JP2544008B2 - Railway laying rail evaluation method - Google Patents

Railway laying rail evaluation method

Info

Publication number
JP2544008B2
JP2544008B2 JP2179651A JP17965190A JP2544008B2 JP 2544008 B2 JP2544008 B2 JP 2544008B2 JP 2179651 A JP2179651 A JP 2179651A JP 17965190 A JP17965190 A JP 17965190A JP 2544008 B2 JP2544008 B2 JP 2544008B2
Authority
JP
Japan
Prior art keywords
rail
ray
fatigue
life
laying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2179651A
Other languages
Japanese (ja)
Other versions
JPH0466852A (en
Inventor
正幸 岡本
博文 森川
和男 杉野
英明 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2179651A priority Critical patent/JP2544008B2/en
Publication of JPH0466852A publication Critical patent/JPH0466852A/en
Application granted granted Critical
Publication of JP2544008B2 publication Critical patent/JP2544008B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Machines For Laying And Maintaining Railways (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は鉄道の実敷設レールの疲労進行状態を実測
し、余寿命を評価する方法に関する。
TECHNICAL FIELD The present invention relates to a method for measuring a fatigue progress state of an actually laid rail of a railway and evaluating a remaining life.

[従来の技術] 一般に、鉄道レールでは累積通トン数が疲労損傷の発
生尺度として用いられている。例えば100km/hr以上の高
速鉄道レールは累積通トン数が約3億トンに達すると、
車輪とレールとの接触面であるレール頭表面の中心近傍
から疲労損傷が急激に発生する。一方、200km/hr以上の
超高速鉄道のそれは約1.5億トンである。これは、高速
鉄道と超高速鉄道との走行条件の差異にもとずくもので
ある。それゆえに、従来の疲労損傷の発生尺度である累
積通トン数が同一でも走行や環境などの条件が異なる場
合には疲労進行状態が変化することを意味する。
[Prior Art] Generally, in railway rails, the cumulative tonnage is used as a measure of fatigue damage occurrence. For example, when the cumulative tonnage of high-speed rails of 100 km / hr or more reaches about 300 million tons,
Fatigue damage suddenly occurs near the center of the rail head surface, which is the contact surface between the wheel and the rail. On the other hand, that of ultra high-speed railways over 200 km / hr is about 150 million tons. This is due to the difference in running conditions between high-speed rail and ultra-high-speed rail. Therefore, even if the cumulative tonnage, which is a conventional fatigue damage generation scale, is the same, it means that the fatigue progress state changes when the conditions such as running and environment are different.

したがって、実敷設レールの寿命予測のためには広範
囲の各種条件下での疲労進行実態を評価し、疲労のパラ
メータを抽出することが必須要件である。ところが、従
来は、実敷設レール上で直接疲労進行状態を評価する手
段が存在しなかったので、線路からレールを取り外し
て、実験室的に調査が進められていた。
Therefore, in order to predict the life of an actually laid rail, it is essential to evaluate the actual state of fatigue progress under a wide variety of conditions and extract fatigue parameters. However, conventionally, there was no means for directly evaluating the fatigue progress state on the actually laid rail, so the rail was removed from the track and the investigation was conducted in a laboratory.

しかし、現状では数多くの実敷設レールを取り外すこ
とは不可能であり、僅かな採取レールについてのみ各種
の材料試験(例えば硬度測定)や物理試験(例えば残留
応力、集合組織測定)を実施してきた。しかもこの試験
では単にある累積通トン数の敷設レール実態を明らかに
しているにすぎなかった。したがって、従来は実敷設レ
ールの疲労進行程度を評価し、余寿命を予測することが
できなかった。
However, at present, it is impossible to remove a large number of actually laid rails, and various material tests (for example, hardness measurement) and physical tests (for example, residual stress and texture measurement) have been carried out only on a few sampling rails. Moreover, this test merely clarified the actual condition of the laid rail with a certain cumulative tonnage. Therefore, conventionally, it has not been possible to evaluate the degree of fatigue progress of an actually laid rail and predict the remaining life.

[発明が解決しようとする課題] 本発明の課題は、走行あるいは敷設環境などの異なる
実敷設レール頭表面の疲労進行程度や損傷程度を示すX
線パラメータを抽出し、任意の場所に敷設されたレール
の余寿命を予測することにある。
[Problems to be Solved by the Invention] An object of the present invention is to show the degree of fatigue progress and the degree of damage on the surface of an actual laying rail head that differs in running or laying environment.
The purpose is to extract line parameters and predict the remaining life of rails installed anywhere.

[課題を解決するための手段および作用] X線回折法は材料の疲労進行状態を明らかにする上に
有用な手段であるが、従来の市販X線回折装置は軽便化
が計られていないので、実敷設レールの任意場所に適用
し、疲労過程のX線パラメータを抽出することは極めて
困難なことであった。
[Means and Actions for Solving the Problems] The X-ray diffraction method is a useful means for clarifying the fatigue progress state of the material, but the conventional commercial X-ray diffractometer has not been made easy. However, it was extremely difficult to apply it to an arbitrary location on an actual laying rail and extract the X-ray parameter of the fatigue process.

しかし、本発明者らは既に実敷設レールの任意場所に
適用可能な小型X線回折装置とその使用方法(特願平2
−20298号)を発明している。本発明は、この「小型X
線回折装置およびその使用方法」を走行あるいは敷設環
境の異なる数多くの実敷設レールに適用し、車輪との接
触面、すなわち溶接部を含むレール頭表面上で、列車の
進行方向またはその直交方向のX線パラメータが求めら
れる測定位置にX線ゴニオメータを固定して、レールと
車輪との接触面にCr、Fe、またはCoの特性X線を入射す
るとともに、入射X線と検出器を特定結晶面法線を中心
として同時に等速度で互いに反対側に操作するψ一定法
(回折面一定法)で回折X線を検出し、各累積通トン数
における積分強度(回折X線図形の面積)、積分幅(積
分強度/ピーク強度)を疲労進行のX線パラメータとし
て、それらの変化と寿命比との関係図、すなわち、予め
マスターカーブを作成する。
However, the present inventors have already applied a compact X-ray diffractometer that can be applied to an arbitrary place on an actually laid rail and a method of using the same (Japanese Patent Application No.
-20298)). The present invention is based on this "small X
The line diffractometer and its usage "are applied to many actual laying rails with different running or laying environments, and the contact direction with the wheel, that is, the rail head surface including the welded part, Fix the X-ray goniometer at the measurement position where the X-ray parameters are obtained, and inject the characteristic X-ray of Cr, Fe, or Co into the contact surface between the rail and the wheel, and specify the incident X-ray and the detector in the specific crystal plane. Diffracted X-rays are detected by the ψ-constant method (constant diffractive surface method) that operates simultaneously on the opposite sides at the same speed with the normal as the center, and the integrated intensity (area of the diffracted X-ray figure) at each cumulative tonnage is calculated. A width (integrated intensity / peak intensity) is used as an X-ray parameter of fatigue progress, and a relationship diagram between the changes and the life ratio, that is, a master curve is created in advance.

なお、マスターカーブは、実敷設レール以外にも、高
速レール試験機によるレール損耗試験からも作成でき
る。即ち、実敷設レールと同一のレールを設置した高速
レール試験機を一定累積通トン数稼働させて、レールと
車輪との接触面に入射X線を照射するとともに、ψ一定
法で回折X線を検出し、各累積通トン数における積分強
度、積分幅のX線パラメータを求めることによっても作
成できる。そして、マスターカーブ作成時と同一測定条
件で、診断を必要とする実レール頭表面に入射X線を照
射し、放射される回折X線から求めた積分強度、積分幅
を前記マスターカーブとの関係から、レールの疲労、損
傷程度および余寿命を予測することを特徴とする鉄道レ
ール評価方法である。
The master curve can be created from a rail wear test using a high-speed rail tester, in addition to the actual laying rail. That is, a high-speed rail tester equipped with the same rail as the actual laying rail is operated at a constant cumulative tonnage to irradiate the contact surface between the rail and the wheel with incident X-rays, and diffracted X-rays by the ψ constant method. It can also be created by detecting and obtaining the X-ray parameters of the integrated intensity and the integrated width at each cumulative tonnage. Then, under the same measurement conditions as when the master curve was created, incident X-rays were applied to the actual rail head surface requiring diagnosis, and the integrated intensity and integration width obtained from the diffracted X-rays emitted were related to the master curve. It is a railway rail evaluation method characterized by predicting the fatigue, damage degree and remaining life of the rail.

以下に、本発明の詳細を説明する。 The details of the present invention will be described below.

発明者らは前述の「小型X線回折装置」を実際に線路
上に持込み、累積通トン数毎に走行あるいは敷設環境な
どの異なる数多く実敷設レールの頭表面に入射X線を照
射し、回折面法線が一定になる条件で頭表面から放射さ
れる回折X線を検出し、車輪とレールとの繰り返し接触
による疲労進行のX線パラメータが、積分強度、積分幅
にある事実を見いだしたことによって本発明を完成させ
た。
The inventors actually brought in the above-mentioned “small X-ray diffractometer” on the track and radiated incident X-rays on the head surface of many actual laying rails with different running environments or laying environments for each cumulative tonnage, and diffracted. Diffracted X-rays radiated from the head surface were detected under the condition that the surface normal was constant, and the fact that the X-ray parameters of fatigue progression due to repeated contact between the wheel and the rail were found to be in the integrated intensity and integrated width was found. The present invention has been completed by

すなわち、本発明では、車輪とレールとの接触による
疲労の進行とともに{111}方位成分が、{211}方位成
分を経由して最終の安定方位である{200}方位へ到達
するので、211回折X線や200回折X線を測定することに
より、{211}方位や{200}方位の量を測定して疲労度
を評価する。その手順は、まず小型X線回折装置を敷設
レール上に設置して、車輪と接触するレール表面に、レ
ール頭表面に平行な{211}や{200}結晶面からの回折
X線を検出できる入射角でCr,FeまたはCo等の特性X線
を照射し、ψ一定法で211回折X線あるいは200回折X線
を測定する。そして、回折X線の測定後、小型X線回折
装置が具備する演算装置で、回折X線の積分幅や回折積
分強度を求め、その解析結果をマスターカーブと比較
し、余寿命を求めるものである。
That is, in the present invention, as the fatigue due to the contact between the wheel and the rail progresses, the {111} orientation component reaches the final stable orientation of {200} orientation via the {211} orientation component. By measuring X-rays and 200 diffraction X-rays, the amount of {211} orientation and {200} orientation is measured to evaluate the fatigue level. The procedure is to first install a small X-ray diffractometer on the laying rail, and detect diffracted X-rays from the {211} or {200} crystal plane parallel to the rail head surface on the rail surface that contacts the wheel. Irradiate characteristic X-rays such as Cr, Fe or Co at an incident angle, and measure 211 diffraction X-rays or 200 diffraction X-rays by the constant ψ method. Then, after the measurement of the diffracted X-rays, the integrated width and the diffracted integrated intensity of the diffracted X-rays are obtained by an arithmetic device included in the small X-ray diffractometer, and the analysis result is compared with the master curve to obtain the remaining life. is there.

以下に、マスターカーブの作成法について述べる。 The method of creating the master curve will be described below.

第1図は本発明の累積3億通トン以上で疲労損傷が急
激に発生し、5.5億通トンで折損した高速鉄道レールの
1例であり、寿命比(各累積通トン数/レール折損等の
累積通トン数、あるいは各累積通トン数/新品と交換さ
れる実敷設レールの累積通トン数)に対する211回折X
線の積分強度比、積分幅のマスターカーブである。ここ
で211回折X線の積分強度比とは、未使用レールの211回
折X線の積分強度に対する使用レールの211回折X線の
積分強度の量をいう。このマスターカーブは、寿命比が
異なるレールについて、それぞれレール頭表面の複数箇
所で211回折X線を測定し、それぞれの寿命比に対して
積分強度および積分幅をプロットしたものである。すな
わち、このマスターカーブは実敷設レールの頭表面の疲
労や損傷進行程度を直接的に表すものである。
Fig. 1 is an example of a high-speed rail rail that suffers from damage of 550 million tons due to abrupt fatigue damage with cumulative 300 million tons or more of the present invention, and has a life ratio (accumulated tonnage / rail breakage etc.). 211 diffracted X against the cumulative tonnage of each, or each cumulative tonnage / cumulative tonnage of the actual laying rail to be replaced with a new one)
It is a master curve of the integrated intensity ratio and integrated width of a line. Here, the integrated intensity ratio of the 211 diffraction X-rays refers to the amount of the integrated intensity of the 211 diffraction X-rays of the used rail with respect to the integrated intensity of the 211 diffraction X-rays of the unused rail. This master curve is obtained by measuring 211-diffraction X-rays at a plurality of positions on the rail head surface for rails having different life ratios and plotting the integrated intensity and the integral width with respect to each life ratio. That is, this master curve directly represents the degree of fatigue and damage progression on the head surface of the actual laying rail.

なお、寿命比0.45(累積通トン数が3億トン)以下の
実敷設レールでは、疲労損傷が全く存在しない頭表面を
測定した。寿命比0.45(累積通トン数が3億トン)以上
の実敷設レールでは頭表面の疲労最大損傷位置を測定し
た。また、第1図のマスターカーブには各寿命比におけ
る数多くの実測値の中で、安全性を見込んで疲労が最も
進行した場所に相当する最小積分強度と最大積分幅を記
入してある。それは高速鉄道レールにおいて寿命比が大
きくなると、車輪とレールとの間でのスリップの頻度が
高まり、頭表面上が磨耗のみならず急熱・急冷による白
色層(マルテンサイト)の変態量が増えるとともに、そ
の白色層やマトリックスなどの疲労が進行し、白色層あ
るいはその近傍から疲労損傷が発生し、レール折損に至
るので、レールの最も疲労の進んでいる白色層あるいは
その近傍からの回折X線のうち、安全性を見越して最も
疲労の進行した状態に対応する実測値を選定しているか
らである。即ち、211回折X線の積分強度は、変態によ
り白色層が{111}方位成分を優先的に形成するが、疲
労とともにマトリックスの{211}方位成分が安定方位
の{200}方位成分に到達すると同時に、白色層の{11
1}方位成分も{211}方位成分を経由し{200}方位成
分に到達するため減少する傾向にある。また、211回折
X線の積分幅は、白色層自身の転位密度が高い上に、さ
らに疲労進行によって不均一歪が導入されるのでさらに
大きくなる傾向にある。言いかえると、第1図には各寿
命比において最も白色層が形成され、かつ形成した白色
層やマトリックスの最も疲労が進行した位置の実測値を
記入してある。なお二つの疲労のX線パラメータは、当
然レールの種類や製造条件によって変化するので、マス
ターカーブへ記入する際には、実測値の最大、最小およ
び平均値などが適時選択される。すなわち、本発明では
レールの種類や製造条件毎にマスターカーブを作成する
ことになる。
The actual surface of rails with a life ratio of 0.45 (cumulative tonnage of 300 million tons) or less was measured on the head surface without any fatigue damage. The position of maximum fatigue damage on the head surface was measured for an actually laid rail with a life ratio of 0.45 (cumulative tonnage: 300 million tons) or more. Further, in the master curve of FIG. 1, among the many measured values at each life ratio, the minimum integrated strength and the maximum integrated width corresponding to the place where fatigue is most advanced are entered in consideration of safety. This is because when the life ratio of high-speed railway rails increases, the frequency of slipping between the wheels and the rails increases, and not only the top surface wears but also the transformation amount of the white layer (martensite) due to rapid heating and quenching increases. As the fatigue of the white layer and matrix progresses, and fatigue damage occurs from the white layer and its vicinity, leading to rail breakage, the X-ray diffraction from the white layer with the most fatigue of the rail and its vicinity is generated. Of these, the actual measurement value corresponding to the state in which fatigue is most advanced is selected in consideration of safety. In other words, the integrated intensity of 211 diffracted X-rays preferentially forms the {111} orientation component in the white layer due to the transformation, but when the {211} orientation component of the matrix reaches the stable orientation {200} orientation component with fatigue. At the same time, the white layer {11
The 1} direction component also tends to decrease because it reaches the {200} direction component via the {211} direction component. Further, the integration width of the 211-diffraction X-ray tends to become larger because the dislocation density of the white layer itself is high and non-uniform strain is introduced by the progress of fatigue. In other words, FIG. 1 shows the measured values of the positions where the whitest layer was formed most in each life ratio and the fatigue of the formed white layer and the matrix was most advanced. Since the two X-ray parameters of fatigue naturally change depending on the rail type and manufacturing conditions, when writing on the master curve, the maximum, minimum, and average values of the measured values are selected at appropriate times. That is, in the present invention, a master curve is created for each rail type and manufacturing condition.

したがって、本発明は高速鉄道レールの累積通トン数
が未知、あるいは累積通トン数が既知であっても疲労状
態が未知である実敷設レールについて二つの疲労のX線
パラメータのうち少なくとも1つを実測し、第1図のマ
スターカーブに適用すれば寿命消費率が分かり、比例配
分の関係から余寿命が容易に求まる。なお、寿命消費率
とは診断時に測定した積分強度、あるいは積分幅をマス
ターカーブに照らし合わせて求めた寿命比を百分率で表
したものである。
Therefore, according to the present invention, at least one of two fatigue X-ray parameters is determined for an actual laying rail whose cumulative tonnage of a high-speed rail is unknown, or whose fatigue state is unknown even if the cumulative tonnage is known. By actually measuring and applying it to the master curve of FIG. 1, the life consumption rate can be known, and the remaining life can be easily obtained from the proportional distribution relationship. The life consumption rate is a ratio of life obtained by comparing the integrated intensity measured at the time of diagnosis or the integration width with a master curve and expressed as a percentage.

第2図は本発明のレール頭表面に平行に分布する{20
0}結晶面からの回折X線の積分強度変化のマスターカ
ーブである。この図には走行あるいは敷設環境の異なる
数多くの実敷設レールについて実測し、各寿命比におい
て最も積分強度の高い値を記入してある。それは{11
1}方位成分が発達した白色層が寿命比の増加にともな
って結晶回転により最終的に{200}方位成分に到達す
るからである。したがって、{200}結晶面からのX線
パラメータも第1図と同様に実敷設レールの疲労あるい
は損傷進行程度を直接的に表すので、敷設レールの余寿
命の予測のためのマスターカーブとして利用できる。
Fig. 2 is distributed in parallel to the rail head surface of the present invention {20
It is a master curve of the integrated intensity change of the diffracted X-ray from the 0} crystal plane. In this figure, many actual laying rails with different running or laying environments are actually measured, and the value with the highest integrated strength at each life ratio is entered. It is {11
This is because the white layer in which the 1} orientation component has developed finally reaches the {200} orientation component due to crystal rotation as the life ratio increases. Therefore, the X-ray parameter from the {200} crystal plane also directly indicates the degree of fatigue or damage progress of the actual laying rail as in FIG. 1, and can be used as a master curve for predicting the remaining life of the laying rail. .

なお、第1図及び第2図のマスターカーブは、同一標
準品について211回折X線、200回折X線をそれぞれ測定
して作成したものである。
The master curves in FIGS. 1 and 2 are prepared by measuring 211 diffraction X-rays and 200 diffraction X-rays of the same standard product.

また、第1図の211回折X線に対する積分強度は、寿
命比の増加により{111}結晶面から{200}結晶面への
結晶回転が増加し、その結晶回転の途上にある{211}
結晶面が減少するので、第3図に示すように、211回折
X線の積分強度は寿命比とともに小さくなる。
In addition, the integrated intensity for the 211-diffraction X-ray in Fig. 1 is in the middle of the crystal rotation {211} because the crystal rotation from the {111} crystal plane to the {200} crystal plane increases due to the increase of the life ratio.
Since the number of crystal planes decreases, the integrated intensity of 211 diffracted X-rays decreases with the life ratio, as shown in FIG.

さらに、第2図の200回折X線に対する積分強度比
は、積分強度比が未使用レール回折X線の積分強度に対
する使用レールの回折X線強度で定義される量なので、
第4図に示す如く、積分強度の増加にともないその積分
強度比も寿命比とともに増加する。
Further, the integrated intensity ratio for the 200 diffraction X-rays in FIG. 2 is an amount defined by the diffracted X-ray intensity of the used rail with respect to the integrated intensity of the unused rail diffracted X-ray,
As shown in FIG. 4, as the integrated intensity increases, the integrated intensity ratio also increases with the life ratio.

さらにまた、第2図の200回折X線に対する積分幅
は、レールの疲労にともなって{200}結晶面が増加す
るのみならず、不均一歪みの増加などにより、第5図に
示すように、積分幅も寿命比とともに増加する。
Furthermore, as shown in FIG. 5, the integrated width for the 200 diffraction X-rays in FIG. 2 increases not only with {200} crystal planes due to rail fatigue but also due to increase in non-uniform strain, as shown in FIG. The integration width also increases with the life ratio.

なお、超高速鉄道レールでは特に高速鉄道と走行条件
が異なり、寿命比の増加によっても頭表面には白色層が
形成されないが、レールの母材からの回折X線により、
同様に積分強度、積分幅をとると高速鉄道と同様な寿命
比との関係が得られるので実敷設レールの寿命が予測で
きる。
In addition, the running conditions of the ultra-high-speed rail are particularly different from those of the high-speed rail, and a white layer is not formed on the head surface due to the increase in the life ratio, but due to the diffracted X-rays from the rail base material,
Similarly, when the integrated strength and the integrated width are taken, the same relationship with the life ratio as that of the high-speed railway can be obtained, so that the life of the actually laid rail can be predicted.

[実施例] (実施例1) 私鉄A社の実敷設レールの余寿命診断を行った。対象
レールは累積通トン数が不明な50kgN普通レールで長さ
が25mあった。小型X線回折装置を用いて積分幅を測定
したが、その測定条件はψ一定法でCr(30Kv,10mA)の
特性X線をレール頭表面に照射し、Feの211回折線を測
定した。なお、測定は白色層が著しい領域について集中
的に行った。その結果、積分値は1.7〜1.8の範囲にあっ
た。そこで、その最大値を第1図のマスターカーブに適
用すると寿命消費率は0.70であった。本レールは残存の
累積通トン数が1.65億トンに相当し、走行あるいは敷設
環境条件などから、あと9年3ケ月間も使用できると予
測された。
[Examples] (Example 1) The remaining service life of an actually laid rail of private railway company A was evaluated. The target rail was a 50kgN ordinary rail whose cumulative tonnage was unknown and was 25m long. The integration width was measured using a small X-ray diffractometer, and the measurement condition was that the characteristic X-ray of Cr (30 Kv, 10 mA) was irradiated on the rail head surface by the constant ψ method, and the 211 diffraction line of Fe was measured. The measurement was concentrated on the region where the white layer was remarkable. As a result, the integrated value was in the range of 1.7 to 1.8. Then, when the maximum value was applied to the master curve of FIG. 1, the life consumption rate was 0.70. The remaining cumulative tonnage of this rail is equivalent to 165 million tons, and it was predicted that it could be used for another 9 years and 3 months due to running and laying environmental conditions.

(実施例2) 私鉄B社の実敷設レールの余寿命診断を行った。対象
レールは累積通トン数が5億トン以上の50kgN普通レー
ルで長さが50mあった。小型X線回折装置を用いて積分
強度を測定したが、その測定条件はFe(30Kv,10mA)の
特性X線をレール頭表面に照射し、頭表面と平行に分布
する{200}結晶面からの回折X線の積分強度を求め
た。なお、測定は疲労損傷の近傍について集中的に行っ
た。その結果、積分強度は6.65〜6.80K.C.の範囲にあっ
た。そこで、その最大値を第2図のマスターカーブに適
用すると寿命消費率は97%である。したがって、本レー
ルは走行条件や敷設環境などから直ちに新レールと交換
する必要があると予測された。
(Example 2) The remaining service life of an actually laid rail of private railway company B was diagnosed. The target rail was a 50kgN ordinary rail with a cumulative tonnage of 500 million tons or more and a length of 50m. The integrated intensity was measured using a small X-ray diffractometer. The measurement condition was that the characteristic X-ray of Fe (30Kv, 10mA) was irradiated on the rail head surface, and from the {200} crystal plane distributed parallel to the head surface. The integrated intensity of the diffracted X-ray of was obtained. The measurement was conducted intensively in the vicinity of fatigue damage. As a result, the integrated intensity was in the range of 6.65 to 6.80 KC. Therefore, when the maximum value is applied to the master curve in Fig. 2, the life consumption rate is 97%. Therefore, it was predicted that this rail would need to be immediately replaced with a new rail due to running conditions and installation environment.

[発明の効果] 以上説明したように本発明の鉄道レール評価法によれ
ば、レールの疲労、損傷の評価ができ、その余寿命を予
測し得るので、これはレール交換時期や事故防止に対し
て有益な情報となるもので、その効果は大きい。
[Effects of the Invention] As described above, according to the railway rail evaluation method of the present invention, fatigue and damage of the rail can be evaluated, and the remaining life thereof can be predicted. It is useful information, and its effect is great.

【図面の簡単な説明】 第1図は在来線レールの余寿命評価のための寿命比に対
する積分幅および積分強度変化のマスターカーブであ
る。なお、図中には疲労損傷の発生や損傷状態も記入し
てある。 第2図は在来線レールの余寿命評価の寿命比に対する20
0積分強度変化のマスターカーブである。なお、図中に
は疲労損傷の発生や損傷状態も記入してある。 第3図は第1図の211回折X線に対する積分強度を寿命
比との関係で示す図。 第4図は第2図の200回折X線に対する積分強度比を寿
命比との関係で示す図。 第5図は第2図の200回折X線に対する積分幅を寿命比
との関係で示す図。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a master curve of integral width and integral intensity change with respect to life ratio for remaining life evaluation of conventional rails. The figure also shows the occurrence of fatigue damage and the damage state. Fig. 2 shows 20 against the life ratio of the remaining life evaluation of conventional rails.
0 This is a master curve for changes in integrated intensity. The figure also shows the occurrence of fatigue damage and the damage state. FIG. 3 is a diagram showing the integrated intensity for the 211-diffraction X-ray of FIG. 1 in relation to the life ratio. FIG. 4 is a diagram showing the integrated intensity ratio for the 200 diffraction X-rays in FIG. 2 in relation to the life ratio. FIG. 5 is a diagram showing the integral width for 200 diffraction X-rays in FIG. 2 in relation to the life ratio.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 影山 英明 福岡県北九州市八幡東区枝光1―1―1 新日本製鐵株式会社八幡製鐵所内 (56)参考文献 米国特許4287416(US,A) 米国特許4686631(US,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hideaki Kageyama 1-1-1 Edamitsu, Yawatahigashi-ku, Kitakyushu, Fukuoka Prefecture, Nippon Steel Corporation Yawata Works (56) Reference US Patent 4287416 (US, A) US Patent 4686631 (US, A)

Claims (4)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】実敷設されたままのレール頭表面上の測定
位置に固定されたX線ゴニオメータによって、該敷設レ
ール頭表面上に生成された白色層またはマトリックスに
対して入射X線を照射し、白色層またはマトリックスか
らの各回折面法線が一定になる条件で放射された回折X
線の積分強度、積分幅の少なくとも一つのX線パラメー
タを測定し、予め該X線パラメータと同一測定条件で測
定し作成されたマスターカーブとの比較から、レールの
疲労、損傷程度を評価し、ないし寿命予測することを特
徴とする鉄道敷設レール評価法。
1. An X-ray goniometer fixed at a measuring position on the surface of a rail head that has been actually laid, irradiates an incident X-ray on a white layer or matrix generated on the surface of the laid rail head. , Diffraction X radiated under the condition that each diffractive surface normal from the white layer or matrix is constant
The integrated intensity of the line, at least one X-ray parameter of the integrated width is measured, and the fatigue of the rail and the degree of damage are evaluated from the comparison with the master curve created in advance by measuring the X-ray parameter under the same measurement conditions. Or rail life laying rail evaluation method characterized by predicting life.
【請求項2】累積通トン数の異なる敷設レール頭表面に
ついて、入射X線を照射し、回折面法線が一定になる条
件で放射される回折X線の積分強度、積分幅の二つのX
線パラメータを求めて、該X線パラメータと該敷設レー
ルの疲労、損傷あるいは寿命との関係を表すマスターカ
ーブを作成する請求項1記載の鉄道敷設レール評価法。
2. X-rays having an integrated intensity and an integrated width of diffracted X-rays which are radiated under the condition that an incident X-ray is radiated on a surface of a laid rail head having a different cumulative tonnage and a diffracting surface normal becomes constant.
The rail laying rail evaluation method according to claim 1, wherein a line curve is obtained and a master curve representing a relationship between the X-ray parameter and fatigue, damage or life of the laying rail is created.
【請求項3】累積通トン数の異なる敷設レールの頭表面
に平行に分布する{200}結晶面に入射X線を照射し、
その回折面法線が一定になる条件で放射される200回折
X線の積分強度を求めて、該200回折X線積分強度と該
敷設レールの疲労、損傷あるいは寿命との関係を表すマ
スターカーブを作成する請求項1又は2記載の鉄道敷設
レール評価法。
3. An incident X-ray is irradiated onto a {200} crystal plane distributed in parallel to the head surface of a laying rail having a different cumulative tonnage,
The integrated intensity of 200 diffracted X-rays emitted under the condition that the diffractive surface normal is constant is obtained, and a master curve showing the relation between the 200 diffracted X-ray integrated intensity and fatigue, damage or life of the laid rail is calculated. The railway laying rail evaluation method according to claim 1 or 2, which is created.
【請求項4】高速レール試験機により敷設レールの累積
通トン数を変化させることでマスターカーブを作成する
請求項1〜3のいずれか1項記載の鉄道敷設レール評価
法。
4. The rail laying rail evaluation method according to claim 1, wherein a master curve is created by changing a cumulative tonnage of the laying rail with a high-speed rail testing machine.
JP2179651A 1990-07-09 1990-07-09 Railway laying rail evaluation method Expired - Lifetime JP2544008B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2179651A JP2544008B2 (en) 1990-07-09 1990-07-09 Railway laying rail evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2179651A JP2544008B2 (en) 1990-07-09 1990-07-09 Railway laying rail evaluation method

Publications (2)

Publication Number Publication Date
JPH0466852A JPH0466852A (en) 1992-03-03
JP2544008B2 true JP2544008B2 (en) 1996-10-16

Family

ID=16069503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2179651A Expired - Lifetime JP2544008B2 (en) 1990-07-09 1990-07-09 Railway laying rail evaluation method

Country Status (1)

Country Link
JP (1) JP2544008B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308999B1 (en) * 2011-12-15 2013-09-17 한국철도기술연구원 Evaluation method for railway line deteriorating

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7502670B2 (en) * 2004-07-26 2009-03-10 Salient Systems, Inc. System and method for determining rail safety limits
JP5437224B2 (en) * 2010-12-02 2014-03-12 公益財団法人鉄道総合技術研究所 Rail wear shape estimation device, rail wear shape estimation method, program, storage medium
JP6458303B2 (en) * 2015-07-10 2019-01-30 公益財団法人鉄道総合技術研究所 Railway rail correction management method and correction management apparatus
JP6990623B2 (en) * 2018-05-30 2022-01-12 三菱パワー株式会社 Creep life evaluation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287416A (en) 1980-03-28 1981-09-01 The United States Of America As Represented By The Secretary Of The Navy Method of determining fatigue and stress corrosion damage
US4686631A (en) 1985-02-08 1987-08-11 Ruud Clayton O Method for determining internal stresses in polycrystalline solids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4287416A (en) 1980-03-28 1981-09-01 The United States Of America As Represented By The Secretary Of The Navy Method of determining fatigue and stress corrosion damage
US4686631A (en) 1985-02-08 1987-08-11 Ruud Clayton O Method for determining internal stresses in polycrystalline solids

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101308999B1 (en) * 2011-12-15 2013-09-17 한국철도기술연구원 Evaluation method for railway line deteriorating

Also Published As

Publication number Publication date
JPH0466852A (en) 1992-03-03

Similar Documents

Publication Publication Date Title
Pohl et al. NDT techniques for railroad wheel and gauge corner inspection
Lewis et al. Mapping rail wear regimes and transitions
Mazzù et al. An experimental procedure for surface damage assessment in railway wheel and rail steels
Zhu et al. Wear and damage transitions of two kinds of wheel materials in the rolling-sliding contact
Janssens et al. Railway noise measurement method for pass-by noise, total effective roughness, transfer functions and track spatial decay
CN113276905B (en) Identification method and measurement method for distinguishing track corrugation and wheel polygon abrasion
Gullers et al. Track condition analyser: identification of rail rolling surface defects, likely to generate fatigue damage in wheels, using instrumented wheelset measurements
Chiacchiari et al. Measurement methods and analysis tools for rail irregularities: a case study for urban tram track
Wu et al. Laboratory and field evaluation of asphalt pavement surface friction resistance
CN108562536A (en) Ground surface material friction performance testing device and method
JP2544008B2 (en) Railway laying rail evaluation method
Faccoli et al. Effects of full-stops on shoe-braked railway wheel wear damage
Nielsen Out-of-round railway wheels
Rodríguez-Arana et al. Investigation of a relationship between twin-disc wear rates and the slipping contact area on R260 grade rail
Andersson et al. Determination of wear volumes by chromatic confocal measurements during twin-disc tests with cast iron and steel
Shih et al. Dynamic characteristics of a switch and crossing on the West Coast main line in the UK
Thomas et al. Eddy current test method for early detection of rolling contact fatigue (RCF) in rails.
Riahi et al. Developing a laboratory test method for rolling resistance characterisation of road surface texture
Bhavani et al. Characterization of used and virgin pearlitic rail steel
JP2020159150A (en) Track bed condition evaluation method
JP2004205403A (en) Damage state detection method and device of wheel tread
Kumar et al. Optimization of proving ground durability test sequence based on relative damage spectrum
Montasell et al. Brake Rotor Corrosion and Friction Cleaning Effect on Vehicle Judder Performance
Cai et al. Research on the strain gauge mounting scheme of track wheel force measurement system based on high-speed wheel/rail relationship test rig
JP3803314B2 (en) Creep void non-destructive detection method