JP2780807B2 - Substituted benzoxazinolifamycin derivatives - Google Patents

Substituted benzoxazinolifamycin derivatives

Info

Publication number
JP2780807B2
JP2780807B2 JP1066738A JP6673889A JP2780807B2 JP 2780807 B2 JP2780807 B2 JP 2780807B2 JP 1066738 A JP1066738 A JP 1066738A JP 6673889 A JP6673889 A JP 6673889A JP 2780807 B2 JP2780807 B2 JP 2780807B2
Authority
JP
Japan
Prior art keywords
group
carbon atoms
derivative
hydrogen atom
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1066738A
Other languages
Japanese (ja)
Other versions
JPH02167288A (en
Inventor
文彦 狩野
毅彦 山根
秀雄 近藤
卓士 橋爪
勝治 山下
和典 細江
文幸 久世
清 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP1066738A priority Critical patent/JP2780807B2/en
Publication of JPH02167288A publication Critical patent/JPH02167288A/en
Application granted granted Critical
Publication of JP2780807B2 publication Critical patent/JP2780807B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、新規なリファマイシン誘導体またはその塩
およびその製造法、ならびにこれを有効成分とする抗菌
剤に関する。さらに詳しくは、本発明は式(I): {式中、Aは (式中、R1およびR2は同一または相異なり、炭素数1〜
3のアルキル基、炭素数2〜6のアミノアルキル基、炭
素数2〜6のモノアルキルアミノアルキル基または炭素
数3〜6のジアルキルアミノアルキル基を示す)で表わ
される基、 (式中、aは2〜7の整数を示し、R3は水素原子、アミ
ノ基、炭素数1〜4のモノアルキルアミノ基または炭素
数2〜8のジアルキルアミノ基を示す)で表わされる基
または (式中、bおよびcは同一または相異なり、1〜4の整
数を示し、R4は水素原子、炭素数3〜5のシクロアルキ
ル基で置換されていてもよい炭素数1〜6のアルキル
基、炭素数2〜7のアルケニル基、炭素数2〜6のアル
コキシアルキル基または炭素数3〜5のシクロアルキル
基を示す)で表わされる基を表わし、X1は3′位の炭素
数1〜6のアルコキシ基もしくは炭素数2〜6のアルケ
ニルオキシ基、4′位の炭素数2〜6のアルコキシ基、
炭素数1〜6のアルキルチオ基、炭素数1〜6のアシル
基、炭素数2〜6のアシルアルキル基もしくはヨウ素原
子、5′位の炭素数1〜6のアルコキシ基または6′位
の炭素数1〜6のアルコキシ基もしくはハロゲン原子を
表わし、X2は水素原子または炭素数1〜6のアルキル基
を表わす}で示されるリファマイシン誘導体またはその
塩およびその製造法、ならびにこれを有効成分とする抗
菌剤に関する。
Description: TECHNICAL FIELD The present invention relates to a novel rifamycin derivative or a salt thereof, a method for producing the same, and an antibacterial agent containing the same as an active ingredient. More specifically, the present invention provides a compound of formula (I): Awhere A is (Wherein R 1 and R 2 are the same or different and have 1 to 1 carbon atoms)
An alkylalkyl group having 3 to 3 carbon atoms, an aminoalkyl group having 2 to 6 carbon atoms, a monoalkylaminoalkyl group having 2 to 6 carbon atoms or a dialkylaminoalkyl group having 3 to 6 carbon atoms); (Where a represents an integer of 2 to 7, R 3 represents a hydrogen atom, an amino group, a monoalkylamino group having 1 to 4 carbon atoms or a dialkylamino group having 2 to 8 carbon atoms) Or (Where b and c are the same or different and represent an integer of 1 to 4, R 4 is a hydrogen atom, an alkyl having 1 to 6 carbon atoms which may be substituted by a cycloalkyl group having 3 to 5 carbon atoms) group, an alkenyl group having 2 to 7 carbon atoms, represents a group represented by a cycloalkyl group having an alkoxyalkyl group or a 3 to 5 carbon atoms having 2 to 6 carbon atoms), X 1 is 3 'carbon atoms of positions 1 An alkoxy group having 2 to 6 carbon atoms or an alkenyloxy group having 2 to 6 carbon atoms, an alkoxy group having 2 to 6 carbon atoms at the 4'-position,
An alkylthio group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, an acylalkyl group having 2 to 6 carbon atoms or an iodine atom, an alkoxy group having 1 to 6 carbon atoms at the 5'-position, or a carbon number at the 6'-position A rifamycin derivative or a salt thereof represented by}, which represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, wherein X 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms; Related to antibacterial agents.

[従来の技術・発明が解決しようとする課題] 本発明によるリファマイシン誘導体は文献などに記載
のない新規化合物である。
[Prior art / problem to be solved by the invention] The rifamycin derivative according to the present invention is a novel compound not described in any literature.

本発明者らは、新しい優れた抗菌剤を見出すために式
(I): (式中、X1、X2およびAは前記と同じ)で示される新規
リファマイシン誘導体を合成し、その抗菌力および薬理
学的特性を調べた。その結果、式(I)で示される新規
リファマイシン誘導体が強い抗菌作用を有し、優れた薬
理学的特性を有することを見出し本発明に到達した。
We have found that to find new and superior antimicrobial agents, the formula (I): (Wherein X 1 , X 2 and A are as defined above) were synthesized and their antibacterial activity and pharmacological properties were examined. As a result, the present inventors have found that the novel rifamycin derivative represented by the formula (I) has a strong antibacterial activity and has excellent pharmacological properties, and reached the present invention.

[課題を解決するための手段] 本発明は、式(I): {式中、Aは (式中、R1およびR2は同一または相異なり、炭素数1〜
3のアルキル基、炭素数2〜6のアミノアルキル基、炭
素数2〜6のモノアルキルアミノアルキル基または炭素
数3〜6のジアルキルアミノアルキル基を示す)で表わ
される基、 (式中、aは2〜7の整数を示し、R3は水素原子、アミ
ノ基、炭素数1〜4のモノアルキルアミノ基または炭素
数2〜8のジアルキルアミノ基を示す)で表わされる基
または (式中、bおよびcは同一または相異なり、1〜4の整
数を示し、R4は水素原子、炭素数3〜5のシクロアルキ
ル基で置換されていてもよい炭素数1〜6のアルキル
基、炭素数2〜7のアルケニル基、炭素数2〜6のアル
コキシアルキル基または炭素数3〜5のシクロアルキル
基を示す)で表わされる基を表わし、X1は3′位の炭素
数1〜6のアルコキシ基もしくは炭素数2〜6のアルケ
ニルオキシ基、4′位の炭素数2〜6のアルコキシ基、
炭素数1〜6のアルキルチオ基、炭素数1〜6のアシル
基、炭素数2〜6のアシルアルキル基もしくはヨウ素原
子、5′位の炭素数1〜6のアルコキシ基または6′位
の炭素数1〜6のアルコキシ基もしくはハロゲン原子を
表わし、X2は水素原子または炭素数1〜6のアルキル基
を表わす}で示されるリファマイシン誘導体またはその
塩、式(II): (式中、X3は水素原子、炭素数1〜6のアルコキシ基、
ハロゲン原子またはニトロ基を表わし、X4は3′位の炭
素数1〜6のアルコキシ基もしくは炭素数2〜6のアル
ケニルオキシ基、4′位の炭素数2〜6のアルコキシ
基、炭素数1〜6のアルキルチオ基、炭素数1〜6のア
シル基、炭素数2〜6のアシルアルキル基もしくはヨウ
素原子または6′位の炭素数1〜6のアルコキシ基もし
くはハロゲン原子を表わし、X5は水素原子または炭素数
1〜6のアルキル基を表わす)で示されるリファマイシ
ン誘導体に、式AH(式中、Aは前記と同じ)で示される
アミンを反応させることを特徴とする式(III): (式中、A、X4およびX5は前記と同じ)で示されるリフ
ァマイシン誘導体の製造法、式(IV): (式中、X6は水素原子、炭素数1〜6のアルコキシ基、
ハロゲン原子またはニトロ基を表わし、X7は4′位の炭
素数2〜6のアルコキシ基、炭素数1〜6のアルキルチ
オ基、炭素数1〜6のアシル基、炭素数2〜6のアシル
アルキル基もしくはヨウ素原子、5′位の炭素数1〜6
のアルコキシ基または6′位の炭素数1〜6のアルコキ
シ基もしくはハロゲン原子を表わし、X8は水素原子また
は炭素数1〜6のアルキル基を表わし、5′位は水素原
子以外のX7またはX8を表わす基である)で示されるリフ
ァマイシン誘導体に、式AH(Aは前記と同じ)で示され
るアミンを反応させることを特徴とする式(V): (式中、A、X7およびX8は前記と同じ)で示されるリフ
ァマイシン誘導体の製造法および前記式(I)で示され
るリファマイシン誘導体またはその生理的に許容される
塩を有効成分とする抗菌剤に関する。
[Means for Solving the Problems] The present invention provides a compound of the formula (I): Awhere A is (Wherein R 1 and R 2 are the same or different and have 1 to 1 carbon atoms)
An alkylalkyl group having 3 to 3 carbon atoms, an aminoalkyl group having 2 to 6 carbon atoms, a monoalkylaminoalkyl group having 2 to 6 carbon atoms or a dialkylaminoalkyl group having 3 to 6 carbon atoms); (Where a represents an integer of 2 to 7, R 3 represents a hydrogen atom, an amino group, a monoalkylamino group having 1 to 4 carbon atoms or a dialkylamino group having 2 to 8 carbon atoms) Or (Where b and c are the same or different and represent an integer of 1 to 4, R 4 is a hydrogen atom, an alkyl having 1 to 6 carbon atoms which may be substituted by a cycloalkyl group having 3 to 5 carbon atoms) group, an alkenyl group having 2 to 7 carbon atoms, represents a group represented by a cycloalkyl group having an alkoxyalkyl group or a 3 to 5 carbon atoms having 2 to 6 carbon atoms), X 1 is 3 'carbon atoms of positions 1 An alkoxy group having 2 to 6 carbon atoms or an alkenyloxy group having 2 to 6 carbon atoms, an alkoxy group having 2 to 6 carbon atoms at the 4'-position,
An alkylthio group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, an acylalkyl group having 2 to 6 carbon atoms or an iodine atom, an alkoxy group having 1 to 6 carbon atoms at the 5'-position, or a carbon number at the 6'-position A rifamycin derivative represented by} or a salt thereof, wherein X 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, or a salt thereof; (Wherein X 3 is a hydrogen atom, an alkoxy group having 1 to 6 carbon atoms,
A halogen atom or a nitro group; X 4 represents a 3'-position alkoxy group having 1 to 6 carbon atoms or an alkenyloxy group having 2 to 6 carbon atoms; a 4'-position alkoxy group having 2 to 6 carbon atoms; 6 alkylthio group, an acyl group having 1 to 6 carbon atoms, an acyl group or an iodine atom or 6'-position alkoxy group or halogen atom having 1 to 6 carbon atoms of 2 to 6 carbon atoms, X 5 is hydrogen A rifamycin derivative represented by an atom or an alkyl group having 1 to 6 carbon atoms) reacted with an amine represented by the formula AH (where A is the same as defined above): (Wherein A, X 4 and X 5 are the same as described above), a method for producing a rifamycin derivative represented by the formula (IV): (Wherein X 6 is a hydrogen atom, an alkoxy group having 1 to 6 carbon atoms,
X 7 represents a halogen atom or a nitro group, X 7 represents a 4′-position alkoxy group having 2 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, and an acylalkyl having 2 to 6 carbon atoms. Group or iodine atom, carbon number of 1 to 6 at 5'-position
Alkoxy or 6 'represents a position alkoxy group or halogen atom having 1 to 6 carbon atoms, X 8 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, 5' position X 7 or other than a hydrogen atom the rifamycin derivative represented by a is) a group representing the X 8, wherein the formula AH (a is characterized by reacting an amine represented by the same) and the (V): Wherein A, X 7 and X 8 are the same as defined above, and a rifamycin derivative represented by the formula (I) or a physiologically acceptable salt thereof as an active ingredient Related to antibacterial agents.

本発明による前記式(I)で示される新規リファマイ
シン誘導体は、多くの有機溶媒、クロロホルムなどのハ
ロゲン化炭化水素類;エチルアルコールなどのアルコー
ル類;酢酸エチルなどのエステル類;ベンゼンなどの芳
香族炭化水素類;テトラヒドロフランなどのエーテル類
に可溶である。
The novel rifamycin derivatives represented by the above formula (I) according to the present invention include many organic solvents, halogenated hydrocarbons such as chloroform; alcohols such as ethyl alcohol; esters such as ethyl acetate; Hydrocarbons; soluble in ethers such as tetrahydrofuran.

本発明による式(I)で示される新規リファマイシン
誘導体の置換基A、X1およびX2の具体例をあげればつぎ
のものがある。
Substituents A novel rifamycin derivative of the formula (I) according to the invention, to name a specific example of X 1 and X 2 are the following.

即ち、Aの (式中、R1およびR2は前記と同じ)で表わされる基とし
ては、 などがあげられ、 (式中、aおよびR3は前記と同じ)で表わされる基とし
ては、 などがあげられる。また、 (式中、b、cおよびR4は前記と同じ)で表わされる基
としては などをあげることが出来る。
That is, A (Wherein R 1 and R 2 are the same as described above): And so on, Wherein a and R 3 are the same as defined above, And so on. Also, (Wherein b, c and R 4 are the same as defined above) And so on.

X1の3′位の炭素数1〜6のアルコキシ基としてはメ
トキシ基、エトキシ基、プロポキシ基、イソプロポキシ
基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、t
ert−ブトキシ基、ペンチルオキシ基、イソペンチルオ
キシ基、ネオペンチルオキシ基、tert−ペンチルオキシ
基、ヘキシルオキシ基、イソヘキシルオキシ基などがあ
げられ、炭素数2〜6のアルケニルオキシ基としてはビ
ニルオキシ基、アリルオキシ基、2−メチル−2−プロ
ペニルオキシ基、2−ブテニルオキシ基、3−メチル−
2−ブテニルオキシ基、2−ペンテニルオキシ基、4−
ペンテニルオキシ基などがあげられ、4′位の炭素数2
〜6のアルコキシ基としてはエトキシ基、プロポキシ
基、イソプロポキシ基、ブトキシ基、イソブトキシ基、
sec−ブトキシ基、tert−ブトキシ基、ペンチルオキシ
基、イソペンチルオキシ基、ネオペンチルオキシ基、te
rt−ペンチルオキシ基、ヘキシルオキシ基、イソヘキシ
ルオキシ基などがあげられ、炭素数1〜6のアルキルチ
オ基としてはメチルチオ基、エチルチオ基、プロピオチ
オ基、イソプロピオチオ基、ブチルチオ基、イソブチル
チオ基、sec−ブチルチオ基、tert−ブチルチオ基、ヘ
キシルチオ基などがあげられ、炭素数1〜6のアシル基
としてはホルミル基、アセチル基、プロピオニル基、ブ
チリル基、イソブチリル基、ヘキサノイル基などがあげ
られ、炭素数2〜6のアシルアルキル基としてはホルミ
ルメチル基、アセチルメチル基、プロピオニルメチル
基、ブチリルメチル基、イソブチリルメチル基、バレリ
ルメチル基、イソバレリルメチル基、ピバロイルメチル
基、1−ホルミルエチル基、1−アセチルエチル基、1
−プロピオニルエチル基、1−ブチリルエチル基、1−
イソブチリルエチル基、2−ホルミルエチル基、2−ア
セチルエチル基、2−プロピオニルエチル基、2−ブチ
リルエチル基、2−イソブチリルエチル基、1−ホルミ
ルプロピル基、1−アセチルプロピル基、1−プロピオ
ニルプロピル基、2−ホルミルプロピル基、2−アセチ
ルプロピル基、2−プロピオニルプロピル基、3−ホル
ミルプロピル基、3−アセチルプロピル基、3−プロピ
オニルプロピル基、1−ホルミルブチル基、1−アセチ
ルブチル基、2−ホルミルブチル基、2−アセチルブチ
ル基、3−ホルミルブチル基、3−アセチルブチル基、
4−ホルミルブチル基、4−アセチルブチル基などがあ
げられ、4′位の置換原子としてはヨウ素原子があげら
れ、5′位の炭素数1〜6のアルコキシ基としては、メ
トキシ基、エトキシ基、プロポキシ基、イソプロポキシ
基、ブトキシ基、イソブトキシ基、sec−ブトキシ基、t
ert−ブトキシ基、ペンチルオキシ基、イソペンチルオ
キシ基、ネオペンチルオキシ基、tert−ペンチルオキシ
基、ヘキシルオキシ基、イソヘキシルオキシ基などがあ
げられ、6′位の炭素数1〜6のアルコキシ基としては
メトキシ基、エトキシ基、プロポキシ基、イソプロポキ
シ基、ブトキシ基、イソブトキシ基、sec−ブトキシ
基、tert−ブトキシ基、ペンチルオキシ基、イソペンチ
ルオキシ基、ネオペンチルオキシ基、tert−ペンチルオ
キシ基、ヘキシルオキシ基、イソヘキシルオキシ基など
があげられ、ハロゲン原子としてはフッ素原子、塩素原
子、臭素原子およびヨウ素原子があげられる。
X 1 of 3 'position of the methoxy group is the alkoxy group having 1 to 6 carbon atoms, an ethoxy group, a propoxy group, isopropoxy group, butoxy group, isobutoxy group, sec- butoxy group, t
ert-butoxy group, pentyloxy group, isopentyloxy group, neopentyloxy group, tert-pentyloxy group, hexyloxy group, isohexyloxy group, and the like. Group, allyloxy group, 2-methyl-2-propenyloxy group, 2-butenyloxy group, 3-methyl-
2-butenyloxy group, 2-pentenyloxy group, 4-
A pentenyloxy group and the like;
Ethoxy, propoxy, isopropoxy, butoxy, isobutoxy,
sec-butoxy group, tert-butoxy group, pentyloxy group, isopentyloxy group, neopentyloxy group, te
rt-pentyloxy group, hexyloxy group, isohexyloxy group and the like. Examples of the alkylthio group having 1 to 6 carbon atoms include methylthio group, ethylthio group, propiothio group, isopropiothio group, butylthio group, isobutylthio group, sec-butylthio group, tert-butylthio group, hexylthio group and the like.Examples of the acyl group having 1 to 6 carbon atoms include formyl group, acetyl group, propionyl group, butyryl group, isobutyryl group, and hexanoyl group. Examples of the acylalkyl group of Formulas 2 to 6 include formylmethyl, acetylmethyl, propionylmethyl, butyrylmethyl, isobutyrylmethyl, valerylmethyl, isovalerylmethyl, pivaloylmethyl, 1-formylethyl, 1 -Acetylethyl group, 1
-Propionylethyl group, 1-butyrylethyl group, 1-
Isobutyrylethyl group, 2-formylethyl group, 2-acetylethyl group, 2-propionylethyl group, 2-butyrylethyl group, 2-isobutyrylethyl group, 1-formylpropyl group, 1-acetylpropyl group, 1 -Propionylpropyl group, 2-formylpropyl group, 2-acetylpropyl group, 2-propionylpropyl group, 3-formylpropyl group, 3-acetylpropyl group, 3-propionylpropyl group, 1-formylbutyl group, 1-acetyl Butyl group, 2-formylbutyl group, 2-acetylbutyl group, 3-formylbutyl group, 3-acetylbutyl group,
4-formylbutyl group, 4-acetylbutyl group and the like, iodine atom as a 4′-substituted atom, and methoxy group and ethoxy group as a 5′-position alkoxy group having 1 to 6 carbon atoms. , Propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, t
an ert-butoxy group, a pentyloxy group, an isopentyloxy group, a neopentyloxy group, a tert-pentyloxy group, a hexyloxy group, an isohexyloxy group, and the like, and an alkoxy group having 1 to 6 carbon atoms at the 6'-position. As methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy, sec-butoxy, tert-butoxy, pentyloxy, isopentyloxy, neopentyloxy, tert-pentyloxy Hexyloxy group, isohexyloxy group and the like, and the halogen atom includes a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.

X2の炭素数1〜6のアルキル基としてはメチル基、エ
チル基、プロピル基、イソプロピル基、ブチル基、イソ
ブチル基、sec−ブチル基、tert−ブチル基、ヘキシル
基などがあげられる。
Methyl group of an alkyl group having 1 to 6 carbon atoms X 2, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec- butyl group, tert- butyl group, and hexyl groups.

本発明による前記式(I)で示される新規リファマイ
シン誘導体は塩基または酸のいずれとも塩を形成するこ
とが可能である。塩は形成するために用いることが出来
る塩基または酸としては、式(I)で示されるリファマ
イシン誘導体と造塩可能な任意のものを選ぶことが出来
る。具体的な塩基との塩の例としては(1)金属塩、と
くにアルカリ金属、アルカリ土類金属との塩、(2)ア
ンモニウム塩、(3)アミン塩、とくにメチルアミン、
エチルアミン、ジエチルアミン、トリエチルアミン、ピ
ロリジン、モルホリン、ヘキサメチレンイミンなどとの
塩がある。また、酸との塩の例としては(1)硫酸、塩
酸などの鉱酸との塩、(2)p−トルエンスルホン酸、
トリフルオロ酢酸、酢酸などの有機酸との塩がある。
The novel rifamycin derivative represented by the formula (I) according to the present invention can form a salt with either a base or an acid. As the base or acid that can be used to form the salt, any base or acid that can form a salt with the rifamycin derivative represented by the formula (I) can be selected. Specific examples of the salt with a base include (1) a metal salt, particularly a salt with an alkali metal or an alkaline earth metal, (2) an ammonium salt, (3) an amine salt, particularly methylamine,
There are salts with ethylamine, diethylamine, triethylamine, pyrrolidine, morpholine, hexamethyleneimine and the like. Examples of salts with acids include (1) salts with mineral acids such as sulfuric acid and hydrochloric acid, (2) p-toluenesulfonic acid,
There are salts with organic acids such as trifluoroacetic acid and acetic acid.

本発明による前記式(I)で表わされる新規リファマ
イシン誘導体の製造は次の様にして行なうことが出来
る。
The production of the novel rifamycin derivative represented by the above formula (I) according to the present invention can be carried out as follows.

即ち、(A)リファマイシンSと式: (式中、X1、X2およびAは前記と同じ)で表わされる化
合物とをW.Kumpらの方法(ヘルベティカ・キミカ・アク
タ(Helv.Chim.Acta)、56巻、2348頁、1973年)に従っ
て反応させることによって得ることが出来る。
That is, (A) Rifamycin S and the formula: (Wherein X 1 , X 2 and A are the same as described above) and a compound represented by the method of W. Kump et al. (Helv. Chim. Acta, 56, 2348, 1973) )).

(B)式(I)で示されるリファマイシン誘導体のう
ち、Aが5′位にある式(III)で示される誘導体は、
式(II): (式中、X3は水素原子、炭素数1〜6のアルコキシ基、
ハロゲン原子またはニトロ基を表わし、X4は3′位の炭
素数1〜6のアルコキシ基もしくは炭素数2〜6のアル
ケニルオキシ基、4′位の炭素数2〜6のアルコキシ
基、炭素数1〜6のアルキルチオ基、炭素数1〜6のア
シル基、炭素数2〜6のアシルアルキル基もしくはヨウ
素原子または6′位の炭素数1〜6のアルコキシ基もし
くはハロゲン原子を表わし、X5は水素原子または炭素数
1〜6のアルキル基を表わす)で示されるリファマイシ
ン誘導体をメタノール、エタノール、テトラヒドロフラ
ン、N,N−ジメチルホルムアルミド、N,N−ジメチルアセ
トアミド、ジメチルスルホキシドなどの有機溶媒に溶解
し、−20℃から溶媒の沸点までの温度で、式AH(式中、
Aは前記と同じ)で表わされるアミンを塩酸などの酸共
存下あるいは非共存下に、二酸化マンガンンなどの酸化
剤存在下あるいは非存在下に1時間から1カ月間反応さ
せることによってうることが出来る。反応に用いるAH
(Aは前記と同じ)で表わされるアミンは式(II)で表
わされるリファマイシン誘導体に対し0.5〜10モル、な
かでも1〜4モル用いれば良い結果が得られる。反応溶
媒としては、メタノール、エタノール、イソプロピルア
ルコール、テトラヒドロフラン、ピリジン、アセトン、
酢酸エチル、クロロホルム、N,N−ジメチルホルムアル
ミド、N,N−ジメチルアセトアミド、ジメチルスルホキ
シドなどを用いることが出来るが、ピリジン、N,N−ジ
メチルホルムアルミド、N,N−ジメチルアセトアミド、
ジメチルスルホキシドなどを用いれば良い結果が得られ
る。反応温度としては−20℃から溶媒の沸点までの温度
を選ぶことが出来るが、−5℃〜50℃で反応させれば良
い結果が得られる。反応時間は1時間から1カ月間程度
であるが、最適の反応時間は反応に用いるアミンの種類
と量、酸化剤の有無、種類および量、反応温度などの反
応条件により異なるので、反応の進行を薄層クロマトグ
ラフィーなどで追跡して決めるべきである。酸化剤共存
下に行なう反応に於て、用いることが出来る酸化剤とし
ては、空気、酸素、二酸化マンガン、二酸化鉛、酸化
銀、フェリシアン化カリウム、過酸化水素などがある
が、二酸化マンガン、酸化銀、フェリシアン化カリウム
などを選べば良い結果が得られる。
(B) Among the rifamycin derivatives represented by the formula (I), the derivative represented by the formula (III) in which A is at the 5′-position is:
Formula (II): (Wherein X 3 is a hydrogen atom, an alkoxy group having 1 to 6 carbon atoms,
A halogen atom or a nitro group; X 4 represents a 3'-position alkoxy group having 1 to 6 carbon atoms or an alkenyloxy group having 2 to 6 carbon atoms; a 4'-position alkoxy group having 2 to 6 carbon atoms; 6 alkylthio group, an acyl group having 1 to 6 carbon atoms, an acyl group or an iodine atom or 6'-position alkoxy group or halogen atom having 1 to 6 carbon atoms of 2 to 6 carbon atoms, X 5 is hydrogen Rifamycin derivative represented by an atom or an alkyl group having 1 to 6 carbon atoms) is dissolved in an organic solvent such as methanol, ethanol, tetrahydrofuran, N, N-dimethylformaluminide, N, N-dimethylacetamide and dimethylsulfoxide. At a temperature from −20 ° C. to the boiling point of the solvent, the formula AH
A is the same as defined above) by reacting the amine for 1 hour to 1 month in the presence or absence of an acid such as hydrochloric acid or in the presence or absence of an oxidizing agent such as manganese dioxide. . AH used for reaction
Good results can be obtained by using 0.5 to 10 mol, particularly 1 to 4 mol, of the amine represented by the formula (II) with respect to the rifamycin derivative represented by the formula (II). Reaction solvents include methanol, ethanol, isopropyl alcohol, tetrahydrofuran, pyridine, acetone,
Ethyl acetate, chloroform, N, N-dimethylformalumide, N, N-dimethylacetamide, dimethylsulfoxide and the like can be used, but pyridine, N, N-dimethylformalumide, N, N-dimethylacetamide,
Good results can be obtained by using dimethyl sulfoxide or the like. The reaction temperature can be selected from -20 ° C to the boiling point of the solvent, but good results can be obtained by reacting at -5 ° C to 50 ° C. The reaction time is about one hour to one month, but the optimum reaction time depends on the reaction conditions such as the type and amount of amine used in the reaction, the presence or absence of oxidizing agent, the type and amount, and the reaction temperature. Should be tracked by thin layer chromatography or the like. In the reaction performed in the presence of the oxidizing agent, oxidizing agents that can be used include air, oxygen, manganese dioxide, lead dioxide, silver oxide, potassium ferricyanide, and hydrogen peroxide. Good results can be obtained by selecting potassium ferricyanide or the like.

本合成法の出発原料となる式(II)で表わされるリフ
ァマイシン誘導体は、リファマイシンSに式: (式中、X3、X4およびX5は前記と同じ)で表わされる化
合物をW.Kumpらの方法(ヘルベティカ・キミカ・アクタ
(Helv.Chim.Acta)、56巻、2348頁、1973年)に従って
反応させることによって合成することが出来る。
The rifamycin derivative represented by the formula (II), which is a starting material of the present synthesis method, is obtained by adding a rifamycin S to the formula: (Wherein X 3 , X 4 and X 5 are as defined above) by the method of W. Kump et al. (Helv. Chim. Acta, 56, 2348, 1973) ) Can be synthesized.

(C)式(I)で示されるリファマイシン誘導体のう
ち、Aが3′位にある式(V)で示される誘導体は次の
様にしても合成することが出来る。即ち、前記W.Kumpら
の方法に従ってリファマイシンSと式: で表わされる化合物を反応させてえた下記式(IV): (式中、X6、X7およびX8は前記と同じであり、5′位は
水素原子以外のX7またはX8を表わす基である)で示され
るリファマイシン誘導体に式AH(式中、Aは前記と同
じ)で示されるアミンを反応させることにより合成する
ことが出来る。反応溶媒、反応温度などの合成条件は合
成法(B)に記載したものと同様である。
(C) Among the rifamycin derivatives represented by the formula (I), the derivative represented by the formula (V) in which A is at the 3'-position can also be synthesized as follows. That is, according to the method of W. Kump et al. The following formula (IV) obtained by reacting a compound represented by the following formula: (Wherein X 6 , X 7 and X 8 are the same as those described above, and the 5′-position is a group representing X 7 or X 8 other than a hydrogen atom). , A is the same as defined above). The synthesis conditions such as the reaction solvent and the reaction temperature are the same as those described in the synthesis method (B).

本発明による式(I)で示されるリファマイシン誘導
体の反応生成物からの分離精製は比較的容易である。即
ち過剰量の反応に用いた前記AH(式中、Aは前記と同
じ)で示されるアミン、反応溶媒などを除去し、得られ
た粗生成物を晶折、カラムクロマトグラフィーなどによ
り精製し、目的とするリファマイシン誘導体をうること
が出来る。
Separation and purification of the rifamycin derivative represented by the formula (I) according to the present invention from the reaction product is relatively easy. That is, the amine represented by the AH (where A is the same as the above) used in the excess reaction, the reaction solvent, and the like are removed, and the obtained crude product is purified by crystallization, column chromatography, or the like, The desired rifamycin derivative can be obtained.

式(I)で示される新規リファマイシン誘導体は、ア
スコルビン酸、亜二チオン酸ナトリウムなどの還元剤で
還元することにより、下記の式(IV): (式中、X1、X2およびAは前記と同じ)で表わされるリ
ファマイシン誘導体に変換することも可能である。式
(VI)で表わされるリファマイシン誘導体も新規であ
り、強い抗菌作用を有する。
The novel rifamycin derivative represented by the formula (I) is reduced with a reducing agent such as ascorbic acid or sodium dithionite to give the following formula (IV): (Wherein X 1 , X 2 and A are the same as those described above). The rifamycin derivative represented by the formula (VI) is also novel and has a strong antibacterial action.

本発明による新規リファマイシン誘導体の代表例を第
1表に示す。第1表に於て、赤外吸収スペクトルの測定
は臭化カリウム錠剤法で行なった。薄層クロマトグラフ
ィーはメルク社製シリカゲル60F254、薄層クロマトグラ
フィー用プレート(20cm×20cm)を用いて実施した。核
磁気共鳴スペクトルの測定はテトラメチルシランを内部
標準として、試料の重水素化クロロホルム溶液を用いて
行なった。
Table 1 shows representative examples of the novel rifamycin derivatives according to the present invention. In Table 1, the infrared absorption spectrum was measured by the potassium bromide tablet method. Thin layer chromatography was performed using Merck silica gel 60F 254, thin-layer chromatography plate (20cm × 20cm). The nuclear magnetic resonance spectrum was measured using tetramethylsilane as an internal standard and a deuterated chloroform solution of the sample.

本発明によるリファマイシン誘導体は、グラム陽性菌
および抗酸菌に対して強い抗菌力を示す。
The rifamycin derivative according to the present invention exhibits strong antibacterial activity against Gram-positive bacteria and acid-fast bacteria.

本発明による新規リファマイシン誘導体の抗菌力を日
本化学療法学会標準法[日本化学療法学会誌、第29巻、
76頁(1981)]に準じた方法により調べた。代表例を第
2表に示す、第2表から明らかなように本発明による新
規リファマイシン誘導体はグラム陽性菌および抗酸菌に
対して強い抗菌力を示すことが分る。なお、第2表中の
誘導体番号は第1表の誘導体番号と対応するものであ
る。
The antimicrobial activity of the novel rifamycin derivative according to the present invention was determined by the standard method of the Japanese Society of Chemotherapy [Japanese Journal of Chemotherapy, Vol. 29,
76 (1981)]. Representative examples are shown in Table 2. As is clear from Table 2, the novel rifamycin derivative according to the present invention has a strong antibacterial activity against Gram-positive bacteria and acid-fast bacteria. The derivative numbers in Table 2 correspond to the derivative numbers in Table 1.

本発明による式(I)で示されるリファマイシン誘導
体は結核菌に対しても強い抗菌作用を示す。結核菌(ミ
コバクテリウム・ツベルキュロシス菌(Mycobacterium
tuberculosis H37Rv株))をデュボス(Dubos)培地で
培養し、1mg/mlの菌液を作製し、その10倍希釈液0.05ml
を2mlの10%牛血清添加キルヒナー(Kirchner)液体培
地に接種した。判定は常法にしたがい被検誘導体を含有
した倍数希釈系列を作製し、37℃、4週間培養後、肉眼
的に菌の発育が完全に阻止されている濃度を最小発育阻
止濃度とした。結果を第3表および第4表に示す。ここ
に示した結果から、本発明による新規リファマイシン誘
導体は結核菌に対して強い抗菌力を示すことが分る。な
お第3表および第4表中の誘導体番号は第1表の誘導体
番号と対応するものである。
The rifamycin derivative represented by the formula (I) according to the present invention has a strong antibacterial activity against Mycobacterium tuberculosis. Mycobacterium tuberculosis (Mycobacterium tuberculosis)
The tuberculosis H 37 Rv strain)) were cultured in Deyubosu (Dubos) medium, to prepare a bacterial solution of 1 mg / ml, the 10-fold dilutions 0.05ml
Was inoculated into 2 ml of Kirchner liquid medium supplemented with 10% bovine serum. For the determination, a multiple dilution series containing the test derivative was prepared according to a conventional method, and after culturing at 37 ° C. for 4 weeks, the concentration at which the growth of the bacteria was completely inhibited macroscopically was defined as the minimum inhibitory concentration. The results are shown in Tables 3 and 4. From the results shown here, it can be seen that the novel rifamycin derivative according to the present invention has strong antibacterial activity against Mycobacterium tuberculosis. The derivative numbers in Tables 3 and 4 correspond to the derivative numbers in Table 1.

式(I)で示される本発明によるリファマイシン誘導
体は経口投与により吸収され、高い血中濃度を示す。dd
Y系雄性マウス(7週令)に20mg/kgの割合で、第1表に
示した誘導体19および30を経口投与した。常法に従って
血漿中濃度をミクロコッカス・ルテウス菌(Micrococcu
s luteus IFO 12708)を検定菌とする生物学的検定法に
より求めた。その結果、誘導体19および30は経口投与に
より吸収され、投与1、3、5および8時間後で誘導体
19は17.0μg/ml、13.3μg/ml、14.5μg/mlおよび4.2μg
/mlの血漿中濃度を示し、誘導体30は17.3μg/ml、16.2
μg/ml、13.8μg/mlおよび10.1μg/mlの血漿中濃度を示
すことが分った。
The rifamycin derivatives according to the invention of the formula (I) are absorbed orally and show high blood levels. dd
Derivatives 19 and 30 shown in Table 1 were orally administered to male Y mice (7 weeks old) at a rate of 20 mg / kg. In accordance with the usual method, the plasma concentration was determined by using Micrococcu luteus.
s luteus IFO 12708) as a test bacterium. As a result, Derivatives 19 and 30 were absorbed by oral administration and 1, 3, 5 and 8 hours after administration.
19 is 17.0 μg / ml, 13.3 μg / ml, 14.5 μg / ml and 4.2 μg
Derivative 30 shows 17.3 μg / ml, 16.2
It was found to show plasma concentrations of μg / ml, 13.8 μg / ml and 10.1 μg / ml.

本発明による式(I)で示されるリファマイシン誘導
体は経口投与により、結核症に対して優れた治療効果を
示す。一例として、マウスを用いる実験結核症に於ける
本発明による式(I)で示されるリファマイシン誘導体
の治療効果について示す。
The rifamycin derivative represented by the formula (I) according to the present invention shows an excellent therapeutic effect on tuberculosis by oral administration. As an example, the therapeutic effect of the rifamycin derivative of the formula (I) according to the present invention in experimental tuberculosis using mice will be described.

ddY雄性マウス5週令のものを1群20匹使用した。デ
ュボス(Dubos)培地で培養した結核菌(ミコバクテリ
ウム・ツベルキュロシス菌(Mycobacterium tuberculos
is H37Rv株))濃厚菌液0.2ml(生菌単位数2.4×108
をマウス尾静脈に接種感染させた。感染翌日から、各被
検誘導体を0.2%ツイーン(Tween )80を含む2.5%ア
ラビアゴム懸濁液とし、0.2mlずつ、即ち200μg/マウス
経口投与した。対照には被検化合物を含まない0.2%ツ
イーン80を含む2.5%アラビアゴム溶液を投与した。治
療は1日1回、週6日実施し、治療効果を感染したマウ
スの延命により評価した。
 Male ddY mice, 5 weeks old, were used in a group of 20 mice. De
Mycobacterium tuberculosis cultured in Dubos medium
Mycobacterium tuberculos
is H37Rv strain)) Concentrated bacterial solution 0.2 ml (viable bacterial unit number 2.4 × 108)
Was inoculated into the tail vein of mice. From the day after infection,
The test derivative is 0.2% Tween (Tween 2.5% A including 80)
Make a rubia rubber suspension, 0.2 ml each, that is, 200 μg / mouse
Oral administration. Controls contain 0.2% tuner without test compound.
A 2.5% gum arabic solution containing Ine 80 was administered. Cure
The treatment is carried out once a day, 6 days a week, to
Was evaluated by the prolongation of life.

その結果を第1図に示す。図中、aは感染した時点を
示し、bは処置開始時点を示す。この結果より本発明に
よる誘導体24による治療では治療38日まで死亡例は認め
られず、誘導体24は対照薬としたリファンピシン、米国
特許第4,690,919号明細書に記載された下記の構造を有
する誘導体Aに比べきわめて優れた治療効果を示すこと
が分る。また、米国特許第4,690,919号明細書に記載さ
れた下記の構造を有する誘導体Bおよびヨーロッパ特許
出願第0253340号明細書に記載された下記の構造を有す
る誘導体Cは同様の治療試験に於いてその治療効果は、
リファンピシンには及ばないことが判明している。
The result is shown in FIG. In the figure, a indicates the time of infection, and b indicates the time of starting treatment. From these results, no death was observed in the treatment with the derivative 24 according to the present invention until 38 days after the treatment, and the derivative 24 was used as a control drug, rifampicin, a derivative A having the following structure described in U.S. Patent No. 4,690,919. It can be seen that the treatment effect is extremely excellent. In addition, derivative B having the following structure described in U.S. Pat. No. 4,690,919 and derivative C having the following structure described in European Patent Application No. 0253340 were treated in the same therapeutic test. The effect is
It has been found to be inferior to rifampicin.

更に、1群10匹のddY雄性マウスを用い、前記と全く
同様な系で結核菌感染治療試験を行ない、試験開始40日
後の生存率を求めた。結果を第5表に示す。
Furthermore, a treatment test for M. tuberculosis infection was performed using 10 ddY male mice per group using the same system as described above, and the survival rate 40 days after the start of the test was determined. The results are shown in Table 5.

薬物を投与しない対照群が30%の生存率であり、対照
薬のリファンピシン投与群が80%の生存率であるのに対
し、本発明による誘導体19、32または36を投与した群で
は死亡例は認められなかった。この結果は本発明による
リファマイシン誘導体が結核に対して極めて有効な薬剤
であることを示すものである。
The control group not receiving the drug had a 30% survival rate and the control group receiving rifampicin had a 80% survival rate, whereas the group receiving the derivative 19, 32 or 36 according to the present invention had no death. I was not able to admit. This result indicates that the rifamycin derivative according to the present invention is a very effective drug against tuberculosis.

本発明による第1表に示された新規リファマイシン誘
導体を1000mg/kgの割合でマウスに経口投与したが、何
らの毒性を示さず、本発明による新規リファマイシン誘
導体は低毒性であることが分った。
The novel rifamycin derivative shown in Table 1 according to the present invention was orally administered to mice at a rate of 1000 mg / kg, but showed no toxicity, indicating that the novel rifamycin derivative according to the present invention has low toxicity. Was.

本発明による新規リファマイシン誘導体を有効成分と
して含有する抗菌剤の製剤としては、経口、経腸または
非経口的投与による製剤のいずれをも選ぶことが出来
る。具体的製剤としては、錠剤、カプセル剤、細粒剤、
シロップ剤、坐薬、軟膏剤などをあげることが出来る。
本発明による抗菌剤の製剤の担体としては、経口、経
腸、その他非経口的に投与するために適した有機または
無機の固体または液体の、通常は不活性な薬学的担体材
料が用いられる。具体的には、たとえば結晶性セルロー
ス、ゼラチン、乳糖、澱粉、ステアリン酸マグネシウ
ム、タルク、植物性および動物性脂肪および油、ガム、
ポリアルキレングリコールがある。製剤中の担体に対す
る本発明の抗菌剤の割合は0.2〜100%の間で変化させる
ことが出来る。また、本発明による抗菌剤は、これと両
立性の他の抗菌剤その他の医薬を含むことが出来る。こ
のばあい、本発明による抗菌剤が、その製剤中の主成分
でなくてもよいことはいうまでもない。
As the preparation of the antibacterial agent containing the novel rifamycin derivative according to the present invention as an active ingredient, any preparation by oral, enteral or parenteral administration can be selected. Specific formulations include tablets, capsules, fine granules,
Syrups, suppositories, ointments and the like can be mentioned.
As carriers for the formulation of the antimicrobial agents according to the invention, use is made of organic or inorganic solid or liquid, usually inert pharmaceutical carrier materials which are suitable for oral, enteral or parenteral administration. Specifically, for example, crystalline cellulose, gelatin, lactose, starch, magnesium stearate, talc, vegetable and animal fats and oils, gums,
There are polyalkylene glycols. The ratio of the antimicrobial agent of the present invention to the carrier in the preparation can be varied between 0.2 and 100%. Also, the antimicrobial agent according to the present invention may include other antimicrobial agents compatible with this and other pharmaceuticals. In this case, it goes without saying that the antibacterial agent according to the present invention may not be the main component in the preparation.

本発明による抗菌剤は、一般に所望の作用が副作用を
伴うことなく達成される投与量で投与される。その具体
的な値は医師の判断で決定されるべきであるが、一般に
成人1日当り10mg〜10g、好ましくは20mg〜5g程度で投
与されるのが普通であろう。なお、本発明の抗菌剤は有
効成分として1mg〜5g、好ましくは3mg〜1gの単位の薬学
的製剤として投与することが出来る。
The antimicrobial agent according to the present invention is generally administered at a dose that achieves the desired effect without side effects. The specific value should be determined at the discretion of the physician, but will generally be about 10 mg to 10 g, preferably about 20 mg to 5 g per day for an adult. The antibacterial agent of the present invention can be administered as a pharmaceutical preparation in a unit of 1 mg to 5 g, preferably 3 mg to 1 g, as an active ingredient.

[実施例] 以下に本発明の理解を一層明確なものとするため実施
例をあげて説明するが、これらは例示に過ぎず、本発明
を限定するものではない。なお、実施例中の誘導体の番
号は第1表中の誘導体番号と対応するものである。
[Examples] Hereinafter, examples will be described in order to further clarify the understanding of the present invention. However, these are merely examples, and do not limit the present invention. Note that the derivative numbers in the examples correspond to the derivative numbers in Table 1.

実施例1 (3′,5′−ジメトキシベンゾキサジノリファマイシン
の合成) 3,5−ジメトキシフェノール5.0gと酢酸4mlとの混合物
を氷冷撹拌し、そこへ61%硝酸2.75mlと酢酸12mlとの混
合液を加え、徐々に温度を上げたのち、水100mlを加え
て生じた沈殿を濾取し、水洗および風乾して8.04gの粗
生成物をえた。これをワコーゲル C−200を用いるシ
リカゲルカラムクロマトグラフィー[展開溶媒:クロロ
ホルム]により精製して3,5−ジメトキシ−2−ニトロ
フェノール0.61gを得た。
Example 1 (3 ', 5'-dimethoxybenzoxazinolifamycin
Synthesis of 5.0 g of 3,5-dimethoxyphenol and 4 ml of acetic acid
Was stirred on ice and mixed with 2.75 ml of 61% nitric acid and 12 ml of acetic acid.
Add the mixture, gradually raise the temperature, then add 100 ml of water
The resulting precipitate was collected by filtration, washed with water and air-dried to
The product was obtained. This is Wakogel Using C-200
Ricagel column chromatography [Developing solvent: chloro
Form] to give 3,5-dimethoxy-2-nitro
0.61 g of phenol was obtained.

3,5−ジメトキシ−2−ニトロフェノール0.61gを水25
mlに懸濁し、亜二チオン酸ナトリウム1.5gを加えて80℃
で撹拌した。約20分後、亜二チオン酸ナトリウム1.5gを
追加し、計1時間反応させた。反応液に炭酸水素ナトリ
ウムを加えて中和し、エーテルで5回抽出した。抽出液
を無水硫酸ナトリウムで乾燥後、乾燥剤を濾別し、減圧
下で溶媒を除去し、2−アミノ−3,5−ジメトキシフェ
ノール粗生成物0.42gを得た。
0.61 g of 3,5-dimethoxy-2-nitrophenol was added to water 25
suspension, add 1.5 g of sodium dithionite and add 80 ° C
And stirred. About 20 minutes later, 1.5 g of sodium dithionite was added and reacted for a total of 1 hour. The reaction solution was neutralized by adding sodium hydrogen carbonate, and extracted five times with ether. After the extract was dried over anhydrous sodium sulfate, the desiccant was filtered off, and the solvent was removed under reduced pressure to obtain 0.42 g of a crude 2-amino-3,5-dimethoxyphenol product.

リファマイシンS1.74gと上記で得た2−アミノ−3,5
−ジメトキシフェノール粗生成物0.42gをトルエンで30m
lに溶解し、60℃で24時間撹拌し、反応させた。溶媒を
減圧下で除去し、残渣をエタノール30mlに溶解し、二酸
化マンガン1.74gを加えて室温で27時間撹拌反応させ
た。濾過助剤を用い、二酸化マンガンを濾別し、溶媒を
減圧下に除去した。残渣をワコーゲル C−200を用い
るシリカゲルカラムクロマトグラフィー[展開溶媒:ク
ロロホルム−アセトン(9:1)]により精製し、目的と
する3′,5′−ジメトキシベンゾキサジノリファマイシ
ン1.04gを得た。
 1.74 g of rifamycin S and 2-amino-3,5 obtained above
-Dimethoxyphenol crude product 0.42 g in toluene 30m
and stirred at 60 ° C. for 24 hours to react. Solvent
Remove under reduced pressure, dissolve the residue in 30 ml of ethanol and add diacid
Add 1.74 g of manganese oxide and react at room temperature with stirring for 27 hours.
Was. Using a filter aid, filter the manganese dioxide and remove the solvent.
Removed under reduced pressure. Wako gel for residue Using C-200
Silica gel column chromatography [Developing solvent:
Roloform-acetone (9: 1)]
3 ', 5'-dimethoxybenzoxazinorifamicis
1.04 g was obtained.

薄層クロマトグラフィー RF=0.26紫色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(9:1)] 実施例2 (誘導体1の合成) 実施例1に記載した方法により合成した3′,5′−ジ
メトキシベンゾキサジノリファマイシン0.8gをジメチル
スルホキシド8mlに溶解し、ピペリジン0.18mlと二酸化
マンガン0.8gとを加え、室温で20時間撹拌反応させた。
ついで反応液中に酢酸エチルを加えて希釈し、濾過助剤
を用い二酸化マンガンを濾別し、濾液を順次、水、0.1
規定、塩酸、水、飽和食塩水で洗浄し、無水硫酸ナトリ
ウムで乾燥した。乾燥剤を濾別し、減圧下で溶媒を除去
し、残渣をワコーゲル C−200を用いたシリカゲルカ
ラムクロマトグラフィーで3回[展開溶媒:クロロホル
ム−メタノール(98:2)、酢酸エチル−n−ヘキサン
(7:8)、次いでクロロホルム−アセトン(9:1)]精製
し、目的とする誘導体1を0.1g得た。
Thin layer chromatography RF = 0.26 purple spot [Carrier: silica gel, developing solution
Medium: chloroform-acetone (9: 1)] Example 2 (Synthesis of Derivative 1) 3 ′, 5′-di synthesized by the method described in Example 1
0.8 g of methoxybenzoxazinolifamycin in dimethyl
Dissolve in 8 ml of sulfoxide, add 0.18 ml of piperidine and
0.8 g of manganese was added, and the mixture was stirred and reacted at room temperature for 20 hours.
Then, ethyl acetate was added to the reaction solution to dilute the solution.
The manganese dioxide was filtered off using, and the filtrate was washed with water, 0.1
After washing with normal, hydrochloric acid, water and saturated saline,
Dried with um. Filter off the desiccant and remove the solvent under reduced pressure
And remove the residue from Wakogel Silica gel using C-200
3 times by column chromatography [Developing solvent: chloroform
M-methanol (98: 2), ethyl acetate-n-hexane
(7: 8), then chloroform-acetone (9: 1)]
Thus, 0.1 g of the desired derivative 1 was obtained.

実施例3 (誘導体2および13の合成) 実施例1に記載した方法により合成した3′,5′−ジ
メトキシベンゾキサジノリファマイシン2.0gをジメチル
スルホキシド15mlに溶解しN−イソブチルピペラジン0.
67gと二酸化マンガン0.5gとを加え、室温で28時間撹拌
反応させた。次いで反応液中に酢酸エチルを加えて希釈
し濾過助剤を用い二酸化マンガンを濾別し、濾液を順
次、水、飽和食塩水で洗浄した。次いで減圧下に溶媒を
除去し残渣をワコーゲル C−200を用いたシリカゲル
カラムクロマトグラフィー[展開溶媒:クロロホルム−
アセトン(95:5)]で精製し、目的とする誘導体13を0.
1g得た。また誘導体2を含む溶出液から減圧下で溶媒を
留去し残渣を酢酸エチル−n−ヘキサンより晶折するこ
とにより目的とする誘導体2を0.7g得た。
Example 3 (Synthesis of Derivatives 2 and 13) 3 ′, 5′-Di synthesized by the method described in Example 1
2.0 g of methoxybenzoxazinolifamycin in dimethyl
Dissolve in 15 ml of sulfoxide and add N-isobutylpiperazine 0.
Add 67 g and 0.5 g of manganese dioxide and stir at room temperature for 28 hours
Reacted. Then, add ethyl acetate to the reaction solution and dilute
Manganese dioxide is filtered off using a filter aid and the filtrate is filtered.
Next, it was washed with water and saturated saline. Then remove the solvent under reduced pressure
Remove and remove residue from Wako gel Silica gel using C-200
Column chromatography [Developing solvent: chloroform-
Acetone (95: 5)].
1 g was obtained. The solvent was removed from the eluate containing derivative 2 under reduced pressure.
The residue was crystallized from ethyl acetate-n-hexane.
As a result, 0.7 g of a desired derivative 2 was obtained.

実施例4 (3′−エトキシベンゾキサジノリファマイシンの合
成) 2−ニトロレゾルシノール15.51gをアセトン200mlに
溶解し、炭酸カリウム13.82を加え加熱還流しながらヨ
ウ化エチル8.04mlを1時間かけて滴下した。
Example 4 (Synthesis of 3'-ethoxybenzoxazinorifamycin) 15.51 g of 2-nitroresorcinol was dissolved in 200 ml of acetone, 8.02 ml of ethyl iodide was added dropwise over 1 hour while adding 13.82 of potassium carbonate and heating under reflux. .

滴下終了後17時間加熱還流した。反応液を室温まで放
冷し次いで不溶物を濾別し濾液を減圧下に留去した。残
渣に水を加え塩化メチレンで抽出し塩化メチレン層を分
離した。減圧下で塩化メチレンを除き7.8gの2−ニトロ
レゾルシノールモノエチルエーテル粗生成物を得た。
After the completion of the dropwise addition, the mixture was heated under reflux for 17 hours. The reaction solution was allowed to cool to room temperature, and insolubles were removed by filtration, and the filtrate was distilled off under reduced pressure. Water was added to the residue, and the mixture was extracted with methylene chloride, and the methylene chloride layer was separated. The methylene chloride was removed under reduced pressure to obtain 7.8 g of a crude product of 2-nitroresorcinol monoethyl ether.

上記の方法で得た2−ニトロレゾルシノールモノエチ
ルエーテル粗生成物7.8gをエタノール100mlに溶解し、
1.0gの10%パラジウム炭素を加え水素圧5kg/cm2、室温
で6時間水素添加した。反応液より触媒を濾別し濾液を
減圧下で留去し6.1gの2−アミノレゾルシノールモノエ
チルエーテル粗生成物を得た。
Dissolve 7.8 g of 2-nitroresorcinol monoethyl ether crude product obtained in the above method in 100 ml of ethanol,
1.0 g of 10% palladium carbon was added and hydrogenated at a hydrogen pressure of 5 kg / cm 2 at room temperature for 6 hours. The catalyst was filtered off from the reaction solution, and the filtrate was distilled off under reduced pressure to obtain 6.1 g of a crude product of 2-aminoresorcinol monoethyl ether.

リファマイシンS27.7gと上記の方法で得た2−アミノ
レゾルシノールモノエチルエーテル粗生成物6.1gをトル
エン500mlに溶解し室温で15時間撹拌しついで50℃で2
時間撹拌した、溶媒を減圧下に留去し残渣を350mlのエ
タノールに溶解し10gの二酸化マンガンを加え室温で1
時間撹拌反応させた。
27.7 g of rifamycin S and 6.1 g of a crude product of 2-aminoresorcinol monoethyl ether obtained by the above method are dissolved in 500 ml of toluene, stirred at room temperature for 15 hours, and then stirred at 50 ° C for 2 hours.
After stirring for an hour, the solvent was distilled off under reduced pressure, the residue was dissolved in 350 ml of ethanol, 10 g of manganese dioxide was added, and the mixture was stirred at room temperature for 1 hour.
The mixture was stirred and reacted for hours.

以下、実施例1の場合とほぼ同様に処理、精製し、
3′−エトキシベンゾキサジノリファマイシン12.34gを
得た。
Hereinafter, the treatment and purification were performed in substantially the same manner as in Example 1,
12.34 g of 3'-ethoxybenzoxazinolifamycin were obtained.

薄層クロマトグラフィー Rf=0.28赤紫色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(9:1)] 実施例5 (誘導体3の合成) 実施例4に記載した方法により合成した3′−エトキ
シベンゾキサジノリファマイシン2.0gをジメチルスルホ
キシド15mlに溶解しN−イソプロピルピペラジン0.62g
と二酸化マンガン2.1gとを加え室温で30分間撹拌反応さ
せた。
Thin layer chromatography Rf = 0.28 Red-purple spot [Carrier: silica gel, developing solvent: chloroform-acetone (9: 1)] Example 5 (Synthesis of derivative 3) 3′-ethoxy synthesized by the method described in Example 4 Dissolve 2.0 g of benzoxazinorifamycin in 15 ml of dimethyl sulfoxide and add 0.62 g of N-isopropylpiperazine
And 2.1 g of manganese dioxide were added and reacted with stirring at room temperature for 30 minutes.

以下、実施例2と同様に処理し残渣をワコーゲル
−200を用いたシリカゲルカラムクロマトグラフィーに
より4回[展開溶媒:クロロホルム−アセトン(8:2)
で2回、酢酸エチル、酢酸エチル−メタノール(9:
1)]精製し次いで調製用薄層クロマトグラフィー[シ
リカゲル60F254(メルク社製)、展開溶媒:酢酸エチル
−メタノール(9:1)]で2回精製し、酢酸エチル−n
−ヘキサンの系より晶折し目的とする誘導体3を0.45g
得た。
 Thereafter, the same treatment as in Example 2 was performed and the residue was subjected to Wakogel. C
For silica gel column chromatography using -200
4 times [Developing solvent: chloroform-acetone (8: 2)
Twice with ethyl acetate, ethyl acetate-methanol (9:
1)] After purification, preparative thin-layer chromatography
Ricagel 60F254(Manufactured by Merck), developing solvent: ethyl acetate
-Methanol (9: 1)] twice to give ethyl acetate-n.
0.45 g of the desired derivative 3 which was crystallized from a hexane system
Obtained.

実施例6 (誘導体4の合成) 実施例4に記載した方法により合成した3′−エトキ
シベンゾキサジノリファマイシン2.0gをジメチルスルホ
キシド15mlに溶解しN−イソブチルピペラジン0.7gと二
酸化マンガン0.7gとを加え室温で13時間撹拌反応させ
た。
Example 6 (Synthesis of Derivative 4) 2.0 g of 3'-ethoxybenzoxazinolifamycin synthesized by the method described in Example 4 was dissolved in 15 ml of dimethyl sulfoxide, and 0.7 g of N-isobutylpiperazine and 0.7 g of manganese dioxide were added. The reaction was stirred at room temperature for 13 hours.

以下、実施例3の場合とほぼ同様に処理し残渣をワコ
ーゲル C−200を用いたシリカゲルクロマトグラフィ
ーにより3回[展開溶媒:クロロホルム−アセトン(9:
1)、酢酸エチル−n−ヘキサン(1:1)、酢酸エチル−
n−ヘキサン(2:1)]精製し、目的とする誘導体4を
0.6g得た。
 Thereafter, the treatment was carried out in substantially the same manner as in Example 3, and the residue was washed with wax.
-Gel Silica gel chromatography using C-200
[Developing solvent: chloroform-acetone (9:
1), ethyl acetate-n-hexane (1: 1), ethyl acetate-
n-hexane (2: 1)] to give the desired derivative 4
0.6 g was obtained.

実施例7 (誘導体5の合成) 実施例5のN−イソプロピルピペラジン0.62gに代え
N−イソアミルピペラジン0.75gを用い、他は同様に反
応、処理、精製し、酢酸エチル−n−ヘキサンの系より
晶折し目的とする誘導体5を0.12g得た。
Example 7 (Synthesis of Derivative 5) Instead of 0.62 g of N-isopropylpiperazine of Example 5, 0.75 g of N-isoamylpiperazine was used, and the others were reacted, treated and purified in the same manner. By crystallizing, 0.12 g of the desired derivative 5 was obtained.

実施例8 (3′−プロポキシベンゾキサジノリファマイシンの合
成) 実施例4のヨウ化エチル8.04mlに代えヨウ化プロピル
9.71mlを用い、他は同様に反応、処理し6.7gの2−ニト
ロレゾルシノールモノプロピルエーテル粗生成物を得
た。
Example 8 (Synthesis of 3'-propoxybenzoxazinolifamycin) Propyl iodide was used in place of 8.04 ml of ethyl iodide of Example 4.
Using 9.71 ml, the reaction and treatment were carried out in the same manner as above, to obtain 6.7 g of a crude product of 2-nitroresorcinol monopropyl ether.

上記の方法で得た2−ニトロレゾルシノールモノプロ
ピルエーテル粗生成物6.7gをエタノール90mlに溶解し、
0.8gの10%パラジウム炭素を加え、以下実施例4の場合
とほぼ同様に反応処理し4.31gの2−アミノレゾルシノ
ールモノプロピルエーテル粗生成物を得た。
Dissolve 6.7 g of 2-nitroresorcinol monopropyl ether crude product obtained in the above method in 90 ml of ethanol,
0.8 g of 10% palladium carbon was added, and the reaction was carried out in substantially the same manner as in Example 4 to obtain 4.31 g of a crude product of 2-aminoresorcinol monopropyl ether.

リファマイシンS17.7gと上記の方法で得た2−アミノ
レゾルシノールモノプロピルエーテル粗生成物4.31gを
トルエン300mlに溶解し室温で22時間撹拌反応させた。
反応液を減圧下に留去し残渣を250mlのエタノールに溶
解し8gの二酸化マンガンを加え室温で30分間撹拌反応さ
せた。以下、実施例1の場合とほぼ同様に処理、精製し
3′−プロポキシベンゾキサジノリファマイシン10.7g
を得た。
17.7 g of rifamycin S and 4.31 g of a crude product of 2-aminoresorcinol monopropyl ether obtained by the above method were dissolved in 300 ml of toluene, and reacted by stirring at room temperature for 22 hours.
The reaction solution was distilled off under reduced pressure, the residue was dissolved in 250 ml of ethanol, 8 g of manganese dioxide was added, and the mixture was stirred and reacted at room temperature for 30 minutes. Thereafter, treatment and purification were carried out in substantially the same manner as in Example 1 to obtain 10.7 g of 3'-propoxybenzoxazininorifamycin.
I got

薄層クロマトグラフィー Rf=0.30赤紫色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(9:1)] 実施例9 (誘導体6の合成) 実施例8に記載した方法により合成した3′−プロポ
キシベンゾキサジノリファマイシン1.7gをジメチルスル
ホキシド10mlに溶解し、N−イソブチルピペラジン0.44
gと二酸化マンガン0.6gとを加え室温で16時間撹拌反応
させた。以下、実施例6の場合とほぼ同様に処理、精製
し目的とする誘導体6を0.65g得た。
Thin layer chromatography Rf = 0.30 Red-purple spot [Carrier: silica gel, developing solvent: chloroform-acetone (9: 1)] Example 9 (Synthesis of derivative 6) 3′-propoxy synthesized by the method described in Example 8 1.7 g of benzoxazinolifamycin was dissolved in 10 ml of dimethyl sulfoxide, and 0.44 ml of N-isobutylpiperazine was dissolved.
g and 0.6 g of manganese dioxide were added and stirred at room temperature for 16 hours. Thereafter, treatment and purification were conducted in substantially the same manner as in Example 6 to obtain 0.65 g of the desired derivative 6.

実施例10 (3′−アリルオキシベンゾキサジノリファマイシンの
合成) 実施例4のヨウ化エチル8.04mlの代りに臭化アリル8.
46mlを用いたほかは実施例4と同様に反応、処理し12.2
gの2−ニトロレゾルシノールモノアリルエーテル粗生
成物を得た。
Example 10 (Synthesis of 3'-allyloxybenzoxazinolifamycin) Instead of 8.04 ml of ethyl iodide of Example 4, allyl bromide was used.
The reaction and treatment were conducted in the same manner as in Example 4 except that 46 ml was used.
g of 2-nitroresorcinol monoallyl ether crude product was obtained.

上記の方法で得た2−ニトロレゾルシノールモノアリ
ルエーテル粗生成物12.2gの500ml水懸濁溶液中に25gの
亜二チオン酸ナトリウムを加え80℃で30分間撹拌反応さ
せ再度25gの亜二チオン酸ナトリウムを加え80℃で1時
間撹拌反応させた。反応液を放冷し、室温とし炭酸水素
ナトリウムで中和しクロロホルムで抽出した。クロロホ
ルムを減圧下に留去し、12.8gの2−アミノレゾルシノ
ールモノアリルエーテル粗生成物を得た。
25 g of sodium dithionite was added to a suspension of 12.2 g of a crude product of 2-nitroresorcinol monoallyl ether obtained in the above manner in 500 ml of water, and the mixture was stirred and reacted at 80 ° C. for 30 minutes. Sodium was added and the mixture was stirred and reacted at 80 ° C. for 1 hour. The reaction was allowed to cool, brought to room temperature, neutralized with sodium bicarbonate and extracted with chloroform. Chloroform was distilled off under reduced pressure to obtain 12.8 g of a crude product of 2-aminoresorcinol monoallyl ether.

リファマイシンS27.0gと上記の方法で得た2−アミノ
レゾルシノールモノアリルエーテル粗生成物12.8gをト
ルエン500mlに溶解し室温で15時間撹拌反応させた。反
応液を減圧下に留去し残渣を400mlのエタノールに溶解
し10gの二酸化マンガンを加え室温で40分間撹拌反応さ
せた。以下、実施例1の場合とほぼ同様に処理精製し
3′−アリルオキシベンゾキサジノリファマイシン4.1g
を得た。
27.0 g of rifamycin S and 12.8 g of a crude product of 2-aminoresorcinol monoallyl ether obtained by the above method were dissolved in 500 ml of toluene, and reacted by stirring at room temperature for 15 hours. The reaction solution was distilled off under reduced pressure, the residue was dissolved in 400 ml of ethanol, 10 g of manganese dioxide was added, and the mixture was stirred and reacted at room temperature for 40 minutes. Thereafter, treatment and purification were conducted in substantially the same manner as in Example 1 to obtain 4.1 g of 3'-allyloxybenzoxazininorifamycin.
I got

薄層クロマトグラフィー Rf値=0.27赤紫色スポット[担体:シリカゲル、展開
溶媒:クロロホルム−アセトン(9:1)] 実施例11 (誘導体7の合成) 実施例10に記載の方法により合成した3′−アリルオ
キシベンゾキサジノリファマイシン2.0gをジメチルスル
ホキシド15mlに溶解しN−イソブチルピペラジン0.51g
と二酸化マンガン1.0gとを加え室温で70分間撹拌反応さ
せた。以下、実施例3と同様に処理し残渣をワコーゲル
C−200を用いたシリカゲルクロマトグラフィーで2
回[展開溶媒:酢酸エチル、酢酸エチル−n−ヘキサン
(2:1)]精製し、次いで酢酸エチル−n−ヘキサンよ
り晶折し目的とする誘導体7を1.3g得た。
Thin layer chromatography Rf value = 0.27 Red-purple spot [Carrier: silica gel, developed
Solvent: chloroform-acetone (9: 1)] Example 11 (Synthesis of Derivative 7)
2.0 g of xybenzoxazinolifamycin in dimethyl sulf
Dissolved in 15 ml of hydroxide and 0.51 g of N-isobutylpiperazine
And 1.0 g of manganese dioxide were added and stirred at room temperature for 70 minutes.
I let you. Thereafter, the same treatment as in Example 3 was performed, and the residue was subjected to Wakogel.
2 by silica gel chromatography using C-200
Times [Developing solvent: ethyl acetate, ethyl acetate-n-hexane]
(2: 1)] purification, then ethyl acetate-n-hexane
The crystals were recrystallized to obtain 1.3 g of the desired derivative 7.

実施例12 (4′−エトキシベンゾキサジノリファマイシンの合
成) 4−エトキシ−2−ニトロフェノール2.87gを用い、
実施例1と同様の操作により2−アミノ−4−エトキシ
フェノール1.62gを得た。
Example 12 (Synthesis of 4'-ethoxybenzoxazinolifamycin) Using 2.87 g of 4-ethoxy-2-nitrophenol,
By the same operation as in Example 1, 1.62 g of 2-amino-4-ethoxyphenol was obtained.

トルエン200mlにリファマイシンS6.96gと2−アミノ
−4−エトキシフェノール1.62gとを加え、60℃で31時
間撹拌した、反応混合物から溶媒を減圧留去したのち、
残渣をエタノール200mlに溶解して二酸化マンガン6.96g
を加え、室温で4.5時間撹拌した。この反応混合物から
不溶物を濾別し、溶媒を減圧留去して得られた残渣をシ
リカゲルカラムクロマトグラフィーで2回[展開溶媒:
クロロホルム−アセトン(9:1)、次いでクロロホルム
−アセトン(19:1)]精製し、目的とする4′−エトキ
シベンゾキサジノリファマイシン1.34gを得た。
After adding 6.96 g of rifamycin S and 1.62 g of 2-amino-4-ethoxyphenol to 200 ml of toluene and stirring at 60 ° C. for 31 hours, the solvent was distilled off from the reaction mixture under reduced pressure.
Dissolve the residue in ethanol 200ml 6.96g manganese dioxide
Was added and stirred at room temperature for 4.5 hours. The reaction mixture was filtered to remove insolubles, the solvent was distilled off under reduced pressure, and the residue obtained was subjected to silica gel column chromatography twice (developing solvent:
Chloroform-acetone (9: 1) and then chloroform-acetone (19: 1)] were purified to obtain 1.34 g of the desired 4'-ethoxybenzoxazininorifamycin.

薄層クロマトグラフィー Rf=0.29暗赤色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(9:1)] 実施例13 (誘導体8の合成) 実施例12で得られた4′−エトキシベンゾキサジノリ
ファマイシン0.60gをジメチルスルホキシド5mlに溶解
し、ピロリジン0.12mlと二酸化マンガン0.60gとを加え
室温で14.5時間撹拌した。次いで反応混合物に酢酸エチ
ル70mlを加えて不溶物を濾別し、濾液を希食塩水で3回
および飽和食塩水で1回洗浄して、無水硫酸ナトリウム
で乾燥した。溶媒を減圧留去して得られた残渣をシリカ
ゲルカラムクロマトグラフィー[展開溶媒:酢酸エチル
−n−ヘキサン(1:1)]に付し、次いで酢酸エチルよ
り晶析して目的とする誘導体8を0.22g得た。
Thin layer chromatography Rf = 0.29 Dark red spot [carrier: silica gel, developing solvent: chloroform-acetone (9: 1)] Example 13 (Synthesis of derivative 8) 4′-ethoxybenzoxazinori obtained in Example 12 Famycin (0.60 g) was dissolved in dimethyl sulfoxide (5 ml), and pyrrolidine (0.12 ml) and manganese dioxide (0.60 g) were added, followed by stirring at room temperature for 14.5 hours. Next, 70 ml of ethyl acetate was added to the reaction mixture, and insolubles were filtered off. The filtrate was washed three times with a dilute saline solution and once with a saturated saline solution, and dried over anhydrous sodium sulfate. The residue obtained by evaporating the solvent under reduced pressure was subjected to silica gel column chromatography [developing solvent: ethyl acetate-n-hexane (1: 1)], and then crystallized from ethyl acetate to obtain the desired derivative 8. 0.22 g was obtained.

実施例14 (誘導体9の合成) 実施例13のピロリジンの代りにピペリジン0.14mlを用
いたほかは実施例13と同様に処理、精製し、目的とする
誘導体9を0.26g得た。
Example 14 (Synthesis of Derivative 9) Except that 0.14 ml of piperidine was used in place of pyrrolidine of Example 13, treatment and purification were carried out in the same manner as in Example 13 to obtain 0.26 g of the desired derivative 9.

実施例15 (誘導体10の合成) 実施例12に記載した方法により合成した4′−エトキ
シベンゾキサジノリファマイシン0.37gをエタノール5ml
に溶解し、N−イソブチルピペラジン0.13gと二酸化マ
ンガン0.38gとを加え、室温で24時間撹拌反応させた。
次いで実施例3と同様に処理し、残渣をワコーゲル
−200を用いるシリカゲルカラムクロマトグラフィーで
3回[展開溶媒:クロロホルム−アセトン(9:1)、ク
ロロホルム−メタノール(98:2)、次いでクロロホルム
−酢酸エチル(2:3)]精製し、目的とする誘導体10を
0.26g得た。
Example 15 (Synthesis of derivative 10) 4'-ethoxy synthesized by the method described in Example 12
0.37 g of cibenzoxazinolifamycin in 5 ml of ethanol
In 0.13 g of N-isobutylpiperazine and
0.38 g of gangane was added, and the mixture was stirred and reacted at room temperature for 24 hours.
Next, the same treatment as in Example 3 was carried out, and the residue was subjected to Wako gel. C
Silica gel column chromatography using -200
3 times [Developing solvent: chloroform-acetone (9: 1),
Roloform-methanol (98: 2), then chloroform
-Ethyl acetate (2: 3)] to give the desired derivative 10
0.26 g was obtained.

実施例16 (4′−プロポキシベンゾキサジノリファマイシンの合
成) 4−プロポキシフェノール10.0gの100mlのN,N−ジメ
チルホルムアミド溶液中に炭酸カリウム15.0gとヨウ化
プロピル10mlを加え室温で3日間反応させた。不溶物を
濾別し濾液を減圧下に留去した。残渣に水を加え生じた
結晶を濾取し順次水、希水酸化ナトリウム水溶液、希塩
酸、水で洗浄した。熱エタノール−水より晶析し、1,4
−ジプロポキシベンゼンを10g得た。得られた1,4−ジプ
ロポキシベンゼン10gを酢酸25mlに溶解し、氷冷下に61
%硝酸7.7mlをゆっくりと加え徐々に室温とし、室温で
更に1時間反応させた。反応液を氷水中に注ぎ、クロロ
ホルムで2回抽出し溶媒を減圧下に留去し1,4−ジプロ
ポキシ−2−ニトロベンゼンの粗生成物を得た。得られ
た1,4−ジプロポキシ−2−ニトロベンゼンをトルエン3
0mlに溶解し、塩化アルミニウム2.7gを加え室温で6時
間反応させた。反応液を氷水中に注ぎ塩酸でpH1〜2と
しエーテルで転溶した。希水酸化ナトリウム水溶液を加
え水層へ抽出し有機層を除いた後、水層を塩酸でpH3と
しエーテルで抽出した。抽出液を硫酸ナソリウムで乾燥
し溶媒を留去し2−ニトロ−4−プロポキシフェノール
を5.4g得た。得られた2−ニトロ−4−プロポキシフェ
ノール5.0gを亜二チオン酸ナトリウム41.2gを水300mlに
溶解したものに加え60〜75℃に加熱し撹拌し、水溶液の
黄色が消えるまで亜二チオン酸ナトリウムを追加した。
反応液を炭酸水素ナトリウムで中和し食塩で飽和させエ
ーテルで抽出した。抽出液を硫酸ナトリウムで乾燥後溶
媒を留去し2−アミノ−4−プロポキシフェノール2.5g
を得た。
Example 16 (Synthesis of 4'-propoxybenzoxazinolifamycin) 15.0 g of potassium carbonate and 10 ml of propyl iodide were added to a solution of 10.0 g of 4-propoxyphenol in 100 ml of N, N-dimethylformamide and reacted at room temperature for 3 days. I let it. The insolubles were removed by filtration, and the filtrate was distilled off under reduced pressure. Water was added to the residue, and the resulting crystals were collected by filtration and washed sequentially with water, dilute aqueous sodium hydroxide solution, dilute hydrochloric acid and water. Crystallized from hot ethanol-water, 1,4
-10 g of dipropoxybenzene were obtained. 10 g of the obtained 1,4-dipropoxybenzene was dissolved in 25 ml of acetic acid, and
% Nitric acid was slowly added, and the temperature was gradually raised to room temperature, followed by further reaction at room temperature for 1 hour. The reaction solution was poured into ice water, extracted twice with chloroform, and the solvent was distilled off under reduced pressure to obtain a crude product of 1,4-dipropoxy-2-nitrobenzene. The resulting 1,4-dipropoxy-2-nitrobenzene is converted to toluene 3
The mixture was dissolved in 0 ml, and 2.7 g of aluminum chloride was added, followed by a reaction at room temperature for 6 hours. The reaction solution was poured into ice water, adjusted to pH 1 to 2 with hydrochloric acid, and transferred with ether. After adding a dilute aqueous sodium hydroxide solution and extracting the aqueous layer to remove the organic layer, the aqueous layer was adjusted to pH 3 with hydrochloric acid and extracted with ether. The extract was dried over sodium sulfate and the solvent was distilled off to obtain 5.4 g of 2-nitro-4-propoxyphenol. 5.0 g of the obtained 2-nitro-4-propoxyphenol was added to a solution prepared by dissolving 41.2 g of sodium dithionite in 300 ml of water, and the mixture was heated and stirred at 60 to 75 ° C. until the yellow color of the aqueous solution disappeared. Sodium was added.
The reaction solution was neutralized with sodium hydrogen carbonate, saturated with sodium chloride, and extracted with ether. The extract was dried over sodium sulfate, and the solvent was distilled off. 2.5 g of 2-amino-4-propoxyphenol
I got

リファマイシンS6.96gをトルエン100mlに溶解し、上
記で得た2−アミノ−4−プロポキシフェノール1.67を
加え室温で3日間反応させた。溶媒を減圧下に留去しエ
タノール100mlと二酸化マンガン8.8gを加え30分間撹拌
後二酸化マンガンを濾別し、溶媒を減圧下留去した。残
渣をワコーゲル C−200を用いたシリカゲルカラムク
ロマトグラフィー[展開溶媒:クロロホルム−アセトン
(9:1)]で精製し目的とする4′−プロポキシベンゾ
キサジノリファマイシンを0.34g得た。
 Dissolve 6.96 g of rifamycin S in 100 ml of toluene.
2-amino-4-propoxyphenol 1.67 obtained above
The reaction was performed at room temperature for 3 days. The solvent is distilled off under reduced pressure.
Add 100 ml of ethanol and 8.8 g of manganese dioxide and stir for 30 minutes
Thereafter, manganese dioxide was filtered off, and the solvent was distilled off under reduced pressure. Remaining
Wako gel residue Silica gel column using C-200
Chromatography [Developing solvent: chloroform-acetone
(9: 1)] and the desired 4'-propoxybenzo
0.34 g of xazinorifamycin was obtained.

薄層クロマトグラフィー Rf=0.32赤外線スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(9:1)] 実施例17 (誘導体11の合成) 実施例16に記載した方法により合成した4′−プロポ
キシベンゾキサジノリファマイシン0.34gをジメチルス
ルホキシド5mlに溶解しN−イソブチルピペラジン230mg
と二酸化マンガン0.35gを加え室温で3日間撹拌反応さ
せた。反応液に酢酸エチルを加え二酸化マンガンを濾別
し濾液を飽和食塩水で3回洗い有機層を硫酸ナトリウム
で乾燥し溶媒を減圧下に留去した。残渣をワコーゲル
C−200を用いるシリカゲルカラムクロマトグラフィー
で2回[展開溶媒:クロロホルム−アセトン(9:1)、
クロロホルム−メタノール(98:2)]精製し次いで調製
用薄層クロマトグラフィー[シリカゲル60 F254(メル
ク社製)、展開溶媒:クロロホルム−アセトン(9:
1)]で精製し目的とする誘導体11を0.05g得た。
Thin layer chromatography Rf = 0.32 Infrared spot [Carrier: silica gel, developing solution
Medium: chloroform-acetone (9: 1)] Example 17 (Synthesis of Derivative 11) 4′-propo synthesized according to the method described in Example 16
0.34 g of xybenzoxazinolifamycin in dimethyls
Dissolved in 5 ml of rufoxide and 230 mg of N-isobutylpiperazine
And manganese dioxide (0.35 g) were added and stirred at room temperature for 3 days.
I let you. Ethyl acetate was added to the reaction solution, and manganese dioxide was filtered off.
The filtrate is washed three times with a saturated saline solution, and the organic layer is washed with sodium sulfate.
And the solvent was distilled off under reduced pressure. Wako gel for residue
Silica gel column chromatography using C-200
[Developing solvent: chloroform-acetone (9: 1),
Chloroform-methanol (98: 2)]
Thin layer chromatography [silica gel 60 F254(Mel
Developing solvent: chloroform-acetone (9:
1)] to obtain 0.05 g of the desired derivative 11.

実施例18 (4′−ブトキシベンゾキサジノリファマイシンの合
成) 実施例16の4−プロポキシフェノール10.0gに代え4
−ブトキシフェノール10.0gを用い、またヨウ化プロピ
ル10mlに代え臭化ブチル10mlを用い、他は同様に反応、
処理し2−アミノ−4−ブトキシフェノール3.0gを得
た。次いで、実施例16の2−アミノ−4−プロポキシフ
ェノール1.67gに代え上記で得られた2−アミノ−4−
ブトキシフェノール1.81gを用い、他は同様に反応、処
理、精製し目的とする4′−ブトキシベンゾキサジノリ
ファマイシンを0.84g得た。
Example 18 (Synthesis of 4'-butoxybenzoxazinolifamycin) In place of 10.0 g of 4-propoxyphenol in Example 16, 4
Using 10.0 g of butoxyphenol, 10 ml of butyl bromide instead of 10 ml of propyl iodide, and the other
This was treated to give 3.0 g of 2-amino-4-butoxyphenol. Then, 2-amino-4-propoxyphenol obtained above was replaced with 1.67 g of 2-amino-4-propoxyphenol in Example 16.
Using butoxyphenol (1.81 g), the other reaction, treatment and purification were carried out in the same manner to obtain 0.84 g of the desired 4'-butoxybenzoxazinolifamycin.

薄層クロマトグラフィー Rf=0.35赤紫色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(9:1)] 実施例19 (誘導体12の合成) 実施例17の4′−プロポキシベンゾキサジノリファマ
イシン0.34gに代え実施例18に記載した方法により合成
した4′−ブトキシベンゾキサジノリファマイシン0.84
gを用い、またN−イソブチルピペラジンと二酸化マン
ガンをそれぞれ0.56g、0.85g用い、他は同様に反応、処
理、精製し目的とする誘導体12を0.03g得た。
Thin layer chromatography Rf = 0.35 Red-purple spot [Carrier: silica gel, developing solvent: chloroform-acetone (9: 1)] Example 19 (Synthesis of Derivative 12) 4′-Propoxybenzoxazininorifamycin 0.34 of Example 17 4'-butoxybenzoxazinolinifamicin 0.84 synthesized by the method described in Example 18 in place of g
g, N-isobutylpiperazine and manganese dioxide were used in 0.56 g and 0.85 g, respectively, and the others were reacted, treated and purified in the same manner to obtain 0.03 g of the desired derivative 12.

実施例20 (5′−エトキシベンゾキサジノリファマイシンの合
成) 3−エトキシフェノール25.2mlをエーテル300mlに溶
解し、150mlの水を加え次いで氷冷下61%硝酸20mlをゆ
っくりと加え室温で1時間反応させた。有機層を取り
水、炭酸水素ナトリウム水溶液、飽和食塩水で洗い硝酸
ナトリウムで乾燥させ溶媒を留去した。残渣をワコーゲ
C−200を用いるシリカゲルカラムクロマトグラフ
ィーで2回(展開溶媒:クロロホルム)精製し5−エト
キシ−2−ニトロフェノールを10.1g得た。得られた5
−エトキシ−2−ニトロフェノール3.7gをメタノール20
0mlに溶解し、10%パラジウム炭素0.3gを加え水素圧5kg
/cm2で2時間水素添加反応を行なった。触媒を濾別後、
溶媒を留去し2−アミノ−5−エトキシフェノールを3.
0g得た。
Example 20 (Synthesis of 5'-ethoxybenzoxazinolifamycin
Dissolve 25.2 ml of 3-ethoxyphenol in 300 ml of ether
Thaw, add 150 ml of water and then add 20 ml of 61% nitric acid under ice-cooling.
The mixture was added slowly and reacted at room temperature for 1 hour. Take the organic layer
Wash with water, aqueous sodium bicarbonate and saturated saline nitric acid
It was dried over sodium and the solvent was distilled off. Wakoge residue
Le Silica gel column chromatography using C-200
Purification twice (developing solvent: chloroform)
10.1 g of xy-2-nitrophenol was obtained. 5 obtained
3.7 g of ethoxy-2-nitrophenol in methanol 20
Dissolve in 0 ml, add 0.3 g of 10% palladium on carbon, and add hydrogen pressure of 5 kg
/cmTwoFor 2 hours. After filtering off the catalyst,
The solvent was distilled off to give 2-amino-5-ethoxyphenol.
0 g was obtained.

リファマイシンS13.9gをトルエン200mlに溶解し、上
記で得た2−アミノ−5−エトキシフェノール3.0gを加
え室温で3日間反応させた。溶媒を減圧下に留去しエタ
ノール200mlと二酸化マンガン17.5gを加え室温で30分間
撹拌後二酸化マンガンを濾別し溶媒を減圧下に留去し
た。残渣をワコーゲル C−200を用いるシリカゲルカ
ラムクロマトグラフィーで2回[展開溶媒:クロロホル
ム−アセトン(9:1)、クロロホルム−メタノール(99:
1)]精製し目的とする5′−エトキシベンゾキサジノ
リファマイシンを1.6g得た。
 Dissolve 13.9 g of rifamycin S in 200 ml of toluene.
3.0 g of 2-amino-5-ethoxyphenol obtained above was added.
The reaction was carried out at room temperature for 3 days. The solvent is distilled off under reduced pressure and the ethanol
Add 200 ml of ethanol and 17.5 g of manganese dioxide for 30 minutes at room temperature
After stirring, manganese dioxide was filtered off and the solvent was distilled off under reduced pressure.
Was. Wako gel for residue Silica gel using C-200
Two times by column chromatography [Developing solvent: chloroform
M-acetone (9: 1), chloroform-methanol (99:
1)] Purified 5'-ethoxybenzoxazino
1.6 g of rifamycin was obtained.

薄層クロマトグラフィー Rf=0.36赤褐色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(9:1)] 実施例21 (誘導体14の合成) 実施例20に記載した方法により合成した5′−エトキ
シベンゾキサジノリファマイシン1.6gをジメチルスルホ
キシド10mlに溶解しN−イソブチルピペラジン0.28gと
二酸化マンガン1.7gを加え1週間撹拌反応させた。その
間、N−イソブチルピペラジン0.83gを3回に分けて追
加した。反応液に酢酸エチルを加え二酸化マンガンを濾
別し濾液を飽和食塩水で3回洗浄し、有機層を硝酸ナト
リウムで乾燥させ溶媒を減圧下に留去した。残渣をワコ
ーゲル C−200を用いるシリカゲルカラムクロマトグ
ラフィーで3回[展開溶媒:クロロホルム−酢酸エチル
(2:1)、(1:1)、(3:2)]精製し、ついでYMC−Pack
S−343 I−15ODS[山善(株)]を用いる高速分取液体
クロマトグラフィーで2回[展開溶媒:メタノール]精
製し、エーテル−n−ヘキサンの系より晶析し、目的と
する誘導体14を0.22g得た。
Thin layer chromatography Rf = 0.36 reddish brown spot [Carrier: silica gel, developing solution
Medium: chloroform-acetone (9: 1)] Example 21 (Synthesis of Derivative 14) 5′-ethoxy synthesized by the method described in Example 20
1.6 g of cibenzoxazinolifamycin in dimethyl sulfo
Dissolved in 10 ml of oxide and 0.28 g of N-isobutylpiperazine
1.7 g of manganese dioxide was added and reacted with stirring for one week. That
During this time, add 0.83 g of N-isobutylpiperazine in three
Added. Ethyl acetate was added to the reaction solution, and manganese dioxide was filtered off.
Separately, the filtrate was washed three times with saturated saline, and the organic layer was washed with sodium nitrate.
It was dried over lithium and the solvent was distilled off under reduced pressure. Waco the residue
-Gel Silica gel column chromatography using C-200
Raffy three times [Developing solvent: chloroform-ethyl acetate
(2: 1), (1: 1), (3: 2)], followed by YMC-Pack
 High speed preparative liquid using S-343 I-15ODS [Yamazen Co., Ltd.]
Chromatography twice [Developing solvent: methanol]
And crystallized from ether-n-hexane system.
Thus, 0.22 g of derivative 14 was obtained.

実施例22 (6′−メトキシベンゾキサジノリファマイシンの合
成) 2−メトキシフェノール15.0gをエーテル−水の二層
系に溶解し、61%硝酸12.7mlを滴下し、室温で15分間撹
拌反応させた。エーテル層を分離し、無水硫酸ナトリウ
ムで乾燥した。乾燥剤を濾別し、減圧下に溶媒を除去し
た。残渣をワコーゲル C−200を用いるシリカゲルカ
ラムクロマトグラフィー[展開溶媒:クロロホルム−n
−ヘキサン(1:1)]に付して精製し2−メトキシ−6
−ニトロフェノール4.72gを得た。
Example 22 Synthesis of (6'-methoxybenzoxazinolifamycin
1) 2-methoxyphenol 15.0g in ether-water two layers
Dissolve in the system, add 12.7 ml of 61% nitric acid dropwise, and stir at room temperature for 15 minutes.
The mixture was stirred and reacted. Separate the ether layer and dry with anhydrous sodium sulfate.
Dried. The drying agent is filtered off and the solvent is removed under reduced pressure.
Was. Wako gel for residue Silica gel using C-200
Ram chromatography [Developing solvent: chloroform-n
-Hexane (1: 1)] to give 2-methoxy-6.
4.72 g of nitrophenol were obtained.

2−メトキシ−6−ニトロフェノール4.72gを水100m
l、メタノール30mlの混合液に懸濁し、亜二チオン酸ナ
トリウム29.3gを加えて60℃で撹拌し、均一の無色溶液
となるまで反応させた。反応液に飽和食塩水を加え、酢
酸エチルで抽出し、無水硫酸ナトリウムで乾燥した。乾
燥剤を濾別し、減圧下に溶媒を除去し、2−アミノ−6
−メトキシフェノール粗生成物3.65gを得た。
4.72 g of 2-methoxy-6-nitrophenol in 100 m of water
l, 30 ml of methanol was suspended, 29.3 g of sodium dithionite was added, and the mixture was stirred at 60 ° C and reacted until a uniform colorless solution was obtained. Saturated saline was added to the reaction solution, extracted with ethyl acetate, and dried over anhydrous sodium sulfate. The drying agent was filtered off, the solvent was removed under reduced pressure, and 2-amino-6 was removed.
3.65 g of crude methoxyphenol product were obtained.

リファマイシンS18.65gと上記で得られた2−アミノ
−6−メトキシフェノール粗生成物3.65gをトルエン400
mlに溶解し、室温で12日間撹拌し、反応させた。不要物
を濾別し、濾液から溶媒を減圧下に除去した。残渣をエ
タノール300mlに溶解し、二酸化マンガン9.0gを加えて
室温にて7時間撹拌反応させた。濾過助剤を用い、二酸
化マンガンを濾別し、溶媒を減圧下留去した。残渣をワ
コーゲル C−200を用いるシリカゲルカラムクロマト
グラフィー[展開溶媒:クロロホルム−メタノール(9
9:1)]に付して精製し、目的とする6′−メトキシベ
ンゾキサジノリファマイシン10.15gを得た。
 Rifamycin S 18.65 g and the 2-amino obtained above
3.65 g of crude product of -6-methoxyphenol was dissolved in toluene 400
The mixture was dissolved in ml, stirred at room temperature for 12 days, and reacted. Unnecessary things
Was removed by filtration, and the solvent was removed from the filtrate under reduced pressure. Residue
Dissolve in 300 ml of ethanol and add 9.0 g of manganese dioxide
The reaction was stirred at room temperature for 7 hours. Using a filter aid, diacid
Manganese oxide was filtered off and the solvent was distilled off under reduced pressure. The residue
Kogel Silica gel column chromatography using C-200
[Development solvent: chloroform-methanol (9
9: 1)] and purify the desired 6'-methoxy
10.15 g of nnzoxazinorifamycin were obtained.

薄層クロマトグラフィー Rf=0.21暗褐色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(9:1)] 実施例23 (誘導体15の合成) 実施例22に記載した方法により合成した6′−メトキ
シベンゾキサジノリファマイシン8.0gをジメチルスルホ
キシド30mlに溶解し、ピロリジン0.46mlと二酸化マンガ
ン1.5gとを加え、室温で5日間撹拌反応させた。次いで
反応液中に酢酸エチルを加えて希釈し、不溶物を濾別
し、濾液を順次、水、飽和食塩水で洗浄し、無水硫酸ナ
トリウムにて乾燥した。乾燥剤を濾別し、減圧下に溶媒
を除去した。残渣をワコーゲル C−200を用いたシリ
カゲルカラムクロマトグラフィーで2回[展開溶媒:酢
酸エチル、次いでクロロホルム−メタノール(99:1)]
精製し、酢酸エチル−n−ヘキサンの系より晶析し、目
的とする誘導体15を0.42g得た。
Thin layer chromatography Rf = 0.21 Dark brown spot [Carrier: silica gel, developing solution
Medium: chloroform-acetone (9: 1)] Example 23 (Synthesis of Derivative 15) 6′-Methoxy synthesized by the method described in Example 22
8.0 g of cibenzoxazinolifamycin in dimethyl sulfo
Dissolve in 30 ml of oxide, 0.46 ml of pyrrolidine and manganese dioxide
And 1.5 g of the reaction mixture was added, and the mixture was stirred and reacted at room temperature for 5 days. Then
Ethyl acetate was added to the reaction mixture to dilute it, and insolubles were removed by filtration.
The filtrate was washed successively with water and saturated saline, and dried over anhydrous sodium sulfate.
Dry with thorium. The drying agent is filtered off and the solvent is removed under reduced pressure.
Was removed. Wako gel for residue Silicate using C-200
Twice by Kagel column chromatography [Developing solvent: vinegar
Ethyl acid, then chloroform-methanol (99: 1)]
The product was purified and crystallized from ethyl acetate-n-hexane.
0.42 g of the target derivative 15 was obtained.

実施例24 (誘導体16の合成) 実施例22に記載した方法により合成した6′−メトキ
シベンゾキサジノリファマイシン6.49gをジメチルスル
ホキシド60mlに溶解し、N−メチルピペラジン1.77mlに
二酸化マンガン3.0gとを加え、室温で一昼夜撹拌反応さ
せた。以下、実施例23と同様に処理し、シリカゲルカラ
ムクロマトグラフィーで2回[展開溶媒:クロロホルム
−メタノール(95:5)]精製し、酢酸エチル−n−ヘキ
サンの系より晶析し、目的とする誘導体16を0.56g得
た。
Example 24 (Synthesis of Derivative 16) 6.49 g of 6'-methoxybenzoxazinolifamycin synthesized by the method described in Example 22 was dissolved in 60 ml of dimethyl sulfoxide, and 3.0 g of manganese dioxide was added to 1.77 ml of N-methylpiperazine. Was added, and the mixture was stirred and reacted at room temperature for 24 hours. Thereafter, the same treatment as in Example 23 was carried out, purified twice by silica gel column chromatography [developing solvent: chloroform-methanol (95: 5)], and crystallized from a system of ethyl acetate-n-hexane. 0.56 g of derivative 16 was obtained.

実施例25 (誘導体17の合成) 実施例22に記載した方法により合成した6′−メトキ
シベンゾキサジノリファマイシン5.0gをジメチルスルホ
キシド50mlに溶解し、N−イソブチルピペラジン1.05g
に二酸化マンガン2.5gとを加え、室温で4日間撹拌反応
させた。以下、実施例23と同様に処理、精製、晶析し、
目的とする誘導体17を0.70g得た。
Example 25 (Synthesis of Derivative 17) 5.0 g of 6'-methoxybenzoxazinorifamycin synthesized by the method described in Example 22 was dissolved in 50 ml of dimethyl sulfoxide, and 1.05 g of N-isobutylpiperazine was dissolved.
Was added with 2.5 g of manganese dioxide, and the mixture was stirred and reacted at room temperature for 4 days. Hereinafter, the same treatment, purification and crystallization as in Example 23,
0.70 g of the desired derivative 17 was obtained.

実施例26 (6′−エトキシベンゾキサジノリファマイシンの合
成) 2−エトキシフェノール25.8gを用い、実施例22と同
様の操作によりニトロ化し、還元して2−アミノ−6−
エトキシフェノール粗生成物10.9gを得た。
Example 26 (Synthesis of 6'-ethoxybenzoxazinolifamycin) Using 25.8 g of 2-ethoxyphenol, nitration was carried out in the same manner as in Example 22, and reduced to give 2-amino-6-aminophenol.
10.9 g of a crude product of ethoxyphenol was obtained.

リファマイシンS49.5gと上記で得た2−アミノ−6−
エトキシフェノール粗生成物10.9gをトルエン1に溶
解し、室温にて18日間撹拌反応させた。不溶物を濾別
し、減圧下に溶媒を除去した。残渣をエタノール300ml
に溶解し、二酸化マンガン15.0gを加え、室温にて一昼
夜撹拌した。濾過助剤を用い、二酸化マンガンを濾別
し、溶媒を減圧下に留去した、残渣をシリカゲルカラム
クロマトグラフィー(展開溶媒:クロロホルム−メタノ
ール(99:1)]に付し精製し、酢酸エチル−n−ヘキサ
ンの系より晶析して、目的とする6′−エトキシベンゾ
キサジノリファマイシン35.6gを得た。
Rifamycin S (49.5 g) and 2-amino-6 obtained above
10.9 g of a crude product of ethoxyphenol was dissolved in toluene 1 and reacted with stirring at room temperature for 18 days. The insolubles were removed by filtration, and the solvent was removed under reduced pressure. 300 ml of ethanol residue
And 15.0 g of manganese dioxide was added, followed by stirring at room temperature for 24 hours. Using a filter aid, manganese dioxide was filtered off, the solvent was distilled off under reduced pressure, and the residue was purified by silica gel column chromatography (developing solvent: chloroform-methanol (99: 1)). Crystallization from the n-hexane system gave 35.6 g of the desired 6'-ethoxybenzoxazininorifamycin.

薄層クロマトグラフィー Rf=0.52g暗赤色スポット[担体:シリカゲル、展開
溶媒:クロロホルム−アセトン(7:3)] 実施例27 (誘導体18の合成) 実施例26で得た6′−エトキシベンゾキサジノリファ
マイシン5.0gをジメチルスルホキシド50mlに溶解し、ト
リメチルエチレンジアミン0.92mlと二酸化マンガン2.5g
を加え、室温で2日間撹拌反応させた。以下、実施例24
と同様に処理、精製、晶析し、目的とする誘導体18を0.
40g得た。
Thin layer chromatography Rf = 0.52 g dark red spot [Carrier: silica gel, developing solvent: chloroform-acetone (7: 3)] Example 27 (Synthesis of derivative 18) 6′-ethoxybenzoxazinori obtained in Example 26 Dissolve 5.0 g of famycin in 50 ml of dimethyl sulfoxide, 0.92 ml of trimethylethylenediamine and 2.5 g of manganese dioxide
Was added and the mixture was stirred and reacted at room temperature for 2 days. Hereinafter, Example 24
Treatment, purification and crystallization were performed in the same manner as described above.
40 g were obtained.

実施例28 (誘導体19の合成) 実施例26で得た6′−エトキシベンゾキサジノリファ
マイシン3.24gをジメチルスルホキシド30mlに溶解し、
ピロリジン0.65mlと二酸化マンガン1.5gを加えて室温で
一昼夜撹拌反応させた。以下、実施例23と同様に処理し
て、0.89gの目的とする誘導体19を得た。
Example 28 (Synthesis of Derivative 19) 3.24 g of 6'-ethoxybenzoxazinorifamycin obtained in Example 26 was dissolved in 30 ml of dimethyl sulfoxide.
0.65 ml of pyrrolidine and 1.5 g of manganese dioxide were added and reacted at room temperature with stirring for 24 hours. Thereafter, the same treatment as in Example 23 was carried out to obtain 0.89 g of the desired derivative 19.

実施例29 (誘導体20の合成) 実施例26で得た6′−エトキシベンゾキサジノリファ
マイシン5.0gをジメチルスルホキシド50mlに溶解し、3
−ジメチルアミノピロリジン0.76gと二酸化マンガンと
を加え、室温で一昼夜撹拌反応させた。以下、実施例24
に同様に処理、精製、晶析し、目的とする誘導体20を0.
60g得た。
Example 29 (Synthesis of Derivative 20) 5.0 g of 6′-ethoxybenzoxazinolifamycin obtained in Example 26 was dissolved in 50 ml of dimethyl sulfoxide, and
-0.76 g of dimethylaminopyrrolidine and manganese dioxide were added, and the mixture was stirred and reacted at room temperature for 24 hours. Hereinafter, Example 24
The same treatment, purification, and crystallization were performed to obtain the desired derivative 20 in 0.
60 g was obtained.

実施例30 (誘導体21の合成) 実施例26で得た6′−エトキシベンゾキサジノリファ
マイシン3.0gをジメチルスルホキシド30mlに溶解し、N
−メチルピペラジン0.48mlと二酸化マンガン1.5gとを加
え、室温で一昼夜撹拌反応させた。以下、実施例24と同
様に処理、精製、晶析し、目的とする誘導体21を0.51g
を得た。
Example 30 (Synthesis of Derivative 21) 3.0 g of 6'-ethoxybenzoxazinolinifamycin obtained in Example 26 was dissolved in 30 ml of dimethyl sulfoxide,
-Methylpiperazine (0.48 ml) and manganese dioxide (1.5 g) were added, and the mixture was stirred and reacted at room temperature for 24 hours. Hereinafter, the same treatment as in Example 24, purification, crystallization, 0.51 g of the desired derivative 21
I got

実施例31 (誘導体22の合成) 実施例26で得た6′−エトキシベンゾキサジノリファ
マイシン5.0gをジメチルスルホキシド50mlに溶解し、N
−エチルピペラジン0.84mlと二酸化マンガン2.5gとを加
え、室温で一昼夜撹拌反応させた。以下、実施例23と同
様に処理し、シリカゲルカラムクロマトグラフィーで2
回[展開溶媒:クロロホルム−メタノール(98:2)]精
製し、酢酸エチル−n−ヘキサンの系より晶析して、目
的とする誘導体22を1.40g得た。
Example 31 (Synthesis of derivative 22) 5.0 g of 6'-ethoxybenzoxazinolifamycin obtained in Example 26 was dissolved in 50 ml of dimethyl sulfoxide, and
-Ethyl piperazine (0.84 ml) and manganese dioxide (2.5 g) were added, and the mixture was stirred and reacted at room temperature for 24 hours. Thereafter, the same treatment as in Example 23 was carried out, and the mixture was subjected to silica gel column chromatography for 2 hours.
[Developing solvent: chloroform-methanol (98: 2)], and crystallized from ethyl acetate-n-hexane to give 1.40 g of the desired derivative 22.

実施例32 (誘導体23の合成) 実施例26で得た6′−エトキシベンゾキサジノリファ
マイシン4.0gをジメチルスルホキシド40mlに溶解し、N
−イソプロピルピペラジン0.72gと二酸化マンガン2.0g
とを加え室温で6日間撹拌反応させた。以下、実施例23
と同様に処理し、シリカゲラカラムクロマトグラフィー
で3回[展開溶媒:クロロホルム−メタノール(97:
3)]精製し、酢酸エチル−n−ヘキサンの系より晶析
して目的とする誘導体23を0.17g得た。
Example 32 (Synthesis of derivative 23) 4.0 g of 6'-ethoxybenzoxazinolifamycin obtained in Example 26 was dissolved in 40 ml of dimethyl sulfoxide, and
-0.72 g of isopropyl piperazine and 2.0 g of manganese dioxide
Was added and the mixture was stirred and reacted at room temperature for 6 days. Hereinafter, Example 23
And developed by silica gel column chromatography three times [eluent: chloroform-methanol (97:
3)] Purification and crystallization from an ethyl acetate-n-hexane system gave 0.17 g of the desired derivative 23.

実施例33 (誘導体24の合成) 実施例26で得た6′−エトキシベンゾキサジノリファ
マイシン5.0gをジメチルスルホキシド50mlに溶解し、N
−イソブチルピペラジン1.0gと二酸化マンガン2.5gを加
え室温で3時間撹拌反応させた。以下、実施例23と同様
に処理して、0.74gの目的とする誘導体24を得た。
Example 33 (Synthesis of Derivative 24) 5.0 g of 6'-ethoxybenzoxazinolifamycin obtained in Example 26 was dissolved in 50 ml of dimethyl sulfoxide, and
1.0 g of isobutylpiperazine and 2.5 g of manganese dioxide were added, and the mixture was stirred and reacted at room temperature for 3 hours. Thereafter, the same treatment as in Example 23 was carried out to obtain 0.74 g of the target derivative 24.

実施例34 (誘導体25の合成) 実施例26で得た6′−エトキシベンゾキサジノリファ
マイシン3.26gをジメチルスルホキシド30mlに溶解し、
N−シクロプロピルメチルピペラジン0.66gと二酸化マ
ンガン1.6gとを加え室温で3日間撹拌反応させた。以
下、実施例31と同様に処理、精製、晶析し、目的とする
誘導体25を0.50g得た。
Example 34 (Synthesis of Derivative 25) 3.26 g of 6'-ethoxybenzoxazinorifamycin obtained in Example 26 was dissolved in 30 ml of dimethyl sulfoxide.
0.66 g of N-cyclopropylmethylpiperazine and 1.6 g of manganese dioxide were added, and the mixture was stirred and reacted at room temperature for 3 days. Thereafter, the same treatment, purification and crystallization as in Example 31 were performed to obtain 0.50 g of the desired derivative 25.

実施例35 (誘導体26の合成) 実施例26で得た6′−エトキシベンゾキサジノリファ
マイシン5.0gをジメチルスルホキシド50mlに溶解し、N
−(3−メチル−2−ブテニル)ピペラジン1.11gと二
酸化マンガン2.5gとを加え、室温にて一昼夜撹拌反応さ
せた。以下、実施例31と同様に処理、精製、晶析し、目
的とする誘導体26を1.08g得た。
Example 35 (Synthesis of Derivative 26) 5.0 g of 6'-ethoxybenzoxazinolifamycin obtained in Example 26 was dissolved in 50 ml of dimethyl sulfoxide,
1.11 g of-(3-methyl-2-butenyl) piperazine and 2.5 g of manganese dioxide were added, and the mixture was stirred and reacted at room temperature for 24 hours. Thereafter, treatment, purification and crystallization were carried out in the same manner as in Example 31 to obtain 1.08 g of the desired derivative 26.

実施例36 (誘導体27の合成) 実施例26で得た6′−エトキシベンゾキサジノリファ
マイシン5.0gをジメチルスルホキシド50mlに溶解し、N
−(2−メトキシエチル)ピペラジン1.04gと二酸化マ
ンガン2.5gとを加え、室温で、3日間撹拌反応させた。
以下、実施例31と同様に処理、精製、晶析し、目的とす
る誘導体27を0.85g得た。
Example 36 (Synthesis of Derivative 27) 5.0 g of 6'-ethoxybenzoxazinolinifamicin obtained in Example 26 was dissolved in 50 ml of dimethyl sulfoxide, and N
1.04 g of-(2-methoxyethyl) piperazine and 2.5 g of manganese dioxide were added, and the mixture was stirred and reacted at room temperature for 3 days.
Thereafter, treatment, purification and crystallization were carried out in the same manner as in Example 31 to obtain 0.85 g of the desired derivative 27.

実施例37 (6′−n−プロポキシベンゾキサジノリファマイシン
の合成) 2−n−プロポキシフェノール20.0gを用い、実施例2
2と同様の操作によりニトロ化し、還元して、2−アミ
ノ−6−n−プロポキシフェノール粗生成物10.6gを得
た。
Example 37 (Synthesis of 6'-n-propoxybenzoxazinolifamycin) Example 2 was carried out using 20.0 g of 2-n-propoxyphenol.
Nitration and reduction were carried out in the same manner as in 2, to obtain 10.6 g of crude 2-amino-6-n-propoxyphenol.

リファマイシンS44.2gと上記で得た、2−アミノ−6
−n−プロポキシフェノール粗生成物10.6gとをトルエ
ン800mlに溶解し、室温にて、12日間撹拌反応させた。
不溶物を濾別し、減圧下に溶媒を除去した。残渣をエタ
ノール500mlに溶解し、二酸化マンガン20.0gを加え、室
温にて一昼夜撹拌した。濾過助剤を用い、二酸化マンガ
ンを濾別し、溶媒を減圧下に留去した。残渣をシリカゲ
ルカラムクロマトグラフィー[展開溶媒:クロロホルム
−メタノール(99:1)]に付し精製し、酢酸エチル−n
−ヘキサンの系より晶析して目的とする6′−n−プロ
ポキシベンゾキサジノリファマイシン22.1gを得た。
Rifamycin S (44.2 g) and 2-amino-6 obtained above.
10.6 g of a crude product of -n-propoxyphenol was dissolved in 800 ml of toluene, and reacted at room temperature with stirring for 12 days.
The insolubles were removed by filtration, and the solvent was removed under reduced pressure. The residue was dissolved in ethanol (500 ml), manganese dioxide (20.0 g) was added, and the mixture was stirred at room temperature for 24 hours. Using a filter aid, manganese dioxide was filtered off, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography [eluent: chloroform-methanol (99: 1)].
Crystallization from the -hexane system gave 22.1 g of the desired 6'-n-propoxybenzoxazinolinifamicin.

薄層クロマトグラフィー Rf=0.50暗赤色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(7:3)] 実施例38 (誘導体28の合成) 実施例37で得た6′−n−プロポキシベンゾキサジノ
リファマイシン5.0gをジメチルスルホキシド50mlに溶解
し、ピロリジン0.74mlと二酸化マンガン2.5gを加え、室
温で3日間撹拌反応させた。以下、実施例23と同様に処
理、精製、晶析し、目的とする誘導体28を1.19g得た。
Thin layer chromatography Rf = 0.50 Dark red spot [Carrier: silica gel, developing solvent: chloroform-acetone (7: 3)] Example 38 (Synthesis of derivative 28) 6′-n-propoxybenzoxa obtained in Example 37 5.0 g of dinorifamycin was dissolved in 50 ml of dimethyl sulfoxide, 0.74 ml of pyrrolidine and 2.5 g of manganese dioxide were added, and the mixture was stirred and reacted at room temperature for 3 days. Thereafter, the same treatment, purification and crystallization as in Example 23 were carried out to obtain 1.19 g of the desired derivative 28.

実施例39 (誘導体29の合成) 実施例37で得た6′−n−プロポキシベンゾキサジノ
リファマイシン5.0gをジメチルスルホキシド50mlに溶解
し、N−イソブチルピペラジン1.01gと二酸化マンガン
2.5gとを加え、室温で一昼夜撹拌反応させた。以下、実
施例23と同様に処理、精製、晶析し、目的とする誘導体
29を0.97g得た。
Example 39 (Synthesis of Derivative 29) 5.0 g of 6'-n-propoxybenzoxazinorifamycin obtained in Example 37 was dissolved in 50 ml of dimethyl sulfoxide, and 1.01 g of N-isobutylpiperazine and manganese dioxide were dissolved.
2.5 g was added, and the mixture was stirred and reacted at room temperature for 24 hours. Hereinafter, the same treatment, purification and crystallization as in Example 23, the desired derivative
0.97 g of 29 was obtained.

実施例40 (6′−イソプロポキシベンゾキサジノリファマイシン
の合成) 2−イソプロポキシフェノール24.8gを用い、実施例2
2と同様の操作によりニトロ化し、還元して2−アミノ
−6−イソプロポキシフェノール粗生成物16.0gを得
た。
Example 40 (Synthesis of 6'-isopropoxybenzoxazinolifamycin) Example 2 was carried out using 24.8 g of 2-isopropoxyphenol.
Nitration and reduction were carried out in the same manner as in 2, to obtain 16.0 g of crude 2-amino-6-isopropoxyphenol.

リファマイシンS66.7gと上記で得た2−アミノ−6−
イソプロポキシフェノール粗生成物16.0gをトルエン1
に溶解し、室温で13日間撹拌反応させた。不溶物を濾
別し、減圧下に溶媒を除去した。残渣をエタノール700m
lに溶解し、二酸化マンガン30gを加え、室温にて一昼夜
撹拌した。濾過助剤を用い、二酸化マンガンを濾別し、
溶媒を減圧下に留去した。残渣をシリカゲルカラムクロ
マトグラフィーに2回[展開溶媒:クロロホルム−メタ
ノール(99:1)]付し精製し、目的とする6′−イソプ
ロポキシベンゾキサジノリファマイシン25.9gを得た。
66.7 g of rifamycin S and 2-amino-6 obtained above
16.0 g of crude isopropoxyphenol was added to toluene 1
And reacted with stirring at room temperature for 13 days. The insolubles were removed by filtration, and the solvent was removed under reduced pressure. Residue is 700m ethanol
The mixture was dissolved in l, manganese dioxide (30 g) was added, and the mixture was stirred at room temperature for 24 hours. Using a filter aid, filter manganese dioxide,
The solvent was distilled off under reduced pressure. The residue was purified twice by silica gel column chromatography [developing solvent: chloroform-methanol (99: 1)] to obtain 25.9 g of the desired 6'-isopropoxybenzoxazininorifamycin.

薄層クロマトグラフィー Rf=0.49暗赤色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(7:3)] 実施例41 (誘導体30の合成) 実施例40で得た6′−イソプロポキシベンゾキサジノ
リファマイシン5.0gをジメチルスルホキシド50mlに溶解
し、ピロリジン0.59mlと二酸化マンガン2.5gを加えて、
室温で一昼夜撹拌反応させた。以下、実施例23と同様に
処理、精製、晶析し、目的とする誘導体30を1.68g得
た。
Thin layer chromatography Rf = 0.49 Dark red spot [Carrier: silica gel, developing solvent: chloroform-acetone (7: 3)] Example 41 (Synthesis of Derivative 30) 6′-Isopropoxybenzoxazinori obtained in Example 40 Dissolve 5.0 g of famycin in 50 ml of dimethyl sulfoxide, add 0.59 ml of pyrrolidine and 2.5 g of manganese dioxide,
The mixture was stirred and reacted at room temperature for 24 hours. Thereafter, treatment, purification and crystallization were carried out in the same manner as in Example 23 to obtain 1.68 g of the desired derivative 30.

実施例42 (誘導体31の合成) 実施例40で得た6′−イソプロポキシベンゾキサジノ
リファマイシン5.0gをジメチルスルホキシド50mlに溶解
し、N−エチルピペラジン0.90mlと二酸化マンガン2.5g
とを加え、室温で2日間撹拌反応させた。以下、実施例
32と同様に処理、精製、晶析し、目的とする誘導体31を
1.57g得た。
Example 42 (Synthesis of derivative 31) 5.0 g of 6'-isopropoxybenzoxazinolifamycin obtained in Example 40 was dissolved in 50 ml of dimethyl sulfoxide, and 0.90 ml of N-ethylpiperazine and 2.5 g of manganese dioxide were dissolved.
Was added and the mixture was stirred and reacted at room temperature for 2 days. Examples below
Process, purify and crystallize in the same manner as 32 to obtain the desired derivative 31
1.57 g was obtained.

実施例43 (誘導体32の合成) 実施例40で得た、6′−イソプロポキシベンゾキサジ
ノリファマイシン5.0gをジメチルスルホキシド50mlに溶
解し、N−イソブチルピペラジン1.01gと二酸化マンガ
ン2.5gとを加え、室温で7時間撹拌反応させた。以下、
実施例23と同様に処理、精製、晶析し、目的とする誘導
体32を1.29g得た。
Example 43 (Synthesis of Derivative 32) 5.0 g of 6'-isopropoxybenzoxazinolinifamycin obtained in Example 40 was dissolved in 50 ml of dimethyl sulfoxide, and 1.01 g of N-isobutylpiperazine and 2.5 g of manganese dioxide were added. The mixture was stirred and reacted at room temperature for 7 hours. Less than,
The same treatment, purification and crystallization as in Example 23 were performed to obtain 1.29 g of the desired derivative 32.

実施例44 (6′−イソブトキシベンゾキサジノリファマイシンの
合成) 2−イソブトキシフェノール20.0gを用い、実施例1
と同様の操作によりニトロ化し、還元して2−アミノ−
6−イソブトキシフェノール粗生成物7.5gを得た。
Example 44 (Synthesis of 6'-isobutoxybenzoxazinolifamycin) Example 1 was carried out using 20.0 g of 2-isobutoxyphenol.
Nitrate and reduce 2-amino-
7.5 g of crude 6-isobutoxyphenol was obtained.

リファマイシンS29.3gと上記で得た2−アミノ−6−
イソブトキシフェノール粗生成物7.5gをトルエン600ml
に溶解し、室温で7日間撹拌し反応させた。不溶物を濾
別し、減圧下に溶媒を除去した。残渣をエタノール300m
lに溶解し、二酸化マンガン15.0gを加え、室温で一昼夜
撹拌した。濾過助剤を用い、二酸化マンガンを濾別し、
溶媒を減圧下に留去した。残渣をシリカゲルカラムクロ
マトグラフィー[展開溶媒:クロロホルム−メタノール
(99:1)]に付し精製して、目的とする6′−イソブト
キシベンゾキサジノリファマイシン9.88gを得た。
29.3 g of rifamycin S and 2-amino-6 obtained above
7.5 g of crude isobutoxyphenol product in 600 ml of toluene
And reacted at room temperature with stirring for 7 days. The insolubles were removed by filtration, and the solvent was removed under reduced pressure. Residue is 300m ethanol
Then, 15.0 g of manganese dioxide was added, and the mixture was stirred at room temperature for 24 hours. Using a filter aid, filter manganese dioxide,
The solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography [eluent: chloroform-methanol (99: 1)] to give 9.88 g of the desired 6'-isobutoxybenzoxazinolifamycin.

薄層クロマトグラフィー Rf=0.59暗赤色スポット[担体:シリカゲル、展開溶
媒:酢酸エチル] 実施例45 (誘導体33の合成) 実施例44に記載した方法により合成した6′−イソブ
トキシベンゾキサジノリファマイシン5.0gをジメチルス
ルホキシド50mlに溶解し、N−イソブチルピペラジン1.
0gと二酸化マンガン2.5gを加え、室温で2日間撹拌反応
させた。以下実施例23と同様に処理、精製、晶析し、目
的とする誘導体33を0.84g得た。
Thin layer chromatography Rf = 0.59 dark red spot [carrier: silica gel, developing solvent: ethyl acetate] Example 45 (Synthesis of derivative 33) 6'-isobutoxybenzoxazininorifamycin synthesized by the method described in Example 44 5.0 g was dissolved in 50 ml of dimethyl sulfoxide, and N-isobutylpiperazine 1.
0 g and manganese dioxide (2.5 g) were added, and the mixture was stirred and reacted at room temperature for 2 days. Thereafter, treatment, purification and crystallization were carried out in the same manner as in Example 23 to obtain 0.84 g of the desired derivative 33.

実施例46 (6′−メトキシ−3′−メチルベンゾキサジノリファ
マイシンの合成) 2−メトキシ−5−メチルフェノール10.0gを用い、
実施例22と同様の操作によりニトロ化し、還元して、2
−アミノ−3−メチル−6−メキシフェノール粗生成物
2.6gを得た。
Example 46 (Synthesis of 6'-methoxy-3'-methylbenzoxazinolifamycin) Using 10.0 g of 2-methoxy-5-methylphenol,
Nitration and reduction were performed in the same manner as in Example 22 to give 2
-Amino-3-methyl-6-methylphenol crude product
2.6 g were obtained.

リファマイシンS11.8gと上記で得た2−アミノ−3−
メチル−6−メトキシフェノール粗生成物2.6gをトルエ
ン250mlに溶解し、室温で14日間撹拌反応させた。不溶
物を濾別し、減圧下で溶媒を除去した。残渣をエタノー
ル250mlに溶解し、二酸化マンガン6.0gを加え、室温で
1時間撹拌した。濾過助剤を用い、二酸化マンガンを濾
別し、溶媒を減圧下で留去した。残渣をシリカゲルカラ
ムクロマトグラフィー[展開溶媒:クロロホルム−メタ
ノール(99:1)]に付し精製し、目的とする6′−メト
キシ−3′−メチルベンゾキサジノリファマイシン6.3g
を得た。
Rifamycin S (11.8 g) and 2-amino-3- obtained above
2.6 g of a crude product of methyl-6-methoxyphenol was dissolved in 250 ml of toluene, and stirred and reacted at room temperature for 14 days. The insoluble material was separated by filtration, and the solvent was removed under reduced pressure. The residue was dissolved in ethanol (250 ml), manganese dioxide (6.0 g) was added, and the mixture was stirred at room temperature for 1 hour. Manganese dioxide was filtered off using a filter aid, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography [developing solvent: chloroform-methanol (99: 1)], and 6.3 g of desired 6'-methoxy-3'-methylbenzoxazinolifamycin was obtained.
I got

薄層クロマトグラフィー Rf=0.50暗赤色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(7:3)] 実施例47 (誘導体34の合成) 実施例46で得た6′−メトキシ−3′−メチルベンゾ
キサジノリファマイシン3.0gをジメチルスルホキシド30
mlに溶解し、ピロリジン0.6mlと二酸化マンガン1.5gを
加え、室温で5.5時間撹拌反応させた。以下、実施例23
と同様に処理、精製、晶析して0.56gの目的とする誘導
体34を得た。
Thin layer chromatography Rf = 0.50 dark red spot [carrier: silica gel, developing solvent: chloroform-acetone (7: 3)] Example 47 (Synthesis of derivative 34) 6′-methoxy-3′- obtained in Example 46 3.0 g of methylbenzoxazinolifamycin in dimethyl sulfoxide 30
Then, 0.6 ml of pyrrolidine and 1.5 g of manganese dioxide were added, and the mixture was stirred and reacted at room temperature for 5.5 hours. Hereinafter, Example 23
The same treatment, purification and crystallization as in were carried out to obtain 0.56 g of the desired derivative 34.

実施例48 (誘導体35の合成) 実施例46で得た6′−メトキシ−3′−メチルベンゾ
キサジノリファマイシン3.0gをジメチルスルホキシド30
mlに溶解し、N−メチルピペラジン0.80mlと二酸化マン
ガン1.5gとを加え、室温で7時間撹拌反応させた。以
下、実施例24と同様に処理、精製、晶析し、目的とする
誘導体35を1.21g得た。
Example 48 (Synthesis of Derivative 35) 3.0 g of 6'-methoxy-3'-methylbenzoxazinolifamycin obtained in Example 46 was added to dimethyl sulfoxide 30.
Then, 0.80 ml of N-methylpiperazine and 1.5 g of manganese dioxide were added, and the mixture was stirred and reacted at room temperature for 7 hours. Thereafter, the same treatment, purification and crystallization as in Example 24 were carried out to obtain 1.21 g of the desired derivative 35.

実施例49 (誘導体36の合成) 実施例46で得た6′−メトキシ−3′−メチルベンゾ
キサジノリファマイシン4.0gをジメチルスルホキシド40
mlに溶解し、N−イソブチルピペラジン1.37gと二酸化
マンガン2.0gとを加え、室温で6時間撹拌反応させた。
以下、実施例23と同様に処理、精製、晶析し、目的とす
る誘導体36を2.37g得た。
Example 49 (Synthesis of Derivative 36) 4.0 g of 6'-methoxy-3'-methylbenzoxazinolifamycin obtained in Example 46 was added to dimethyl sulfoxide 40.
Then, 1.37 g of N-isobutylpiperazine and 2.0 g of manganese dioxide were added, and the mixture was stirred and reacted at room temperature for 6 hours.
Thereafter, treatment, purification and crystallization were carried out in the same manner as in Example 23 to obtain 2.37 g of the desired derivative 36.

実施例50 (6′−メトキシ−4′−メチルベンゾキサジノリファ
マイシンの合成) 2−メトキシ−4−メチルフェノール10.0gを用い、
実施例22と同様にニトロ化し、還元して、2−アミノ−
4−メチル−6−メキキシフェノール粗生成物5.9gを得
た。
Example 50 (Synthesis of 6'-methoxy-4'-methylbenzoxazinolifamycin) Using 10.0 g of 2-methoxy-4-methylphenol,
Nitration and reduction as in Example 22 gave 2-amino-
5.9 g of crude 4-methyl-6-methoxyphenol was obtained.

リファマイシンS26.8gと上記で得た、2−アミノ−4
−メチル−6−メトキシフェノール粗生成物5.9gをトル
エン550mlに溶解し、室温にて6日間撹拌反応させた。
不溶物を濾別し、減圧下で溶媒を除去した。残渣をエタ
ノール300mlに溶解し、二酸化マンガン13.0gを加え、室
温にて7時間撹拌した。濾過助剤を用い、二酸化マンガ
ンを濾別し、溶媒を減圧下に留去した。残渣をシリカゲ
ルカラマクロマトグラフィー[展開溶媒:クロロホルム
−メタノール(99:1)]に付し精製し、目的とする6′
−メトキシ−4′−メチルベンゾキサジノリファマイシ
ン7.8gを得た。
26.8 g of rifamycin S and 2-amino-4 obtained above
5.9 g of a crude product of -methyl-6-methoxyphenol was dissolved in 550 ml of toluene, and reacted at room temperature for 6 days with stirring.
The insoluble material was separated by filtration, and the solvent was removed under reduced pressure. The residue was dissolved in 300 ml of ethanol, 13.0 g of manganese dioxide was added, and the mixture was stirred at room temperature for 7 hours. Using a filter aid, manganese dioxide was filtered off, and the solvent was distilled off under reduced pressure. The residue was purified by silica gel chromatography (developing solvent: chloroform-methanol (99: 1)) to obtain the desired 6 '
7.8 g of -methoxy-4'-methylbenzoxazinolifamycin were obtained.

薄層クロマトグラフィー Rf=0.49暗褐色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(7:3)] 実施例51 (誘導体37の合成) 実施例46で得た6′−メトキシ−4′−メチルベンゾ
キサジノリファマイシン3.0gをジメチルスルホキシド30
mlに溶解し、ピロリジン0.6mlと二酸化マンガン1.5gを
加え、室温にて2日間撹拌反応させた。以下、実施例23
と同様に処理して0.15gの目的とする誘導体37を得た。
Thin layer chromatography Rf = 0.49 Dark brown spot [carrier: silica gel, developing solvent: chloroform-acetone (7: 3)] Example 51 (Synthesis of Derivative 37) 6′-Methoxy-4′- obtained in Example 46 3.0 g of methylbenzoxazinolifamycin in dimethyl sulfoxide 30
Then, 0.6 ml of pyrrolidine and 1.5 g of manganese dioxide were added, and the mixture was stirred and reacted at room temperature for 2 days. Hereinafter, Example 23
In the same manner as above, 0.15 g of the desired derivative 37 was obtained.

実施例52 (4′−メチルチオベンゾキサジノリファマイシンの合
成) 4−メチルチオ−2−ニトロフェノール2.75gを用
い、実施例1と同様に操作により2−アミノ−4−(メ
チルチオ)フェノール1.7gを得た。
Example 52 (Synthesis of 4′-methylthiobenzoxazinolifamycin) 1.7 g of 2-amino-4- (methylthio) phenol was obtained in the same manner as in Example 1 using 2.75 g of 4-methylthio-2-nitrophenol. Obtained.

トルエン100mlにリファマイシンS5.57gと2−アミノ
−4−(メチルチオ)フェノール1.24gとを加え、室温
で70時間撹拌反応させた。反応混合物から溶媒を減圧留
去したのち、残渣をエタノール60mlに溶解して、室温で
12時間撹拌した。ついで、溶媒を減圧留去し、残渣をワ
コーゲル C−200を用いるシリカゲルカラムクロマト
グラフィー[展開溶媒:クロロホルム−アセトン(9:
1)]に付し、次いで酢酸エチル−n−ヘキサンより晶
析して目的とする4′−メチルチオベンゾキサジノリフ
ァマイシンの粗生成物を2.8g得た。
 5.57 g of rifamycin and 2-amino acid in 100 ml of toluene
Add 1.24 g of -4- (methylthio) phenol and add room temperature
For 70 hours. The solvent is distilled off from the reaction mixture under reduced pressure.
After removal, the residue is dissolved in 60 ml of ethanol and
Stir for 12 hours. Then, the solvent was distilled off under reduced pressure, and the residue was washed with water.
Kogel Silica gel column chromatography using C-200
[Development solvent: chloroform-acetone (9:
1)] and then crystallized from ethyl acetate-n-hexane.
4'-Methylthiobenzoxazinolinif
2.8 g of crude amycin product was obtained.

薄層クロマトグラフィー Rf=0.34暗褐色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(9:1)] 実施例53 (誘導体38の合成) 実施例52に記載した方法により合成した4′−メチル
チオベンゾキサジノリファマイシンの粗生成物0.40gを
エタノール4mlに溶解し、ピロリジン0.08mlと二酸化マ
ンガン0.4gとを加え、室温で25時間撹拌反応させた。以
下、実施例23と同様に処理して、0.22gの目的とする誘
導体38を得た。
Thin layer chromatography Rf = 0.34 dark brown spot [carrier: silica gel, developing solvent: chloroform-acetone (9: 1)] Example 53 (Synthesis of derivative 38) 4′-methylthio synthesized by the method described in Example 52 0.40 g of a crude product of benzoxazinolifamycin was dissolved in 4 ml of ethanol, and 0.08 ml of pyrrolidine and 0.4 g of manganese dioxide were added thereto, and the mixture was stirred and reacted at room temperature for 25 hours. Thereafter, the same treatment as in Example 23 was carried out to obtain 0.22 g of the desired derivative 38.

実施例54 (誘導体39の合成) 実施例52に記載した方法により合成した4′−メチル
チオベンゾキサジノリファマイシンの粗生成物2.77gを
エタノール15mlに溶解し、N−イソブチルピペラジン0.
95gと二酸化マンガン2.9gとを加え室温で70時間撹拌反
応させた。次いで実施例3と同様に処理し、残渣をワコ
ーゲル C−200を用いるシリカゲルカラムクロマトグ
ラフィーで4回[展開溶媒:クロロホルム−アセトン
(9:1)、クロロホルム−メタノール(98:2)、クロロ
ホルム−酢酸エチル(2:3)、次いでクロロホルム−酢
酸エチル−メタノール(15:10:1)]精製し、次いでク
ロロホルム−n−ヘキサンより晶析して目的とする誘導
体39を0.96g得た。
Example 54 (Synthesis of derivative 39) 4'-methyl synthesized by the method described in Example 52
2.77 g of crude product of thiobenzoxazinolifamycin
Dissolve in ethanol (15 ml) and add N-isobutylpiperazine (0.1%).
Add 95 g and 2.9 g of manganese dioxide and stir at room temperature for 70 hours.
I responded. Next, the same treatment as in Example 3 was performed, and the residue was washed with wax.
-Gel Silica gel column chromatography using C-200
4 times with Raffy [Developing solvent: chloroform-acetone
(9: 1), chloroform-methanol (98: 2), chloro
Form-ethyl acetate (2: 3), then chloroform-vinegar
Ethyl acid-methanol (15: 10: 1)]
Crystallization from roloform-n-hexane and desired induction
0.96 g of body 39 was obtained.

実施例55 (4′−エチルチオベンゾキサジノリファマイシンの合
成) 4−ヒドロキシチオフェノール13.9gを塩化メチレン1
0mlに溶解し、氷冷下にトリエチルアミン20mlとヨウ化
エチル11mlを加え室温で一夜反応させた。反応液を濃縮
後、エーテルを加え生じた不溶物を濾別し、溶媒を留去
した。残渣をワコーゲル C−200を用いるシリカゲル
カラムクロマトグラフィー[展開溶媒:クロロホルム]
で精製して4−(エチルチオ)フェノールを11g得た。
得られた4−(エチルチオ)フェノール6.2gをエーテル
200mlに溶解し、水60mlを加え次いで61%硝酸3.9mlを徐
々に加えた。室温で1時間撹拌後食塩で水層を飽和させ
有機層を分離した。有機層を硫酸ナトリウムで乾燥し溶
媒を留去した。残渣をワコーゲル C−200を用いるシ
リカゲルカラムクロマトグラフィー[展開溶媒:クロロ
ホルム]で精製し4−エチルチオ−2−ニトロフェノー
ルを得た。この4−エチルチオ−2−ニトロフェノール
1.3gをメタノール30mlに溶解し、10%パラジウム炭素10
0mlを加え水素圧4kg/cm2で水素添加反応を3日間行なっ
た。触媒を濾別し溶媒を減圧下に留去して2−アミノ−
4−(エチルチオ)フェノール1.1gを得た。
Example 55 Synthesis of (4'-ethylthiobenzoxazinolifamycin
1) 4-hydroxythiophenol in methylene chloride
Dissolve in 0 ml, and iodide with 20 ml of triethylamine under ice-cooling
Ethyl (11 ml) was added and reacted at room temperature overnight. Concentrate the reaction solution
Then, ether was added and the resulting insolubles were filtered off and the solvent was distilled off.
did. Wako gel for residue Silica gel using C-200
Column chromatography [Developing solvent: chloroform]
Then, 11 g of 4- (ethylthio) phenol was obtained.
6.2 g of the obtained 4- (ethylthio) phenol was etherified
Dissolve in 200 ml, add 60 ml of water, then slowly add 3.9 ml of 61% nitric acid
Added to each. After stirring at room temperature for 1 hour, the aqueous layer was saturated with sodium chloride.
The organic layer was separated. Dry the organic layer over sodium sulfate and dissolve
The medium was distilled off. Wako gel for residue Using C-200
Ricagel column chromatography [Developing solvent: chloro
Form) and purified with 4-ethylthio-2-nitrophenol.
I got This 4-ethylthio-2-nitrophenol
1.3 g was dissolved in 30 ml of methanol, and 10% palladium on carbon 10
Add 0ml and hydrogen pressure 4kg / cmTwoHydrogenation reaction for 3 days
Was. The catalyst was filtered off and the solvent was distilled off under reduced pressure to give 2-amino-
1.1 g of 4- (ethylthio) phenol were obtained.

リファマイシンS4.1gの50mlのトリエン溶液に上記の
ようにして得た2−アミノ−4−(エチルチオ)フェノ
ール1.0を加え室温で2日間撹拌反応させた。溶媒を減
圧下に留去し、エタノール100mlを加え室温で2日間撹
拌した。減圧下に溶媒を留去し、残渣をワコーゲル
−200を用いるシリカゲルカラムクロマトグラフィー
[展開溶媒:クロロホルム−アセトン(10:1)]で精製
し目的とする4′−メチルチオベンゾキサジノリファマ
イシン2.3gを得た。
 To a solution of rifamycin S4.1 g in 50 ml of triene
2-amino-4- (ethylthio) pheno thus obtained
1.0 was added and the mixture was stirred and reacted at room temperature for 2 days. Reduce solvent
Evaporate under reduced pressure, add 100 ml of ethanol and stir at room temperature for 2 days.
Stirred. The solvent is distilled off under reduced pressure, and the residue is C
Silica gel column chromatography using -200
Purified with [Developing solvent: chloroform-acetone (10: 1)]
4'-Methylthiobenzoxazino lipama
2.3 g of isin was obtained.

薄層クロマトグラフィー Rf=0.29褐色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(10:1)] 実施例56 (誘導体40の合成) 実施例55に記載した方法により合成した4′−エチル
チオベンゾキサジノリファマイシン2.3gをジメチルスル
ホキシド15mlに溶解し、N−イソブチルピペラジン0.77
gと二酸化マンガン2.4gとを加え3日間反応させた。以
下実施例2と同様に処理し、残渣をワコーゲル C−20
0を用いるシリカゲルカラムクロマトグラフィーで3回
[展開溶媒:クロロホルム−アセトン(9:1)で2回、
クロロホルム−メタノール(99:1)]精製し酢酸エチル
−n−ヘキサンの系より晶析させて目的とする誘導体40
を0.44g得た。
Thin layer chromatography Rf = 0.29 brown spot [Carrier: silica gel, developing solution
Medium: chloroform-acetone (10: 1)] Example 56 (Synthesis of Derivative 40) 4′-ethyl synthesized by the method described in Example 55
2.3 g of thiobenzoxazinolifamycin in dimethyl sulf
Dissolved in 15 ml of hydroxide and N-isobutylpiperazine 0.77
g and 2.4 g of manganese dioxide were added and reacted for 3 days. Less than
Treated in the same manner as in Example 2 below, and the residue was C-20
3 times with silica gel column chromatography using 0
[Developing solvent: chloroform-acetone (9: 1) twice,
Chloroform-methanol (99: 1)] purified and ethyl acetate
Derivative 40 which is crystallized from -n-hexane system
0.44 g was obtained.

実施例57 (4′−アセチルベンゾキサジノリファマイシンの合
成) p−ヒドロキシアセトフェノン5.08gを酢酸40mlに溶
解後、氷冷し、61%硝酸(比重1.38)5.7mlを加えて30
分間撹拌した。つぎに室温にもどして更に50分間撹拌
後、水200mlを加えて生成した沈澱を濾取、水洗した。
この沈澱をエタノールより2回再結晶して4−ヒドロキ
シ−3−ニトロアセトフェノン2.59gを得た。
Example 57 (Synthesis of 4'-acetylbenzoxazinolifamycin) 5.08 g of p-hydroxyacetophenone was dissolved in 40 ml of acetic acid, cooled with ice, and added with 5.7 ml of 61% nitric acid (specific gravity 1.38).
Stirred for minutes. Then, the mixture was returned to room temperature and further stirred for 50 minutes, and 200 ml of water was added. The resulting precipitate was collected by filtration and washed with water.
The precipitate was recrystallized twice from ethanol to obtain 2.59 g of 4-hydroxy-3-nitroacetophenone.

この4−ヒドロキシ−3−ニトロアセトフェノン1.15
gをエタノール100mlに溶解し、5%パラジウム炭素0.05
6gを加えて常温常圧で水素を11時間通気した。この反応
混合物を濾過し、濾液から溶媒を減圧留去し、得られた
残渣を水より晶析して3−アミノ−4−ヒドロキシアセ
トフェノン0.73gを得た。
This 4-hydroxy-3-nitroacetophenone 1.15
g in 100 ml of ethanol and 5% palladium on carbon 0.05
6 g was added, and hydrogen was bubbled at normal temperature and normal pressure for 11 hours. The reaction mixture was filtered, the solvent was distilled off from the filtrate under reduced pressure, and the obtained residue was crystallized from water to obtain 0.73 g of 3-amino-4-hydroxyacetophenone.

トルエン80mlにリファマイシンSを2.78gと3−アミ
ノ−4−ヒドロキシアセトフェノン0.56gとを加え、60
℃で3時間撹拌した。反応混合物から溶媒を減圧留去し
たのち、残渣をエタノール80mlに溶解して二酸化マンガ
ン2.78gを加え、室温で2日間撹拌した。この反応混合
物から不溶物を濾別し、溶媒を減圧留去して得られた残
渣をシリカゲルカラムクロマトグラフィー[展開溶媒:
クロロホルム−アセトン(9:1)]により精製して目的
とする4′−アセチルベンゾキサジノリファマイシン2.
01gを得た。
2.78 g of rifamycin S and 0.56 g of 3-amino-4-hydroxyacetophenone were added to 80 ml of toluene, and
Stirred at C for 3 hours. After the solvent was distilled off from the reaction mixture under reduced pressure, the residue was dissolved in 80 ml of ethanol, 2.78 g of manganese dioxide was added, and the mixture was stirred at room temperature for 2 days. The reaction mixture was filtered to remove insolubles, and the solvent was distilled off under reduced pressure. The resulting residue was subjected to silica gel column chromatography [developing solvent:
Chloroform-acetone (9: 1)] to purify the desired 4'-acetylbenzoxazinolifamycin 2.
01g was obtained.

薄層クロマトグラフィー Rf=0.39赤紫色スポット[担体:シリカゲル、展開溶
媒:酢酸ブチル] 実施例58 (誘導体41の合成) 実施例57に記載した方法により合成した4′−アセチ
ルベンゾキサジノリファマイシン1.00gをジメチルスル
ホキシド10mlに溶解し、ピロリジン0.4mlと二酸化マン
ガン1.00gを加え、室温で53時間撹拌反応させた。以
下、実施例23と同様に処理して0.02gの目的とする誘導
体41を得た。
Thin layer chromatography Rf = 0.39 Red-purple spot [Carrier: silica gel, developing solvent: butyl acetate] Example 58 (Synthesis of Derivative 41) 4'-acetylbenzoxazininorifamicin 1.00 synthesized by the method described in Example 57 g was dissolved in 10 ml of dimethyl sulfoxide, 0.4 ml of pyrrolidine and 1.00 g of manganese dioxide were added, and the mixture was stirred and reacted at room temperature for 53 hours. Thereafter, the same treatment as in Example 23 was carried out to obtain 0.02 g of the desired derivative 41.

実施例59 (4′−(3−オキソブチル)ベンゾキサジノリファマ
イシンの合成) 水50mlに1−(p−ヒドロキシフェニル)−3−ブタ
ノン10.0を懸濁させ、氷冷下に61%硝酸9.1mlを滴下
し、室温に戻して2時間撹拌反応させた。反応液を酢酸
エチル200mlを用いて抽出し、水、飽和食塩水で洗浄
し、無水硫酸ナトリウムで乾燥した。乾燥剤を濾別し、
溶媒を減圧下に留去した。残渣をシリカゲルカラムクロ
マトグラフィー[展開溶媒:クロロホルム]で精製し、
1−(4−ヒドロキシ−3−ニトロフェニル)−3−ブ
タノン8.09gを得た。
Example 59 (Synthesis of 4 '-(3-oxobutyl) benzoxazinolifamycin) 1- (p-hydroxyphenyl) -3-butanone 10.0 was suspended in 50 ml of water, and 9.1 ml of 61% nitric acid was cooled on ice. Was added dropwise, and the mixture was returned to room temperature and stirred and reacted for 2 hours. The reaction solution was extracted with 200 ml of ethyl acetate, washed with water and saturated saline, and dried over anhydrous sodium sulfate. The desiccant is filtered off,
The solvent was distilled off under reduced pressure. The residue was purified by silica gel column chromatography [developing solvent: chloroform].
8.09 g of 1- (4-hydroxy-3-nitrophenyl) -3-butanone was obtained.

1−(4−ヒドロキシ−3−ニトロフェニル)−3−
ブタノン8.09gをエタノール320mlに溶解し、10%パラジ
ウム炭素0.8gを加え、常圧室温で5時間水素を導入し
た。濾過助剤を用い触媒を濾別し、減圧下に溶媒を留去
し、1−(3−アミノ−4−ヒドロキシフェニル)−3
−ブタノン粗生成物7.01gを得た。
1- (4-hydroxy-3-nitrophenyl) -3-
8.09 g of butanone was dissolved in 320 ml of ethanol, 0.8 g of 10% palladium carbon was added, and hydrogen was introduced at normal pressure and room temperature for 5 hours. The catalyst was filtered off using a filter aid, and the solvent was distilled off under reduced pressure to give 1- (3-amino-4-hydroxyphenyl) -3.
7.01 g of crude butanone were obtained.

リファマイシンS22.95gと上記で得た1−(3−アミ
ノ−4−ヒドロキシフェニル)−3−ブタノン粗生成物
7.01gをトルエン450mlに溶解し、室温で1昼夜撹拌反応
させた。以下実施例4と同様に処理して、5.11gの目的
とする4′−(3−オキソブチル)ベンゾキサジノリフ
ァマイシンを得た。
22.95 g of rifamycin S and crude 1- (3-amino-4-hydroxyphenyl) -3-butanone obtained above
7.01 g was dissolved in 450 ml of toluene, and stirred and reacted at room temperature for 24 hours. Thereafter, the same treatment as in Example 4 was carried out to obtain 5.11 g of the objective 4 '-(3-oxobutyl) benzoxazinolifamycin.

薄層クロマトグラフィー Rf=0.39赤紫色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(9:1)] 実施例60 (誘導体42の合成) 実施例59に記載した方法に従って合成した4′−(3
−オキソブチル)ベンゾキサジノリファマイシン1.0gを
ジメチルスルホキシド10mlに溶解し、ピロリジン0.20ml
と二酸化マンガン1.0gとを加え、室温にて4時間撹拌反
応させた。以下、実施例23と同様に処理、精製し、目的
とする誘導体42を0.07g得た。
Thin layer chromatography Rf = 0.39 Red-purple spot [Carrier: silica gel, developing solvent: chloroform-acetone (9: 1)] Example 60 (Synthesis of Derivative 42) 4 ′-(Synthesized according to the method described in Example 59) 3
-Oxobutyl) benzoxazinolifamycin (1.0 g) was dissolved in dimethyl sulfoxide (10 ml), and pyrrolidine (0.20 ml) was dissolved.
And 1.0 g of manganese dioxide were added and reacted at room temperature for 4 hours with stirring. Thereafter, the same treatment and purification were carried out as in Example 23 to obtain 0.07 g of the desired derivative 42.

実施例61 (6′−フルオロベンゾキサジノリファマイシンの合
成) 2−フルオロフェノール25.2gをエーテル−水の二層
系に溶解し、61%硝酸20.5mlを加え、室温で2.5時間撹
拌反応させた。エーテル層を分離し、無水硝酸ナトリウ
ムで乾燥した。乾燥剤を濾別し、減圧下に溶媒を除去し
た。残渣をワコーゲル C−200を用いるシリカゲルカ
ラムクロマトグラフィー[展開溶媒:クロロホルム−n
−ヘキサン(1:1)]に付して精製し2−フルオロ−6
−ニトロフェノール13.7gを得た。
Example 61 Synthesis of (6′-fluorobenzoxazinolifamycin
2) 2-Fluorophenol 25.2g ether-water bilayer
Dissolve in the system, add 20.5 ml of 61% nitric acid, and stir at room temperature for 2.5 hours.
The mixture was stirred and reacted. Separate the ether layer and add anhydrous sodium nitrate.
Dried. The drying agent is filtered off and the solvent is removed under reduced pressure.
Was. Wako gel for residue Silica gel using C-200
Ram chromatography [Developing solvent: chloroform-n
-Hexane (1: 1)] to give 2-fluoro-6
13.7 g of nitrophenol were obtained.

2−フルオロ−6−ニトロフェノール13.7gを水200m
l、エタノール100mlの混合液に懸濁し、亜二チオン酸ナ
トリウム60.7gを加えて60℃で撹拌し、均一の無色溶液
となるまで撹拌反応させた。反応液に飽和食塩水を加
え、酢酸エチルで抽出し、無水硫酸ナトリウムで乾燥し
た。乾燥剤を濾別し、減圧下に溶媒を除去し、2−アミ
ノ−6−フルオロフェノール粗生成物8.6gを得た。
13.7 g of 2-fluoro-6-nitrophenol in 200 m of water
l, suspended in a mixture of 100 ml of ethanol, added with 60.7 g of sodium dithionite, stirred at 60 ° C, and reacted with stirring until a uniform colorless solution was obtained. Saturated saline was added to the reaction solution, extracted with ethyl acetate, and dried over anhydrous sodium sulfate. The drying agent was separated by filtration, and the solvent was removed under reduced pressure to obtain 8.6 g of a crude product of 2-amino-6-fluorophenol.

リファマイシンS47.2gと上記で得た2−アミノ−6−
フルオロフェノール粗生成物8.6gをトルエン1に溶解
し、室温で6日間撹拌し、反応させた。不溶物を濾別
し、濾液から溶媒を減圧下に除去した。残渣をエタノー
ル400mlに溶解し、二酸化マンガン20.0gを加え、室温に
て一昼夜撹拌反応させた。濾過助剤を用い、二酸化マン
ガンを濾別し、不溶物をアセトンで溶出し、合わせた濾
液から溶媒を減圧下に留去した。エタノールから晶析し
て目的とする6′−フルオロベンゾキサジノリファマイ
シン26.7gを得た。
Rifamycin S (47.2 g) and 2-amino-6 obtained above
8.6 g of crude fluorophenol was dissolved in toluene 1 and stirred at room temperature for 6 days to react. The insolubles were removed by filtration, and the solvent was removed from the filtrate under reduced pressure. The residue was dissolved in 400 ml of ethanol, 20.0 g of manganese dioxide was added, and the mixture was stirred and reacted at room temperature for 24 hours. Using a filter aid, manganese dioxide was filtered off, insolubles were eluted with acetone, and the solvent was distilled off from the combined filtrate under reduced pressure. Crystallization from ethanol yielded 26.7 g of the desired 6'-fluorobenzoxazinolifamycin.

薄層クロマトグラフィー Rf=0.52赤色スポット[担体:シリカゲル、展開溶
媒:酢酸エチル] 実施例62 (誘導体43の合成) 実施例61に記載した方法により合成した6′−フルオ
ロベンゾキサジノリファマイシン5.0gをジメチルスルホ
キシド50mlに溶解し、N−イソブチルピペラジン1.1gと
二酸化マンガン2.5gとを加え、室温で一昼夜撹拌反応さ
せた。次いで反応液中に酢酸エチルを加えて希釈し、不
溶物を濾別し、濾液を順次水、飽和食塩水で洗浄し、有
機層を無水硫酸ナトリウムにて乾燥した。乾燥剤を濾別
し、減圧下に溶媒を除去した。残渣をワコーゲル C−
200を用いたシリカゲルカラムクロマトグラフィーで3
回[展開溶媒:クロロホルム−メタノール(99:1)]精
製し、酢酸エチル−n−ヘキサンの系より晶析し、目的
とする誘導体43を3.14g得た。
Thin layer chromatography Rf = 0.52 red spot [Carrier: silica gel, developing solution
Medium: ethyl acetate] Example 62 (Synthesis of Derivative 43) 6′-Fluoro synthesized by the method described in Example 61
5.0 g of robenzoxazinolifamycin in dimethyl sulfo
Dissolved in 50 ml of oxide and 1.1 g of N-isobutylpiperazine.
Add 2.5 g of manganese dioxide, and stir at room temperature for 24 hours.
I let you. Then, the reaction solution was diluted by adding ethyl acetate,
The solution was filtered off, and the filtrate was washed successively with water and saturated saline.
The organic layer was dried with anhydrous sodium sulfate. Filtration of desiccant
Then, the solvent was removed under reduced pressure. Wako gel for residue C-
Silica gel column chromatography using 200
Times [Developing solvent: chloroform-methanol (99: 1)]
And crystallized from ethyl acetate-n-hexane.
3.43 g of the derivative 43 was obtained.

実施例63 (6′−クロロベンゾキサジノリファマイシンの合成) 2−クロロ−6−ニトロフェノール2.78gと亜二チオ
ン酸ナトリウム6.00gとを水100mlに加え、90℃で30分間
撹拌した。亜二チオン酸ナトリウム6.00gを追加して90
℃で更に40分間撹拌後、室温に冷却し、炭酸水素ナトリ
ウムで中和した。この反応混合物からエーテルで4回
(計300ml)抽出し、抽出液を無水硫酸ナトリウムで乾
燥後、溶媒を減圧留去することにより、2−アミノ−6
−クロロフェノール粗生成物0.95gを得た。
Example 63 (Synthesis of 6'-chlorobenzoxazinorifamycin) 2.78 g of 2-chloro-6-nitrophenol and 6.00 g of sodium dithionite were added to 100 ml of water, and the mixture was stirred at 90 ° C for 30 minutes. Add 6.00 g of sodium dithionite and add 90
After stirring at 40 ° C. for another 40 minutes, the mixture was cooled to room temperature and neutralized with sodium hydrogen carbonate. The reaction mixture was extracted four times with ether (300 ml in total), the extract was dried over anhydrous sodium sulfate, and the solvent was distilled off under reduced pressure to give 2-amino-6.
0.95 g of crude chlorophenol product was obtained.

リファマイシンS4.3gと2−アミノ−6−クロロフェ
ノール粗生成物0.9gとトルエン70mlに溶解し、60℃で1
9.5時間撹拌反応させた。反応溶媒を減圧下で除去し、
残渣をエタノール70mlに溶解し、二酸化マンガン4.3gを
加え、室温で120時間撹拌し反応させた。濾過助剤を用
いて二酸化マンガンを濾別し溶媒を減圧下で除去した。
以下、実施例52と同様に処理し、目的とする6′−クロ
ロベンゾキサジノリファマイシン3.23gを得た。
Dissolve in 4.3 g of rifamycin S, 0.9 g of crude 2-amino-6-chlorophenol product and 70 ml of toluene, and add
The mixture was stirred and reacted for 9.5 hours. The reaction solvent is removed under reduced pressure,
The residue was dissolved in 70 ml of ethanol, 4.3 g of manganese dioxide was added, and the mixture was stirred and reacted at room temperature for 120 hours. Manganese dioxide was filtered off using a filter aid and the solvent was removed under reduced pressure.
Thereafter, the same treatment as in Example 52 was carried out to obtain 3.23 g of the desired 6'-chlorobenzoxazinolifamycin.

薄層クロマトグラフィー Rf=0.56赤紫色スポット[担体:シリカゲル、展開溶
媒:クロロホルム−アセトン(7:3)] 実施例64 (誘導体44の合成) 実施例63に記載した方法により合成した6′−クロロ
ベンゾキサジノリファマイシン1.0gをジメチルスルホキ
シド10mlに溶解し、ピロリジン0.2mlと二酸化マンガン
1.0gとを加え、室温で21時間撹拌反応させた。以下、実
施例23と同様に処理して0.28gの目的とする誘導体44を
得た。
Thin layer chromatography Rf = 0.56 red-purple spot [carrier: silica gel, developing solvent: chloroform-acetone (7: 3)] Example 64 (Synthesis of derivative 44) 6′-chloro synthesized by the method described in Example 63 Dissolve 1.0 g of benzoxazinolifamycin in 10 ml of dimethyl sulfoxide, 0.2 ml of pyrrolidine and manganese dioxide
1.0 g, and the mixture was stirred and reacted at room temperature for 21 hours. Thereafter, the same treatment as in Example 23 was carried out to obtain 0.28 g of the desired derivative 44.

実施例65 (4′−ヨードベンゾキサジノリファマイシンの合成) 酢酸50mlにp−ヨードフェノール8.80gを加え、氷冷
撹拌下に61%硝酸(比重1.38)3.3mlを加え、氷冷しな
がら20分間撹拌した。そこへ水20mlを加えて生じた沈澱
を濾取、水洗後、風乾した。得られた粗生成物を四塩化
炭素より晶析し、4−ヨード−2−ニトロフェノール3.
00gを得た。これを水70mlとエタノール20mlの混合液に
加え、亜二チオン酸ナトリウム4.24gを加えて80℃で30
分間撹拌した。亜二チオン酸ナトリウム4.24gを追加
し、80℃で更に40分間撹拌後、室温に冷却し、炭酸水素
ナトリウムを加えて中和した。この反応混合物から酢酸
エチルで5回抽出(計250ml)し、抽出液を無水硫酸ナ
トリウムで乾燥した。抽出液の溶媒を減圧留去すること
により2−アミノ−4−ヨードフェノール粗生成物0.82
gを得た。
Example 65 (Synthesis of 4'-iodobenzoxazinolifamycin) 8.50 g of p-iodophenol was added to 50 ml of acetic acid, and 3.3 ml of 61% nitric acid (specific gravity 1.38) was added with stirring under ice-cooling. Stirred for minutes. A precipitate formed by adding 20 ml of water thereto was collected by filtration, washed with water, and air-dried. The obtained crude product was crystallized from carbon tetrachloride to give 4-iodo-2-nitrophenol 3.
00g was obtained. This was added to a mixture of 70 ml of water and 20 ml of ethanol, and 4.24 g of sodium dithionite was added.
Stirred for minutes. After adding 4.24 g of sodium dithionite, the mixture was further stirred at 80 ° C. for 40 minutes, cooled to room temperature, and neutralized by adding sodium hydrogen carbonate. The reaction mixture was extracted five times with ethyl acetate (250 ml in total), and the extract was dried over anhydrous sodium sulfate. The solvent of the extract was distilled off under reduced pressure to give a crude product of 2-amino-4-iodophenol 0.82.
g was obtained.

この2−アミノ−4−ヨードフェノール粗生成物0.82
gとリファマイシンS2.43gとをトルエン70mlに加えて60
℃で24.5時間撹拌した。反応混合物から溶媒を減圧留去
したのち、残渣をメタノール70mlに溶解し、二酸化マン
ガン2.43gを加えて室温で一夜間撹拌した。この反応混
合物から不溶物を濾別し、溶媒を減圧留去して得られた
残渣をシリカゲルカラムクロマトグラフィーによる精製
を2回[展開溶媒:クロロホルム−アセトン(9:1)、
次いで酢酸エチル−n−ヘキサン(1:1)]行ない、目
的とする4′−ヨードベンゾキサジノリファマイシンを
0.71g得た。
This 2-amino-4-iodophenol crude product 0.82
g and rifamycin S2.43 g are added to 70 ml of toluene to give 60
Stirred at 2 ° C. for 24.5 hours. After the solvent was distilled off from the reaction mixture under reduced pressure, the residue was dissolved in 70 ml of methanol, 2.43 g of manganese dioxide was added, and the mixture was stirred at room temperature overnight. The insoluble material was separated by filtration from the reaction mixture, and the residue obtained by evaporating the solvent under reduced pressure was purified twice by silica gel column chromatography [developing solvent: chloroform-acetone (9: 1),
Then, ethyl acetate-n-hexane (1: 1)] was carried out to give the desired 4'-iodobenzoxazino rifamycin.
0.71 g was obtained.

薄層クロマトグラフィー Rf=0.43紫色スポット[担体:シリカゲル、展開溶
媒:酢酸エチル−n−ヘキサン(1:1)] 実施例66 (誘導体45の合成) 実施例65で得た4′−ヨードベンゾキサジノリファマ
イシン0.39g、ピロリジン0.07ml、二酸化マンガン0.39g
およびジメチルスルホキシド5mlを用い、他は実施例13
と同じ操作により目的とする誘導体45を0.21g得た。
Thin layer chromatography Rf = 0.43 purple spot [carrier: silica gel, developing solvent: ethyl acetate-n-hexane (1: 1)] Example 66 (Synthesis of derivative 45) 4′-iodobenzoxa obtained in Example 65 Dinorifamycin 0.39 g, pyrrolidine 0.07 ml, manganese dioxide 0.39 g
And 5 ml of dimethyl sulfoxide, and
By the same operation as described above, 0.21 g of the desired derivative 45 was obtained.

[発明の効果] 本発明の新規リファマイシン誘導体は、強い抗菌作用
を有し、優れた薬理学的特性を有するという効果を奏す
る。
[Effect of the Invention] The novel rifamycin derivative of the present invention has a strong antibacterial effect and has an effect of having excellent pharmacological properties.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明のリファマイシン誘導体およびその他
の被検化合物を結核症のマウスに経口投与したときのマ
ウスの生存率と処置日数との関係を示すグラフである。
FIG. 1 is a graph showing the relationship between the survival rate of mice and the number of treatment days when the rifamycin derivative of the present invention and other test compounds are orally administered to mice with tuberculosis.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C07D 307:00) (72)発明者 細江 和典 兵庫県高砂市西畑3丁目8―5 (72)発明者 久世 文幸 京都府京都市左京区下鴨高木町46―1 じょい下鴨803 (72)発明者 渡辺 清 兵庫県明石市松ケ丘5丁目15―41 (56)参考文献 特開 昭64−6279(JP,A) 特開 昭64−6281(JP,A) 特開 昭63−30490(JP,A) (58)調査した分野(Int.Cl.6,DB名) C07D 498/18 A61K 31/535 CA(STN) REGISTRY(STN)──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 6 Identification code FI C07D 307: 00) (72) Inventor Kazunori Hosoe 3- 8-5 Nishihata, Takasago City, Hyogo Prefecture (72) Inventor Fumiyuki Kuze Kyoto, Kyoto Prefecture 467-1 Shimogamo-Takagicho, Sakyo-ku, City 803 Jyo Shimogamo 803 (72) Inventor Kiyoshi Watanabe 5-15-41, Matsugaoka, Akashi-shi, Hyogo (56) References JP-A-64-6279 (JP, A) 64-6281 (JP, A) JP-A-63-30490 (JP, A) (58) Fields investigated (Int. Cl. 6 , DB name) C07D 498/18 A61K 31/535 CA (STN) REGISTRY (STN )

Claims (12)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】式(I): {式中、Aは (式中、R1およびR2は同一または相異なり、炭素数1〜
3のアルキル基、炭素数2〜6のアミノアルキル基、炭
素数2〜6のモノアルキルアミノアルキル基または炭素
数3〜6のジアルキルアミノアルキル基を示す)で表わ
される基、 (式中、aは2〜7の整数を示し、R3は水素原子、アミ
ノ基、炭素数1〜4のモノアルキルアミノ基または炭素
数2〜8のジアルキルアミノ基を示す)で表わされる基
または (式中、bおよびcは同一または相異なり、1〜4の整
数を示し、R4は水素原子、炭素数3〜5のシクロアルキ
ル基で置換されていてもよい炭素数1〜6のアルキル
基、炭素数2〜7のアルケニル基、炭素数2〜6のアル
コキシアルキル基または炭素数3〜5のシクロアルキル
基を示す)で表わされる基を表わし、X1は3′位の炭素
数1〜6のアルコキシ基もしくは炭素数2〜6のアルケ
ニルオキシ基、4′位の炭素数2〜6のアルコキシ基、
炭素数1〜6のアルキルチオ基、炭素数1〜6のアシル
基、炭素数2〜6のアシルアルキル基もしくはヨウ素原
子、5′位の炭素数1〜6のアルコキシ基または6′位
の炭素数1〜6のアルコキシ基もしくはハロゲン原子を
表わし、X2は水素原子または炭素数1〜6のアルキル基
を表わす}で示されるリファマイシン誘導体またはその
塩。
(1) Formula (I): Awhere A is (Wherein R 1 and R 2 are the same or different and have 1 to 1 carbon atoms)
An alkylalkyl group having 3 to 3 carbon atoms, an aminoalkyl group having 2 to 6 carbon atoms, a monoalkylaminoalkyl group having 2 to 6 carbon atoms or a dialkylaminoalkyl group having 3 to 6 carbon atoms); (Where a represents an integer of 2 to 7, R 3 represents a hydrogen atom, an amino group, a monoalkylamino group having 1 to 4 carbon atoms or a dialkylamino group having 2 to 8 carbon atoms) Or (Where b and c are the same or different and represent an integer of 1 to 4, R 4 is a hydrogen atom, an alkyl having 1 to 6 carbon atoms which may be substituted by a cycloalkyl group having 3 to 5 carbon atoms) group, an alkenyl group having 2 to 7 carbon atoms, represents a group represented by a cycloalkyl group having an alkoxyalkyl group or a 3 to 5 carbon atoms having 2 to 6 carbon atoms), X 1 is 3 'carbon atoms of positions 1 An alkoxy group having 2 to 6 carbon atoms or an alkenyloxy group having 2 to 6 carbon atoms, an alkoxy group having 2 to 6 carbon atoms at the 4'-position,
An alkylthio group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, an acylalkyl group having 2 to 6 carbon atoms or an iodine atom, an alkoxy group having 1 to 6 carbon atoms at the 5'-position, or a carbon number at the 6'-position A rifamycin derivative represented by}, which represents an alkoxy group having 1 to 6 atoms or a halogen atom, and X 2 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, or a salt thereof.
【請求項2】前記式(I)に於て、Aが (式中、aおよびR3は前記と同じ)で表わされる基また
(式中、b、cおよびR4は前記と同じ)で表わされる基
である請求項1記載のリファマイシン誘導体またはその
塩。
2. In the above formula (I), A is Wherein a and R 3 are the same as defined above, or (Wherein, b, c, and R 4 are as defined above) rifamycin derivative or a salt thereof according to claim 1, wherein the group represented by.
【請求項3】前記式(I)に於て、X1が6′位の炭素数
1〜6のアルコキシ基である請求項1記載のリファマイ
シン誘導体またはその塩。
3. The rifamycin derivative or a salt thereof according to claim 1, wherein in the formula (I), X 1 is an alkoxy group having 1 to 6 carbon atoms at the 6′-position.
【請求項4】前記式(I)に於て、Aが (式中、aおよびR3は前記と同じ)で表わされる基また
(式中、b、cおよびR4は前記と同じ)で表わされる基
であり、X1が6′位の炭素数1〜6のアルコキシ基であ
り、X2が水素原子または炭素数1〜6のアルキル基であ
る請求項1記載のリファマイシン誘導体またはその塩。
4. In the above formula (I), A is Wherein a and R 3 are the same as defined above, or Wherein b, c and R 4 are the same as defined above, wherein X 1 is a 6'-position alkoxy group having 1 to 6 carbon atoms, and X 2 is a hydrogen atom or a carbon atom having 1 to 6 carbon atoms. The rifamycin derivative or a salt thereof according to claim 1, which is an alkyl group of 6.
【請求項5】前記式(I)に於て、Aが5′位 (式中、aおよびR3は前記と同じ)で表わされる基また
(式中、b、cおよびR4は前記と同じ)で表わされる基
であり、X1が6′位の炭素数1〜6のアルコキシ基であ
り、X2が水素原子または3′位の炭素数1〜6のアルキ
ル基である請求項1記載のリファマイシン誘導体または
その塩。
5. In the above formula (I), A is the 5'-position. Wherein a and R 3 are the same as defined above, or (Wherein b, c and R 4 are the same as defined above), X 1 is a 6′-position alkoxy group having 1 to 6 carbon atoms, and X 2 is a hydrogen atom or a 3′-position The rifamycin derivative or a salt thereof according to claim 1, which is an alkyl group having 1 to 6 carbon atoms.
【請求項6】前記式(I)に於て、Aが5′位 であり、X1が6′位−OC2H5基であり、X2が水素原子で
ある請求項1記載のリファマイシン誘導体またはその
塩。
6. In the above formula (I), A is the 5′-position. The rifamycin derivative or a salt thereof according to claim 1, wherein X 1 is a 6′-OC 2 H 5 group, and X 2 is a hydrogen atom.
【請求項7】前記式(I)に於て、Aが5′位 であり、X1が6′位−OC2H5基であり、X2が水素原子で
ある請求項1記載のリファマイシン誘導体またはその
塩。
7. In the above formula (I), A is the 5'-position. The rifamycin derivative or a salt thereof according to claim 1, wherein X 1 is a 6′-OC 2 H 5 group, and X 2 is a hydrogen atom.
【請求項8】前記式(I)に於て、Aが5′位 であり、X1が6′位−OCH(CH3基であり、X2が水素
原子である請求項1記載のリファマイシン誘導体または
その塩。
8. In the above formula (I), A is the 5′-position. The rifamycin derivative or a salt thereof according to claim 1, wherein X 1 is a 6′-OCH (CH 3 ) 2 group, and X 2 is a hydrogen atom.
【請求項9】前記式(I)に於て、Aが5′位 であり、X1が6′位−OCH3基であり、X2が3′位−CH3
基である請求項1記載のリファマイシン誘導体またはそ
の塩。
9. In the above formula (I), A is the 5'-position. X 1 is a 6′-OCH 3 group, and X 2 is a 3′-CH 3 group.
The rifamycin derivative or a salt thereof according to claim 1, which is a group.
【請求項10】式(II): (式中、X3は水素原子、炭素数1〜6のアルコキシ基、
ハロゲン原子またはニトロ基を表わし、X4は3′位の炭
素数1〜6のアルコキシ基もしくは炭素数2〜6のアル
ケニルオキシ基、4′位の炭素数2〜6のアルコキシ
基、炭素数1〜6のアルキルチオ基、炭素数1〜6のア
シル基、炭素数2〜6のアシルアルキル基もしくはヨウ
素原子または6′位の炭素数1〜6のアルコキシ基もし
くはハロゲン原子を表わし、X5は水素原子または炭素数
1〜6のアルキル基を表わす)で示されるリファマイシ
ン誘導体に、式AH{式中、Aは (式中、R1およびR2は同一または相異なり、炭素数1〜
3のアルキル基、炭素数2〜6のアミノアルキル基、炭
素数2〜6のモノアルキルアミノアルキル基または炭素
数3〜6のジアルキルアミノアルキル基を示す)で表わ
される基、 (式中、aは2〜7の整数を示し、R3は水素原子、アミ
ノ基、炭素数1〜4のモノアルキルアミノ基または炭素
数2〜8のジアルキルアミノ基を示す)で表わされる基
または (式中、bおよびcは同一または相異なり、1〜4の整
数を示し、R4は水素原子、炭素数3〜5のシクロアルキ
ル基で置換されていてもよい炭素数1〜6のアルキル
基、炭素数2〜7のアルケニル基、炭素数2〜6のアル
コキシアルキル基または炭素数3〜5のシクロアルキル
基を示す)で表わされる基を表わす}で示されるアミン
を反応させることを特徴とする式(III): (式中、A、X4およびX5は前記と同じ)で示されるリフ
ァマイシン誘導体の製造法。
10. The formula (II): (Wherein X 3 is a hydrogen atom, an alkoxy group having 1 to 6 carbon atoms,
A halogen atom or a nitro group; X 4 represents a 3′-position alkoxy group having 1 to 6 carbon atoms or an alkenyloxy group having 2 to 6 carbon atoms; a 4′-position alkoxy group having 2 to 6 carbon atoms; 6 alkylthio group, an acyl group having 1 to 6 carbon atoms, an acyl group or an iodine atom or 6'-position alkoxy group or halogen atom having 1 to 6 carbon atoms of 2 to 6 carbon atoms, X 5 is hydrogen Wherein A represents an atom or an alkyl group having 1 to 6 carbon atoms), wherein A is (Wherein R 1 and R 2 are the same or different and have 1 to 1 carbon atoms)
An alkylalkyl group having 3 to 3 carbon atoms, an aminoalkyl group having 2 to 6 carbon atoms, a monoalkylaminoalkyl group having 2 to 6 carbon atoms or a dialkylaminoalkyl group having 3 to 6 carbon atoms); (Where a represents an integer of 2 to 7, R 3 represents a hydrogen atom, an amino group, a monoalkylamino group having 1 to 4 carbon atoms or a dialkylamino group having 2 to 8 carbon atoms) Or (Where b and c are the same or different and represent an integer of 1 to 4, R 4 is a hydrogen atom, an alkyl having 1 to 6 carbon atoms which may be substituted by a cycloalkyl group having 3 to 5 carbon atoms) A alkenyl group having 2 to 7 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms or a cycloalkyl group having 3 to 5 carbon atoms). Equation (III): (Wherein A, X 4 and X 5 are the same as described above).
【請求項11】式(IV): (式中、X6は水素原子、炭素数1〜6のアルコキシ基、
ハロゲン原子またはニトロ基を表わし、X7は4′位の炭
素数2〜6のアルコキシ基、炭素数1〜6のアルキルチ
オ基、炭素数1〜6のアシル基、炭素数2〜6のアシル
アルキル基もしくはヨウ素原子、5′位の炭素数1〜6
のアルコキシ基または6′位の炭素数1〜6のアルコキ
シ基もしくはハロゲン原子を表わし、X8は水素原子また
は炭素数1〜6のアルキル基を表わし、5′位は水素原
子以外のX7またはX8を表わす基である)で示されるリフ
ァマイシン誘導体に、式AH{式中、Aは (式中、R1およびR2は同一または相異なり、炭素数1〜
3のアルキル基、炭素数2〜6のアミノアルキル基、炭
素数2〜6のモノアルキルアミノアルキル基または炭素
数3〜6のジアルキルアミノアルキル基を示す)で表わ
される基、 (式中、aは2〜7の整数を示し、R3は水素原子、アミ
ノ基、炭素数1〜4のモノアルキルアミノ基または炭素
数2〜8のジアルキルアミノ基を示す)で表わされる基
または (式中、bおよびcは同一または相異なり、1〜4の整
数を示し、R4は水素原子、炭素数3〜5のシクロアルキ
ル基で置換されていてもよい炭素数1〜6のアルキル
基、炭素数2〜7のアルケニル基、炭素数2〜6のアル
コキシアルキル基または炭素数3〜5のシクロアルキル
基を示す)で表わされる基を表わす}で示されるアミン
を反応させることを特徴とする式(V): (式中、A、X7およびX8は前記と同じ)で示されるリフ
ァマイシン誘導体の製造法。
11. The formula (IV): (Wherein X 6 is a hydrogen atom, an alkoxy group having 1 to 6 carbon atoms,
X 7 represents a halogen atom or a nitro group, X 7 represents a 4′-position alkoxy group having 2 to 6 carbon atoms, an alkylthio group having 1 to 6 carbon atoms, an acyl group having 1 to 6 carbon atoms, and an acylalkyl having 2 to 6 carbon atoms. Group or iodine atom, carbon number of 1 to 6 at 5'-position
Represents an alkoxy group having 1 to 6 carbon atoms or a halogen atom at the 6′-position, X 8 represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and the 5′-position represents X 7 other than a hydrogen atom or the rifamycin derivative represented by a group) representing the X 8, wherein AH {wherein, a is (Wherein R 1 and R 2 are the same or different and have 1 to 1 carbon atoms)
An alkylalkyl group having 3 to 3 carbon atoms, an aminoalkyl group having 2 to 6 carbon atoms, a monoalkylaminoalkyl group having 2 to 6 carbon atoms or a dialkylaminoalkyl group having 3 to 6 carbon atoms); (Where a represents an integer of 2 to 7, R 3 represents a hydrogen atom, an amino group, a monoalkylamino group having 1 to 4 carbon atoms or a dialkylamino group having 2 to 8 carbon atoms) Or (Where b and c are the same or different and represent an integer of 1 to 4, R 4 is a hydrogen atom, an alkyl having 1 to 6 carbon atoms which may be substituted by a cycloalkyl group having 3 to 5 carbon atoms) Represents an alkenyl group having 2 to 7 carbon atoms, an alkoxyalkyl group having 2 to 6 carbon atoms or a cycloalkyl group having 3 to 5 carbon atoms). Equation (V): (Wherein A, X 7 and X 8 are the same as described above).
【請求項12】請求項1記載のリファマイシン誘導体ま
たはその塩を有効成分とする抗菌剤。
12. An antibacterial agent comprising the rifamycin derivative according to claim 1 or a salt thereof as an active ingredient.
JP1066738A 1988-09-24 1989-03-17 Substituted benzoxazinolifamycin derivatives Expired - Lifetime JP2780807B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1066738A JP2780807B2 (en) 1988-09-24 1989-03-17 Substituted benzoxazinolifamycin derivatives

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP63-239288 1988-09-24
JP63239288 1988-09-24
JP1066738A JP2780807B2 (en) 1988-09-24 1989-03-17 Substituted benzoxazinolifamycin derivatives

Publications (2)

Publication Number Publication Date
JPH02167288A JPH02167288A (en) 1990-06-27
JP2780807B2 true JP2780807B2 (en) 1998-07-30

Family

ID=26407937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1066738A Expired - Lifetime JP2780807B2 (en) 1988-09-24 1989-03-17 Substituted benzoxazinolifamycin derivatives

Country Status (1)

Country Link
JP (1) JP2780807B2 (en)

Also Published As

Publication number Publication date
JPH02167288A (en) 1990-06-27

Similar Documents

Publication Publication Date Title
CA1304363C (en) 3'-hydroxybenzoxazinorifamycin derivative, process for preparing the same and antibacterial agent containing the same
JPS585916B2 (en) New benzodiazepine compounds
JPS5815979A (en) Novel piperidine derivative and its preparation
Hussain et al. New alkaloids from Fumaria parviflora
EP0333176B1 (en) Substituted benzoxazinorifamycin derivative, process for preparing the same and antibacterial agent containing the same
JPH0649074A (en) New 9-fluoro-7-oxo-7h-pyrido(1,2,3-de)(1,4)benzoxazine-6- carboxylic acid and its ester
JP2780807B2 (en) Substituted benzoxazinolifamycin derivatives
JP3037991B2 (en) New aconitine compounds and analgesic / anti-inflammatory agents
LU82898A1 (en) NOVEL PYRIDOTHIENOTRIAZINES AND THEIR PREPARATION PROCESS
FR2467205A1 (en) BENZO (IJ) QUINOLIZINE CARBOXYLIC-2 ACID DERIVATIVES, PARTICULARLY USEFUL AS ANTIMICROBIAL MEDICAMENTS, PROCESS FOR THEIR PREPARATION AND THERAPEUTIC COMPOSITIONS AND PHARMACEUTICAL FORMS CONTAINING THE SAME
WO2023276828A1 (en) Pharmaceutical composition for preventing and/or treating kidney injury, and autophagy activator
JP5065020B2 (en) Process for producing levofloxacin or a hydrate thereof
JPS59231092A (en) Phenothiazine-type rifamycin and its pharmaceutical use
JP2862912B2 (en) 5 '-(4-propyl or 4-isopropylpiperazinyl) benzoxazinolifamycin derivative
JP2544488B2 (en) 3'-hydroxybenzoxazinorifamycin derivative
JPH0560478B2 (en)
AU726586B2 (en) Novel phenanthridinium derivatives
SE453506B (en) AZINO RIFAMYCINES, PROCEDURES FOR PREPARING THEREOF, AND PHARMACEUTICAL COMPOSITIONS AND PREPARATIONS
JPH0357915B2 (en)
JP3068175B2 (en) Isothiazolo [5,4-b] pyridine derivatives
EP1297835A1 (en) Benzo[b]pyrano[3,2-h]acridin-7-one derivatives, processes for their preparation and pharmaceutical compositions thereof
JPH0276883A (en) Substituted benzoxazinorifamycin derivative
JPH01207293A (en) Substituted benzoxazinorifamycin derivative
CH616425A5 (en)
JPS63264468A (en) Optically active benzoxazine