethyl acetate: n-hexane
(1: 1)] Purification yielded 0.44 g of the desired derivative 8.

実施例9 (誘導体9の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
をDMSO45mlに溶解し、1−シクロペンチルピペラジン1.
7gを加え、次いで二酸化マンガンを4.5g加え室温で19時
間攪拌反応させた。反応液にクロロホルムを加え二酸化
マンガンを濾別後、水、飽和食塩水で洗浄し、無水硫酸
ナトリウムで一晩乾燥させて溶媒を減圧留去した。残渣
をワコーゲル C−200を用いるシリカゲルカラムクロ
マトグラフィー[展開溶媒:クロロホルム−メタノール
(98:2)]で精製後、エタノールより晶析し誘導体9を
2.8g得た。
Example 9 (Synthesis of Derivative 9) 4.5 g of 3'-hydroxybenzoxazinorifamycin
Is dissolved in 45 ml of DMSO and 1-cyclopentylpiperazine 1.
Add 7g, then add 4.5g manganese dioxide at room temperature 19:00
The reaction was carried out with stirring. Add chloroform to the reaction mixture
After manganese is filtered off, it is washed with water and saturated saline, and anhydrous sulfuric acid is used.
It was dried over sodium overnight and the solvent was distilled off under reduced pressure. Residue
Wako gel Silica gel column chromatography using C-200
Matography [Developing solvent: chloroform-methanol
(98: 2)] followed by crystallization from ethanol to give derivative 9
2.8g was obtained.

実施例10 (誘導体10の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
をDMSO40mlに溶解し、1−アリルピペラジン1.39gを加
え、次いで二酸化マンガンを4.5g加え室温で25時間攪拌
反応させた。反応液を実施例8と同様に処理した後、残
渣をワコーゲル C−200を用いるシリカゲルカラムク
ロマトグラフィー[展開溶媒:クロロホルム−メタノー
ル(95:5)]で4回精製し誘導体10を2.7g得た。
Example 10 (Synthesis of Derivative 10) 3'-hydroxybenzoxazinorifamycin 4.5 g
Was dissolved in 40 ml of DMSO, and 1.39 g of 1-allylpiperazine was added.
Then, add 4.5 g of manganese dioxide and stir at room temperature for 25 hours
It was made to react. The reaction mixture was treated as in Example 8 and the residue
Wako gel with residue Silica gel column using C-200
Romanography [Developing solvent: Chloroform-Methano]
(95: 5)] four times to obtain derivative 10 (2.7 g).

実施例11 (誘導体11の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
を45mlのDMSOに溶解し1−(3−ブテニル)ピペラジン
2.0gを加え次いで二酸化マンガン4.5gを加え室温で23.5
時間攪拌反応させた。反応液にクロロホルムを加え二酸
化マンガンをろ別後、水、飽和食塩水で順次洗浄し無水
硫酸ナトリウムで一晩乾燥させ溶媒を減圧留去した。残
渣をワコーゲル C−200を用いるシリカゲルカラムク
ロマトグラフィーで2回[展開溶媒:1回目クロロホルム
−アセトン(8:2)、2回目クロロホルム−メタノール
(99:1)]精製後クロロホルム−n−ヘキサンの系より
晶析し目的とする誘導体11を3.36g得た。
Example 11 (Synthesis of Derivative 11) 3'-hydroxybenzoxazinorifamycin 4.5 g
Was dissolved in 45 ml DMSO and 1- (3-butenyl) piperazine was added.
Add 2.0g and then add 4.5g manganese dioxide at room temperature for 23.5
The reaction was allowed to stir for an hour. Add chloroform to the reaction mixture
After removing the manganese oxide by filtration, it was washed with water and saturated saline solution in that order and dried.
It was dried over sodium sulfate overnight and the solvent was distilled off under reduced pressure. The rest
Wako gel with residue Silica gel column using C-200
2 times by chromatography [Developing solvent: 1st time chloroform
-Acetone (8: 2), second time chloroform-methanol
(99: 1)] After purification from a system of chloroform-n-hexane
Crystallization gave 3.36 g of the desired derivative 11.

実施例12 (誘導体12の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
をDMSO 45mlに溶解し、1−(3−メチル−2−ブテニ
ル)ピペラジン1.69gを加え、次いで二酸化マンガンを
4.5gを加え室温で28時間攪拌反応させた。反応液を実施
例2と同様に処理後、残渣をワコーゲル C−200を用
いるシリカゲルカラムクロマトグラフィーで2回[展開
溶媒:1回目クロロホルム−メタノール(98:2)、2回目
酢酸エチル]精製し、更に酢酸エチル−n−ヘキサンの
系により晶析し誘導体12を1.8g得た。
Example 12 (Synthesis of Derivative 12) 4.5 g of 3'-hydroxybenzoxazinorifamycin
Was dissolved in 45 ml of DMSO and 1- (3-methyl-2-buten
Lu) piperazine 1.69g, then manganese dioxide
4.5 g was added and the reaction was allowed to stir at room temperature for 28 hours. Conduct the reaction solution
After treatment as in Example 2, the residue is Wakogel Use C-200
2 times with silica gel column chromatography
Solvent: 1st time chloroform-methanol (98: 2), 2nd time
Ethyl acetate] purification, and further ethyl acetate-n-hexane
Crystallization by the system yielded 1.8 g of derivative 12.

実施例13 (誘導体13の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
を45mlのDMSOに溶解し1−(2−プロピニル)ピペラジ
ン2.7gを加え次いで二酸化マンガン4.5gを加え室温で12
3.5時間攪拌反応させた。反応液にクロロホルムを加え
二酸化マンガンをろ別後、水、飽和食塩水で順次洗浄し
無水硫酸ナトリウムで一晩乾燥させ溶媒を減圧留去し
た。残渣をワコーゲル C−200を用いるシリカゲルカ
ラムクロマトグラフィーで4回[展開溶媒:1〜3回目ク
ロロホルム−メタノール(98:2)、4回目クロロホルム
−アセトン(9:1)]精製後クロロホルム−n−ヘキサ
ンの系より晶析し目的とする誘導体13を1.57g得た。
Example 13 (Synthesis of Derivative 13) 3'-hydroxybenzoxazinorifamycin 4.5 g
Was dissolved in 45 ml DMSO and 1- (2-propynyl) piperazi
2.7g of manganese dioxide and then 4.5g of manganese dioxide at room temperature.
The reaction was allowed to stir for 3.5 hours. Add chloroform to the reaction mixture
After manganese dioxide was filtered off, it was washed successively with water and saturated saline.
Dry overnight with anhydrous sodium sulfate and evaporate the solvent under reduced pressure.
Was. Wako gel residue Silica gel filter using C-200
Lamb chromatography 4 times [Developing solvent: 1st to 3rd
Loloform-methanol (98: 2), 4th time chloroform
-Acetone (9: 1)] After purification Chloroform-n-hexa
The target derivative 13 was crystallized from the above system to obtain 1.57 g of the desired derivative 13.

実施例14 (誘導体14の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
を45mlのDMSOに溶解し1−(2−フルオロエチル)ピペ
ラジン1.0gを加え次いで二酸化マンガン4.5gを加え室温
で96時間攪拌反応させた。反応液にクロロホルムを加え
二酸化マンガンをろ別後、水、飽和食塩水で順次洗浄し
無水硫酸ナトリウムで一晩乾燥させ溶媒を減圧留去し
た。残渣をワコーゲル C−200を用いるシリカゲルカ
ラムクロマトグラフィーで4回[展開溶媒:1〜3回目ク
ロロホルム−メタノール(98:2)、4回目クロロホルム
−アセトン(9:1)]精製後クロロホルム−n−ヘキサ
ンの系より晶析し目的とする誘導体14を0.48g得た。
Example 14 (Synthesis of Derivative 14) 4.5 g of 3'-hydroxybenzoxazinorifamycin
Was dissolved in 45 ml DMSO and 1- (2-fluoroethyl) pipet was added.
Add 1.0 g of ladin and then add 4.5 g of manganese dioxide at room temperature
The mixture was reacted with stirring for 96 hours. Add chloroform to the reaction mixture
After manganese dioxide was filtered off, it was washed successively with water and saturated saline.
Dry overnight with anhydrous sodium sulfate and evaporate the solvent under reduced pressure.
Was. Wako gel residue Silica gel filter using C-200
Lamb chromatography 4 times [Developing solvent: 1st to 3rd
Loloform-methanol (98: 2), 4th time chloroform
-Acetone (9: 1)] After purification Chloroform-n-hexa
The target derivative 14 was crystallized from the above system to obtain 0.48 g of the desired derivative 14.

実施例15 (誘導体15の合成) 3′−ヒドロキシベンゾキサジノリファマイシン2.0g
をDMSO 20mlに溶解し、1−(3−クロロプロピル)ピ
ペラジンジハイドロクロライドヘミハイドレート1.22g
を加え、次いでトリエチルアミン2.8mlと二酸化マンガ
ン2.0gを加え室温で56時間攪拌反応させた。反応液を実
施例9と同様に処理した後、残渣をワコーゲル C−20
0を用いるシリカゲルカラムクロマトグラフィー[展開
溶媒:クロロホルム−アセトン(8:2)]で3回精製
後、酢酸エチルより晶析し誘導体15を0.6g得た。
Example 15 (Synthesis of Derivative 15) 3'-hydroxybenzoxazinorifamycin 2.0 g
Is dissolved in 20 ml of DMSO and 1- (3-chloropropyl) pi
Perazine dihydrochloride hemihydrate 1.22g
Then, add 2.8 ml of triethylamine and manga dioxide.
2.0 g of benzene was added and the reaction was allowed to stir at room temperature for 56 hours. Reaction liquid
After treating in the same manner as in Example 9, the residue is Wako gel. C-20
Silica gel column chromatography using 0 [development
Solvent: Chloroform-Acetone (8: 2)] three times purification
Then, it was crystallized from ethyl acetate to obtain 0.6 g of derivative 15.

実施例16 (誘導体16の合成) 3′−ヒドロキシベンゾキサジノリファマイシン2.7g
を27mlのDMSOに溶解し1−(2−ジメチルアミノエチ
ル)ピペラジン1.0gを加え次いで二酸化マンガン2.7gを
加え室温で122時間攪拌反応させた。反応液にクロロホ
ルムを加え二酸化マンガンをろ別後、水、飽和食塩水で
順次洗浄し無水硫酸ナトリウムで一晩乾燥させ溶媒を減
圧留去した。残渣をワコーゲル C−200を用いるシリ
カゲルカラムクロマトグラフィーで4回[展開溶媒:ク
ロロホルム−メタノール(9:1)]精製し目的とする誘
導体16を0.57g得た。
Example 16 (Synthesis of Derivative 16) 3'-hydroxybenzoxazinorifamycin 2.7 g
Was dissolved in 27 ml of DMSO to dissolve 1- (2-dimethylaminoethyl).
Lu) 1.0 g of piperazine is added, and then 2.7 g of manganese dioxide is added.
The reaction was stirred at room temperature for 122 hours. Chloropho in the reaction solution
Rumm was added and manganese dioxide was filtered off, then washed with water and saturated saline.
Wash sequentially and dry with anhydrous sodium sulfate overnight to reduce the solvent.
It was distilled off. Wako gel residue Siri using C-200
4 times by Kagel column chromatography [Developing solvent: black
Loloform-methanol (9: 1)]
0.57 g of conductor 16 was obtained.

実施例17 (誘導体17の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
を45mlのDMSOに溶解し、1−(2−ジエチルアミノエチ
ル)ピペラジン2.0gを加え、次いで二酸化マンガン4.5g
を加え室温で27時間攪拌反応させた。反応液にメタノー
ルを加え二酸化マンガンをろ別後溶媒を減圧留去した。
残渣をワコーゲル C−200を用いるシリカゲルカラム
クロマトグラフィーで5回[展開溶媒:クロロホルム−
メタノール(95:5)]精製し目的とする誘導体17を0.62
g得た。
Example 17 (Synthesis of Derivative 17) 4.5 g of 3'-hydroxybenzoxazinorifamycin
Was dissolved in 45 ml DMSO and 1- (2-diethylaminoethyl) was added.
Le) Piperazine 2.0g, then manganese dioxide 4.5g
Was added and the reaction was allowed to stir at room temperature for 27 hours. Methanol in the reaction mixture
And manganese dioxide was filtered off and the solvent was distilled off under reduced pressure.
Wako gel residue Silica gel column using C-200
Chromatography 5 times [Developing solvent: chloroform-
Methanol (95: 5)] and refined the desired derivative 17 to 0.62
g got.

実施例18 (誘導体18の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
を45mlのDMSOに溶解し、1−(2−ピリミジル)ピペラ
ジンジハイドロクロライド2.6gを加え次いでトリエチル
アミン3.1mlを二酸化マンガン4.5gを加え室温で24時間
攪拌反応させた。反応液にクロロホルムを加え二酸化マ
ンガンをろ別後、水、飽和食塩水で順次洗浄し無水硫酸
ナトリウムで一晩乾燥させ溶媒を減圧留去した。残渣を
ワコーゲル C−200を用いるシリカゲルカラムクロマ
トグラフィーで3回[展開溶媒:クロロホルム−メタノ
ール(49:1)]精製後、クロロホルム−n−ヘキサンの
系より晶析し目的とする誘導体18を2.65g得た。
Example 18 (Synthesis of Derivative 18) 4.5 g of 3'-hydroxybenzoxazinorifamycin
Was dissolved in 45 ml DMSO and 1- (2-pyrimidyl) pipera
Add 2.6 g of gindihydrochloride and then triethyl
Manganese dioxide (4.5 g) was added to the amine (3.1 ml) at room temperature for 24 hours.
The reaction was carried out with stirring. Add chloroform to the reaction mixture and
After removing the cancer, it is washed with water and saturated saline solution in that order and sulfuric acid is removed.
It was dried over sodium overnight and the solvent was distilled off under reduced pressure. The residue
Wako gel Silica gel column chroma using C-200
3 times by tography [Developing solvent: chloroform-methano]
(49: 1)], after purification, chloroform-n-hexane
Crystallization from the system gave 2.65 g of the desired derivative 18.

実施例19 (誘導体19の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
をDMSO 45mlに溶解し、1−(2−メトキシエチル)ピ
ペラジン1.59gを加え、次いで二酸化マンガン4.5gを加
え室温で51時間攪拌反応させた。反応液を実施例2と同
様に処理後、残渣をワコーゲル C−200を用いるシリ
カゲルカラムクロマトグラフィー[展開溶媒:クロロホ
ルム−メタノール(98:2)]で2回精製後、クロロホル
ム−n−ヘキサンの系より晶析し、誘導体19を1.2g得
た。
Example 19 (Synthesis of Derivative 19) 3'-hydroxybenzoxazinorifamycin 4.5 g
Was dissolved in 45 ml of DMSO and 1- (2-methoxyethyl) pi
Add 1.59 g of perazine and then 4.5 g of manganese dioxide.
The reaction was allowed to stir at room temperature for 51 hours. The reaction solution was the same as in Example 2.
After processing, the residue is Wako gel Siri using C-200
Kagel column chromatography [Developing solvent: chloropho
Rum-methanol (98: 2)] and purified twice.
1.2 g of derivative 19 was obtained by crystallization from the system of m-n-hexane.
Was.

実施例20 (誘導体20の合成) 3′−ヒドロキシベンゾキサジノリファマイシン1.8g
をDMSO 18mlに溶解し、1−(2−エトキシエチル)ピ
ペラジン1.4gを加え、次いで二酸化マンガン1.8gを加
え、室温で120時間攪拌反応させた。反応液を実施例7
と同様に処理後、残渣をワコーゲル C−200を用いる
シリカゲルカラムクロマトグラフィー[展開溶媒:クロ
ロホルム−メタノール(98:2)]で2回精製後、酢酸エ
チル−n−ヘキサンの系より晶析し、誘導体20を0.5g得
た。
Example 20 (Synthesis of Derivative 20) 3'-hydroxybenzoxazinorifamycin 1.8 g
Was dissolved in 18 ml of DMSO and 1- (2-ethoxyethyl) pi
Add 1.4 g of perazine, then add 1.8 g of manganese dioxide.
Then, the mixture was reacted with stirring at room temperature for 120 hours. The reaction solution was used in Example 7.
After processing in the same manner as above, the residue is Wako gel Use C-200
Silica gel column chromatography [Developing solvent: black
The product was purified twice with [Rhoform-methanol (98: 2)] and then purified with ethyl acetate.
Crystallization from the chill-n-hexane system gave 0.5 g of derivative 20.
Was.

実施例21 (誘導体21の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
を45mlのDMSOに溶解し1−[(2−メトキシ)−2−エ
トキシエチル]ピペラジン2.1gを加え、次いで二酸化マ
ンガン4.5gを加え室温で28.5時間攪拌反応させた。反応
液にクロロホルムを加え二酸化マンガンをろ別後、水、
飽和食塩水で順次洗浄し無水硫酸ナトリウムで一晩乾燥
させ溶媒を減圧留去した。残渣をワコーゲル C−200
を用いるシリカゲルカラムクロマトグラフィーで2回
[展開溶媒:クロロホルム−メタノール(98:2)]精製
後クロロホルム−n−ヘキサンの系より晶析し目的とす
る誘導体21を0.72g得た。
Example 21 (Synthesis of derivative 21) 4.5 g of 3'-hydroxybenzoxazinorifamycin
Was dissolved in 45 ml of DMSO and 1-[(2-methoxy) -2-e
Toxiethyl] piperazine 2.1 g was added, followed by
4.5 g of Ngan was added and the reaction was allowed to stir at room temperature for 28.5 hours. reaction
Chloroform was added to the solution and manganese dioxide was filtered off, then water,
Wash sequentially with saturated saline solution and dry overnight with anhydrous sodium sulfate.
Then, the solvent was distilled off under reduced pressure. Wako gel residue C-200
Twice by silica gel column chromatography using
[Developing solvent: chloroform-methanol (98: 2)] Purification
After that, it was crystallized from the system of chloroform-n-hexane to obtain the target.
0.72 g of derivative 21 was obtained.

実施例22 (誘導体22の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
をDMSO 45mlに溶解し、1−(1,3−ジオキソラン−2−
イル)メチルピペラジン1.89gを加え、ついで二酸化マ
ンガン4.5gを加えて室温で26時間攪拌反応させた。反応
液を実施例9と同様に処理後、残渣をワコーゲル C−
200を用いるシリカゲルカラムクロマトグラフィー[展
開溶媒:クロロホルム−メタノール(98:2)]で2回精
製後、酢酸エチルより晶析し、誘導体22を2.7g得た。
Example 22 (Synthesis of derivative 22) 4.5 g of 3'-hydroxybenzoxazinorifamycin
Was dissolved in 45 ml of DMSO, and 1- (1,3-dioxolane-2-
I) Methylpiperazine 1.89 g was added, followed by
4.5 g of Ngan was added and the reaction was allowed to stir at room temperature for 26 hours. reaction
After treating the liquid in the same manner as in Example 9, the residue was treated with Wako gel. C-
Silica gel column chromatography using 200
Open solvent: chloroform-methanol (98: 2)] and refine twice.
After the production, it was crystallized from ethyl acetate to obtain 2.7 g of derivative 22.

実施例23 (誘導体23の合成) 3′−ヒドロキシベンゾキサジノリファマイシン1.8g
をDMSO 18mlに溶解し、1−ホルミルピペラジン0.5gを
加え、ついで二酸化マンガン1.8gを加えて室温で24時間
攪拌反応させた。反応液を実施例9と同様に処理した
後、残渣をワコーゲル C−200を用いるシリカゲルカ
ラムクロマトグラフィー[展開溶媒:クロロホルム−メ
タノール(98:2)]で5回精製後、クロロホルム−n−
ヘキサンの系より晶析し、誘導体23を0.9g得た。
Example 23 (Synthesis of Derivative 23) 1.8 g of 3'-hydroxybenzoxazinorifamycin
Was dissolved in 18 ml of DMSO and 0.5 g of 1-formylpiperazine was added.
Then, add 1.8 g of manganese dioxide and then at room temperature for 24 hours.
The reaction was carried out with stirring. The reaction mixture was treated as in Example 9.
After that, the residue is Wako gel Silica gel filter using C-200
Rum chromatography [Developing solvent: chloroform-me
Tanol (98: 2)] five times and then chloroform-n-
Crystallization from a hexane system yielded 0.9 g of derivative 23.

実施例24 (誘導体24の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
をDMSO 45mlに溶解し、1−アセチルピペラジン1.4gを
加え、ついで二酸化マンガン4.5gを加えて室温で22時間
攪拌反応させた。反応液を実施例9と同様に処理した
後、残渣をワコーゲル C−200を用いるシリカゲルカ
ラムクロマトグラフィー[展開溶媒:クロロホルム−メ
タノール(98:2)]で精製し、誘導体24を3.2g得た。
Example 24 (Synthesis of derivative 24) 4.5 g of 3'-hydroxybenzoxazinorifamycin
Is dissolved in 45 ml of DMSO and 1.4 g of 1-acetylpiperazine is added.
Then, add 4.5 g of manganese dioxide at room temperature for 22 hours.
The reaction was carried out with stirring. The reaction mixture was treated as in Example 9.
After that, the residue is Wako gel Silica gel filter using C-200
Rum chromatography [Developing solvent: chloroform-me
It was then purified with a tanol (98: 2)] to obtain 3.2 g of derivative 24.

実施例25 (誘導体25の合成) 3′−ヒドロキシベンゾキサジノリファマイシン3.0g
をDMSO 30mlに溶解し、1−シクロプロパンカルボニル
ピペラジン1.3gを加え、次いで二酸化マンガン2.0gを加
えて室温で22時間攪拌反応させた。反応液を実施例9と
同様に処理後、残渣をワコーゲル C−200を用いるシ
リカゲルカラムクロマトグラフィーで3回[展開溶媒:1
回目クロロホルム−メタノール(99:1)、2回目クロロ
ホルム−メタノール(98:2)、3回目クロロホルム−ア
セトン(95:5)]精製し、誘導体25を2.0g得た。
Example 25 (Synthesis of derivative 25) 3.0 g of 3'-hydroxybenzoxazinorifamycin
Is dissolved in 30 ml of DMSO and 1-cyclopropanecarbonyl is dissolved.
Add 1.3 g piperazine, then add 2.0 g manganese dioxide.
The reaction was allowed to stir at room temperature for 22 hours. The reaction solution was used as in Example 9.
After the same treatment, the residue is Wako gel Using C-200
3 times by Rika gel column chromatography [Developing solvent: 1
2nd chloroform-methanol (99: 1), 2nd chloro
Form-methanol (98: 2), 3rd time chloroform-a
Cetone (95: 5)] to obtain 2.0 g of derivative 25.

実施例26 (誘導体26の合成) 3′−ヒドロキシベンゾキサジノリファマイシン1.8g
をDMSO 18mlに溶解し、N−イソプロピル−1−ピペラ
ジンアセトアミド0.82gを加え、次いで二酸化マンガン
1.8gを加え室温で27時間攪拌反応させた。反応液を実施
例9と同様に処理した後、残渣をワコーゲル C−200
を用いるシリカゲルカラムクロマトグラフィー[展開溶
媒:クロロホルム−メタノール(98:2)]で精製後、酢
酸エチルより晶析し誘導体26を1.4g得た。
Example 26 (Synthesis of derivative 26) 1.8 g of 3'-hydroxybenzoxazinorifamycin
Was dissolved in 18 ml of DMSO and N-isopropyl-1-pipera was dissolved.
Add 0.82 g of ginacetamide, then manganese dioxide
1.8 g was added and the mixture was reacted with stirring at room temperature for 27 hours. Conduct the reaction solution
After treating as in Example 9, the residue is wacogel. C-200
Silica gel column chromatography [development
Medium: Chloroform-methanol (98: 2)] and then vinegar
Crystallization from ethyl acetate gave 1.4 g of derivative 26.

実施例27 (誘導体27の合成) 3′−ヒドロキシベンゾキサジノリファマイシン4.5g
を45mlのDMSOに溶解し、1−(2−エチルチオエチル)
ピペラジン1.9gを加え、次いで二酸化マンガン4.5gを加
え室温で23時間攪拌反応させた。反応液にクロロホルム
を加え二酸化マンガンをろ別後、水、飽和食塩水で順次
洗浄し無水硫酸ナトリウムで一晩乾燥させ、溶媒を減圧
留去した。残渣をワコーゲル C−200を用いるシリカ
ゲルカラムクロマトグラフィーで6回[展開溶媒:1〜5
回目クロロホルム−メタノール(98:2)、6回目クロロ
ホルム−アセトン(4:1)]精製し、目的とする誘導体2
7を3.00g得た。
Example 27 (Synthesis of Derivative 27) 4.5 g of 3'-hydroxybenzoxazinorifamycin
Dissolved in 45 ml DMSO and 1- (2-ethylthioethyl)
Add 1.9 g of piperazine, then add 4.5 g of manganese dioxide.
The reaction was allowed to stir at room temperature for 23 hours. Chloroform in the reaction solution
Was added and the manganese dioxide was filtered off, then sequentially with water and saturated saline.
Wash and dry overnight with anhydrous sodium sulfate, and depressurize the solvent.
Distilled off. Wako gel residue Silica using C-200
6 times by gel column chromatography [Developing solvent: 1-5
6th chloroform-methanol (98: 2), 6th chloro
Form-acetone (4: 1)] purified and the desired derivative 2
3.00 g of 7 was obtained.

実施例28 (誘導体28の合成) 3′−ヒドロキシベンゾキサジノリファマイシン2.63
gをDMSO 15mlに溶解し、1−メトキシピペラジン0.76g
と二酸化マンガン1.0gを加え室温で3日間攪拌反応させ
た。ここで用いた1−メトキシピペラジンは米国特許第
3,342,816号に記載された1−シクロプロピルピペラジ
ンの合成に準じて、N,N−ビス(β−クロロエチル)−
p−トルエンスルホンアミドとo−メチルヒドロキシル
アミンとから合成した。反応液にクロロホルムを加えて
希釈し、不溶物を濾別し、濾液を水、飽和食塩水で順次
洗浄し、クロロホルムを減圧下に留去した。残渣をワコ
ーゲル C−200を用いるシリカゲルカラムクロマトグ
ラフィーで2回[展開溶媒:1回目クロロホルム−アセト
ン(95:5)、2回目クロロホルム−メタノール(98:
2)]精製し、次いで酢酸エチル−n−ヘキサンより沈
澱させ、目的とする誘導体28を1.71g得た。
Example 28 (Synthesis of derivative 28) 3'-hydroxybenzoxazinorifamycin 2.63
g was dissolved in DMSO 15 ml and 1-methoxypiperazine 0.76 g
And 1.0 g of manganese dioxide were added, and the mixture was stirred and reacted at room temperature for 3 days.
Was. 1-Methoxypiperazine used here is a product of US Pat.
1-Cyclopropylpiperazide described in 3,342,816
N, N-bis (β-chloroethyl)-
p-toluenesulfonamide and o-methylhydroxyl
Synthesized from amines. Add chloroform to the reaction mixture
Dilute, remove insoluble matter by filtration, and filterate sequentially with water and saturated saline.
After washing, chloroform was distilled off under reduced pressure. Waco the residue
Gel Silica gel column chromatography using C-200
2 times with Raffy [Developing solvent: 1st chloroform-aceto
Second (95: 5), second time chloroform-methanol (98:
2)] Purify and then precipitate from ethyl acetate-n-hexane
After precipitation, 1.71 g of the desired derivative 28 was obtained.

実施例29 (誘導体29の合成) 3′−ヒドロキシベンゾキサジノリファマイシン1.8g
をDMSO 18mlに溶解し、M.E.Freedらの方法[ジャーナル
・オブ・オルガニック・ケミストリー(J.Org.Che
m.)、25巻、2108頁、1960年]に従って合成した1,4−
ジアザビシクロ(4,3,0)ノナン0.56gを加え、次いで二
酸化マンガン1.8gを加えて室温で52時間攪拌反応させ
た。
Example 29 (Synthesis of derivative 29) 1.8 g of 3'-hydroxybenzoxazinorifamycin
Is dissolved in 18 ml of DMSO, and the method of ME Freed et al. [Journal of Organic Chemistry (J.Org.Che
m.), 25, 2108, 1960], 1,4-
0.56 g of diazabicyclo (4,3,0) nonane was added, then 1.8 g of manganese dioxide was added, and the mixture was reacted with stirring at room temperature for 52 hours.

反応液を実施例2と同様に処理後、残渣をワコーゲル
C−200を用いるシリカゲルカラムクロマトグラフィ
ー[展開溶媒:クロロホルム−メタノール(98:2)]で
5回精製し、誘導体29を0.3g得た。
 After treating the reaction solution in the same manner as in Example 2, the residue was treated with Wako gel.
Silica gel column chromatography using C-200
-[Developing solvent: chloroform-methanol (98: 2)]
Purification 5 times yielded 0.3 g of derivative 29.

実施例30 (誘導体30の合成) 3′−ヒドロキシベンゾキサジノリファマイシン1.8g
をDMSO 18mlに溶解し、3−ジメチルアミノピロリジン
1.0gを加え、次いで二酸化マンガン1.8gを加えて室温で
140時間攪拌反応させた。反応液を実施例7と同様に処
理した後、残渣をワコーゲル C−200を用いるシリカ
ゲルカラムクロマトグラフィー[展開溶媒:クロロホル
ム−メタノール(98:2)]で4回精製し、誘導体30を0.
5g得た。
Example 30 (Synthesis of Derivative 30) 1.8 g of 3'-hydroxybenzoxazinorifamycin
Was dissolved in 18 ml of DMSO, and 3-dimethylaminopyrrolidine was dissolved.
1.0g, then 1.8g manganese dioxide at room temperature
The reaction was stirred for 140 hours. The reaction solution was treated in the same manner as in Example 7.
After processing, the residue is Wako gel Silica using C-200
Gel column chromatography [Developing solvent: chloroform
-Methanol (98: 2)] four times to give derivative 30
5g was obtained.

実施例31 (誘導体31の合成) 3′−ヒドロキシベンゾキサジノリファマイシン1.8g
をDMSO 18mlに溶解し、3−アセトアミドピロリジン0.5
6gを加え、次いで二酸化マンガン1.8gを加えて室温で47
時間攪拌反応させた。反応液を実施例9と同様に処理し
た後、残渣をワコーゲル C−200を用いるシリカゲル
カラムクロマトグラフィー[展開溶媒:クロロホルム−
メタノール(95:5)]で3回精製し、誘導体31を0.8g得
た。
Example 31 (Synthesis of Derivative 31) 3'-Hydroxybenzoxazinorifamycin 1.8 g
Was dissolved in DMSO (18 ml) and 3-acetamidopyrrolidine (0.5) was added.
Add 6 g, then add 1.8 g manganese dioxide at room temperature to 47
The reaction was allowed to stir for an hour. The reaction mixture was treated as in Example 9.
After that, the residue is Wako gel Silica gel using C-200
Column chromatography [Developing solvent: chloroform-
Methanol (95: 5)] three times to obtain 0.8 g of derivative 31
Was.

実施例32 (誘導体32の合成) エタノール90mlと水90mlの混合液を氷水冷却し水酸化
ナトリウム0.96gを溶解させた。混合液に実施例2に示
した方法に従って合成した誘導体21.05gを加え、室温で
2時間攪拌反応させた。反応液に冷水40mlを加え、1N−
HClで中和しクロロホルム40mlで3回抽出し溶媒を減圧
留去した。
Example 32 (Synthesis of derivative 32) A mixed solution of 90 ml of ethanol and 90 ml of water was cooled with ice water to dissolve 0.96 g of sodium hydroxide. 21.05 g of the derivative synthesized according to the method shown in Example 2 was added to the mixed solution, and the mixture was reacted with stirring at room temperature for 2 hours. 40 ml of cold water was added to the reaction solution, and 1N-
The mixture was neutralized with HCl, extracted three times with 40 ml of chloroform, and the solvent was distilled off under reduced pressure.

残渣をワコーゲル C−200を用いるシリカゲルカラ
ムクロマトグラフィー[展開溶媒:クロロホルム−メタ
ノール(99:1)]で3回精製し目的とする誘導体32を0.
70g得た。
 Wako gel residue Silica gel color using C-200
Chromatography [Developing solvent: chloroform-meta
Nol (99: 1)] three times, and the desired derivative 32 is purified to 0.
70g was obtained.

[発明の効果] 本発明の新規リファマイシン誘導体は、強い抗菌作用
を有し、優れた薬理学的特性を有するという効果を奏す
る。
[Effect of the Invention] The novel rifamycin derivative of the present invention has an effect of having a strong antibacterial action and excellent pharmacological properties.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明のリファマイシン誘導体およびその他
の被検化合物を結核症のマウスに経口投与したときのマ
ウスの生存率と処置日数との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the survival rate of mice and the treatment days when the rifamycin derivative of the present invention and other test compounds are orally administered to mice with tuberculosis.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 渡辺 清 兵庫県明石市松ケ丘5丁目15―41 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kiyoshi Watanabe 5-15-41 Matsugaoka, Akashi City, Hyogo Prefecture

Claims (14)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】式(I): {式中、Rは水素原子またはアセチル基を表わし、Aは
[式中、R1は炭素数4〜8のアルキル基、炭素数2〜8
のアルケニル基、炭素数2〜8のアルキニル基、炭素数
1〜4のアミノアルキル基、炭素数2〜6のモノアルキ
ルアミノアルキル基、炭素数3〜8のジアルキルアミノ
アルキル基、炭素数2〜8のアルコキシアルキル基、炭
素数3〜8のアルコキシアルキルオキシアルキル基、炭
素数2〜6のチオアルコキシアルキル基、炭素数3〜8
のジアルコキシアルキル基、炭素数1〜6のハロゲン化
アルキル基、炭素数1〜6のアシル基、式: −(CH2−CONHR2(式中、aは0〜3の整数を表わ
し、更にR2は水素原子または炭素数1〜6のアルキル基
を表わす)で示される基、炭素数1〜3のアルコキシ基
または式: で示される基を表わす]で示される基、式: (式中、bは2〜6の整数を表わす)で示される基また
は式: (式中、nは2〜6の整数を表わし、更にR3はアミノ
基、炭素数1〜6のモノアルキルアミノ基、炭素数2〜
10のジアルキルアミノ基または炭素数1〜6のアシルア
ミノ基を表わす)で示される基を表わす}で示されるリ
ファマイシン誘導体またはその塩。
1. Formula (I): {In the formula, R represents a hydrogen atom or an acetyl group, and A is a formula. [In the formula, R 1 is an alkyl group having 4 to 8 carbon atoms, and 2 to 8 carbon atoms.
Alkenyl group, C2-C8 alkynyl group, C1-C4 aminoalkyl group, C2-C6 monoalkylaminoalkyl group, C3-C8 dialkylaminoalkyl group, C2-C2 8 alkoxyalkyl group, C3-8 alkoxyalkyloxyalkyl group, C2-6 thioalkoxyalkyl group, C3-8
Dialkoxy alkyl group, a halogenated alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, the formula: - (CH 2) a -CONHR 2 ( wherein, a represents an integer of 0 to 3 , R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), an alkoxy group having 1 to 3 carbon atoms, or a formula: Represents a group represented by], a group represented by the formula: (In the formula, b represents an integer of 2 to 6) or a group represented by the formula: (In the formula, n represents an integer of 2 to 6, and R 3 is an amino group, a monoalkylamino group having 1 to 6 carbon atoms, or 2 to 2 carbon atoms.
A dialkylamino group having 10 carbon atoms or an acylamino group having 1 to 6 carbon atoms), or a salt thereof.
【請求項2】前記式(I)において、Rがアセチル基で
ある請求項1記載のリファマイシン誘導体またはその
塩。
2. The rifamycin derivative or a salt thereof according to claim 1, wherein in the formula (I), R is an acetyl group.
【請求項3】前記式(I)において、Rが水素原子であ
る請求項1記載のリファマイシン誘導体またはその塩。
3. The rifamycin derivative or a salt thereof according to claim 1, wherein in the formula (I), R is a hydrogen atom.
【請求項4】前記式(I)において、Rがアセチル基で
あり、Aが (式中、R4は炭素数4〜8のアルキル基または炭素数2
〜8のアルケニル基を表わす)で示される基または式: (式中、bは2〜6の整数を表わす)で示される基であ
る請求項1記載のリファマイシン誘導体またはその塩。
4. In the formula (I), R is an acetyl group and A is (In the formula, R 4 is an alkyl group having 4 to 8 carbon atoms or 2 carbon atoms.
Represents a alkenyl group of ~ 8) or a formula: The rifamycin derivative or a salt thereof according to claim 1, which is a group represented by the formula (b represents an integer of 2 to 6).
【請求項5】前記式(I)において、Rがアセチル基で
あり、Aが で示される基である請求項1記載のリファマイシン誘導
体またはその塩。
5. In the formula (I), R is an acetyl group and A is The rifamycin derivative or a salt thereof according to claim 1, which is a group represented by:
【請求項6】前記式(I)において、Rがアセチル基で
あり、Aが で示される基である請求項1記載のリファマイシン誘導
体またはその塩。
6. In the formula (I), R is an acetyl group and A is The rifamycin derivative or a salt thereof according to claim 1, which is a group represented by:
【請求項7】前記式(I)において、Rがアセチル基で
あり、Aが で示される基である請求項1記載のリファマイシン誘導
体またはその塩。
7. In the formula (I), R is an acetyl group and A is The rifamycin derivative or a salt thereof according to claim 1, which is a group represented by:
【請求項8】前記式(I)において、Rがアセチル基で
あり、Aが で示される基である請求項1記載のリファマイシン誘導
体またはその塩。
8. In the formula (I), R is an acetyl group and A is The rifamycin derivative or a salt thereof according to claim 1, which is a group represented by:
【請求項9】式(II): (式中、Rは水素原子またはアセチル基を表わす)で示
されるリファマイシン誘導体に、式AH{式中、Aは [式中、R1は炭素数4〜8のアルキル基、炭素数2〜8
のアルケニル基、炭素数2〜8のアルキニル基、炭素数
1〜4のアミノアルキル基、炭素数2〜6のモノアルキ
ルアミノアルキル基、炭素数3〜8のジアルキルアミノ
アルキル基、炭素数2〜8のアルコキシアルキル基、炭
素数3〜8のアルコキシアルキルオキシアルキル基、炭
素数2〜6のチオアルコキシアルキル基、炭素数3〜8
のジアルコキシアルキル基、炭素数1〜6のハロゲン化
アルキル基、炭素数1〜6のアシル基、式: −(CH2−CONHR2(式中、aは0〜3の整数を表わ
し、更にR2は水素原子または炭素数1〜6のアルキル基
を表わす)で示される基、炭素数1〜3のアルコキシ基
または式: で示される基を表わす]で示される基、式: (式中、bは2〜6の整数を表わす)で示される基、ま
たは式: (式中、nは2〜6の整数を表わし、更にR3はアミノ
基、炭素数1〜6のモノアルキルアミノ基、炭素数2〜
10のジアルキルアミノ基または炭素数1〜6のアシルア
ミノ基を表わす)で示される基を表わす}で示されるア
ミンを反応させることを特徴とする式(I): (式中、RおよびAは前記と同じ)で示されるリファマ
イシン誘導体の製造法。
9. Formula (II): (Wherein R represents a hydrogen atom or an acetyl group), a rifamycin derivative represented by the formula AH [In the formula, R 1 is an alkyl group having 4 to 8 carbon atoms, and 2 to 8 carbon atoms.
Alkenyl group, C2-C8 alkynyl group, C1-C4 aminoalkyl group, C2-C6 monoalkylaminoalkyl group, C3-C8 dialkylaminoalkyl group, C2-C2 8 alkoxyalkyl group, C3-8 alkoxyalkyloxyalkyl group, C2-6 thioalkoxyalkyl group, C3-8
Dialkoxy alkyl group, a halogenated alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, the formula: - (CH 2) a -CONHR 2 ( wherein, a represents an integer of 0 to 3 , R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), an alkoxy group having 1 to 3 carbon atoms, or a formula: Represents a group represented by], a group represented by the formula: (In the formula, b represents an integer of 2 to 6) or a group: (In the formula, n represents an integer of 2 to 6, and R 3 is an amino group, a monoalkylamino group having 1 to 6 carbon atoms, or 2 to 2 carbon atoms.
A dialkylamino group having 10 carbon atoms or an acylamino group having 1 to 6 carbon atoms) is represented by the formula (I): (In the formula, R and A are the same as above).
【請求項10】酸化剤存在下に式(II)で示されるリフ
ァマイシン誘導体に式AH(式中、Aは前記と同じ)で示
されるアミンを反応させる請求項9記載の製造法。
10. The process according to claim 9, wherein the rifamycin derivative represented by the formula (II) is reacted with an amine represented by the formula AH (A is the same as above) in the presence of an oxidizing agent.
【請求項11】酸化剤が二酸化マンガンである請求項10
記載の製造法。
11. The oxidant is manganese dioxide.
The manufacturing method described.
【請求項12】Rがアセチル基である式(I)で表わさ
れるリファマイシン誘導体を加水分解することを特徴と
するRが水素原子である式(I)で表わされるリファマ
イシン誘導体の製造法。
12. A process for producing a rifamycin derivative represented by the formula (I) wherein R is a hydrogen atom, characterized in that the rifamycin derivative represented by the formula (I) in which R is an acetyl group is hydrolyzed.
【請求項13】加水分解に用いる試剤がアルカリ金属水
酸化物である請求項12記載の製造法。
13. The method according to claim 12, wherein the reagent used for hydrolysis is an alkali metal hydroxide.
【請求項14】式(I): {式中、Rは水素原子またはアセチル基を表わし、Aは [式中、R1は炭素数4〜8のアルキル基、炭素数2〜8
のアルケニル基、炭素数2〜8のアルキニル基、炭素数
1〜4のアミノアルキル基、炭素数2〜6のモノアルキ
ルアミノアルキル基、炭素数3〜8のジアルキルアミノ
アルキル基、炭素数2〜8のアルコキシアルキル基、炭
素数3〜8のアルコキシアルキルオキシアルキル基、炭
素数2〜6のチオアルコキシアルキル基、炭素数3〜8
のジアルコキシアルキル基、炭素数1〜6のハロゲン化
アルキル基、炭素数1〜6のアシル基、式: −(CH2−CONHR2(式中、aは0〜3の整数を表わ
し、更にR2は水素原子または炭素数1〜6のアルキル基
を表わす)で示される基、炭素数1〜3のアルコキシ基
または式: で示される基を表わす]で示される基、式: (式中、bは2〜6の整数を表わす)で示される基また
は式: (式中、nは2〜6の整数を表わし、更にR3はアミノ
基、炭素数1〜6のモノアルキルアミノ基、炭素数2〜
10のジアルキルアミノ基または炭素数1〜6のアシルア
ミノ基を表わす)で示される基を表わす}で示されるリ
ファマイシン誘導体またはその薬理学的に許容される塩
を有効成分とする抗菌剤。
14. Formula (I): {In the formula, R represents a hydrogen atom or an acetyl group, and A is [In the formula, R 1 is an alkyl group having 4 to 8 carbon atoms, and 2 to 8 carbon atoms.
Alkenyl group, C2-C8 alkynyl group, C1-C4 aminoalkyl group, C2-C6 monoalkylaminoalkyl group, C3-C8 dialkylaminoalkyl group, C2-C2 8 alkoxyalkyl group, C3-8 alkoxyalkyloxyalkyl group, C2-6 thioalkoxyalkyl group, C3-8
Dialkoxy alkyl group, a halogenated alkyl group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, the formula: - (CH 2) a -CONHR 2 ( wherein, a represents an integer of 0 to 3 , R 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms), an alkoxy group having 1 to 3 carbon atoms, or a formula: Represents a group represented by], a group represented by the formula: (In the formula, b represents an integer of 2 to 6) or a group represented by the formula: (In the formula, n represents an integer of 2 to 6, and R 3 is an amino group, a monoalkylamino group having 1 to 6 carbon atoms, or 2 to 2 carbon atoms.
And 10 represents a dialkylamino group or an acylamino group having 1 to 6 carbon atoms), or an pharmaceutically acceptable salt thereof as an active ingredient.
JP1239677A 1988-11-01 1989-09-14 3'-hydroxybenzoxazinorifamycin derivative Expired - Lifetime JP2544488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1239677A JP2544488B2 (en) 1988-11-01 1989-09-14 3'-hydroxybenzoxazinorifamycin derivative

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP27666188 1988-11-01
JP63-276661 1988-11-01
JP8039689 1989-03-30
JP1-80396 1989-03-30
JP1239677A JP2544488B2 (en) 1988-11-01 1989-09-14 3'-hydroxybenzoxazinorifamycin derivative

Publications (2)

Publication Number Publication Date
JPH037291A JPH037291A (en) 1991-01-14
JP2544488B2 true JP2544488B2 (en) 1996-10-16

Family

ID=27303286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1239677A Expired - Lifetime JP2544488B2 (en) 1988-11-01 1989-09-14 3'-hydroxybenzoxazinorifamycin derivative

Country Status (1)

Country Link
JP (1) JP2544488B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3963976B2 (en) * 1995-12-08 2007-08-22 株式会社カネカ Chlamydia infection treatment
DE69829905T2 (en) * 1997-02-28 2006-03-09 Kaneka Corp. Remedies for Helicobacter disease

Also Published As

Publication number Publication date
JPH037291A (en) 1991-01-14

Similar Documents

Publication Publication Date Title
EP0366914B1 (en) 3'-Hydroxybenzoxazinorifamycin derivative, process for preparing the same and antibacterial agent containing the same
CN109963844B (en) Compound for inhibiting and degrading tyrosine protein kinase ALK
JPH0216315B2 (en)
JP2544375B2 (en) Alkyl-substituted benzoxazinorifamycin derivatives
SI9300287A (en) Process for preparing aryl piperazinyl-heterocyclic compounds
FR2476088A2 (en) NOVEL NOR-TROPANE DERIVATIVES, PROCESS FOR THEIR PREPARATION AND THEIR THERAPEUTIC APPLICATION
US4075339A (en) Biologically active compounds
WO2022200847A1 (en) Improved process for molnupiravir
EP0333176B1 (en) Substituted benzoxazinorifamycin derivative, process for preparing the same and antibacterial agent containing the same
JP2544488B2 (en) 3'-hydroxybenzoxazinorifamycin derivative
US4188321A (en) 25-Desacetyl rifamycins
JP2862912B2 (en) 5 '-(4-propyl or 4-isopropylpiperazinyl) benzoxazinolifamycin derivative
EP0364943B1 (en) Benzoheterocyclic compounds
EP0303571A1 (en) Bisphenylyl compounds
JPS59231092A (en) Phenothiazine-type rifamycin and its pharmaceutical use
US4880789A (en) 2'-Substituted-4-deoxy-thiazolo(5,4-c)-rifamycin SV derivatives
JPH0378873B2 (en)
EP0049683A2 (en) Imidazo-rifamycines, process for their preparation, pharmaceutical preparations containing them and their use
JP2780807B2 (en) Substituted benzoxazinolifamycin derivatives
JPH0357915B2 (en)
JPS62240688A (en) Aminobenzoxazino-and aminobenzothiazinorifamycin derivative having hydroxymethyl group
JPS6155918B2 (en)
JPS6335579A (en) Sulfur-containing benzoxazinorifamycin derivative
JPS6222787A (en) Ceph-3-em-4-carboxylic acid derivative
JPS6152839B2 (en)

Legal Events

Date Code Title Description
S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090725

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100725

Year of fee payment: 14