JP2020159150A - Track bed condition evaluation method - Google Patents

Track bed condition evaluation method Download PDF

Info

Publication number
JP2020159150A
JP2020159150A JP2019062275A JP2019062275A JP2020159150A JP 2020159150 A JP2020159150 A JP 2020159150A JP 2019062275 A JP2019062275 A JP 2019062275A JP 2019062275 A JP2019062275 A JP 2019062275A JP 2020159150 A JP2020159150 A JP 2020159150A
Authority
JP
Japan
Prior art keywords
track bed
elastic wave
wave velocity
roadbed
impact
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2019062275A
Other languages
Japanese (ja)
Inventor
貴久 中村
Takahisa Nakamura
貴久 中村
力也 福中
Rikiya Fukunaka
力也 福中
尚嗣 桃谷
Yoshitsugu Momotani
尚嗣 桃谷
一平 木次谷
Ippei Kijiya
一平 木次谷
徹 権藤
Toru Gondo
徹 権藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2019062275A priority Critical patent/JP2020159150A/en
Publication of JP2020159150A publication Critical patent/JP2020159150A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Machines For Laying And Maintaining Railways (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

To provide a track bed condition evaluation method that can quantitatively implement on-site evaluation of a condition of a track bed whose fine-grained fraction increased due to over-time deterioration without implementing a particle size testing.SOLUTION: A track bed condition evaluation method comprises: a tube placing process to place a test tube having an accelerometer into a track bed; an impact application process to apply an impact on a surface of the track bed; a measurement process to measure a load waveform due to the impact and an acceleration waveform in the track bed; an elastic wave velocity calculation process to calculate an elastic wave velocity from the load waveform and the acceleration waveform; a fine grain content ratio calculation process to obtain a fine grain content in the track bed from the elastic wave velocity; and a track bed soundness evaluation process to compare the fine grain content ratio with a predetermined threshold.SELECTED DRAWING: Figure 2

Description

この発明は、道床の状態を評価する道床状態評価方法に関し、特に、弾性波速度を求めることで、該弾性波速度から道床内の細粒分の割合を算出して道床の状態を評価する道床状態評価方法に関するものである。 The present invention relates to a method for evaluating a trackbed condition for evaluating the condition of the trackbed. In particular, the trackbed evaluates the condition of the trackbed by calculating the ratio of fine particles in the track bed from the elastic wave velocity by obtaining the elastic wave velocity. It relates to a state evaluation method.

鉄道車両の軌道に用いられるバラストなどを敷設した道床は、レールを支持するまくらぎを所定の位置に設置し、繰り返し通過する鉄道車両による列車荷重を路盤に分散する機能を有している。 The trackbed on which ballast or the like used for the track of a railroad vehicle is laid has a function of installing sleepers supporting the rail at a predetermined position and distributing the train load due to the repeatedly passing railroad vehicle to the roadbed.

ここで、道床に用いられるバラストは、鉄道車両の繰り返し荷重や保守機械による締固め作業によって細粒化が進行する。ここで、細粒化とは、バラストが削れることによって粒径が75μm未満となることをいう。細粒化したバラストは、雨水により噴泥化し、乾くと固化することから、上述した列車荷重の分散機能を損なうことが知られている。このため、バラストの劣化度を診断し、更換工事を実施する必要がある。 Here, the ballast used for the trackbed is further refined by the repeated load of the railway vehicle and the compaction work by the maintenance machine. Here, fine granulation means that the particle size becomes less than 75 μm by scraping the ballast. It is known that the finely divided ballast impairs the above-mentioned train load distribution function because it becomes muddy by rainwater and solidifies when it dries. Therefore, it is necessary to diagnose the degree of deterioration of the ballast and carry out replacement work.

従来のバラストの劣化度の診断方法は、種々の方法が知られており、例えば特許文献1に記載されているようにバラストを打撃して弾性波を伝播させ、この打撃によってバラストを伝播する弾性波を応答波形として測定し、応答波形と予め設定された比較データとを比較することで道床の劣化度を診断している。 Various conventional methods for diagnosing the degree of deterioration of ballast are known. For example, as described in Patent Document 1, an elastic wave is propagated by striking a ballast, and the elastic wave propagating by this striking. The degree of deterioration of the track bed is diagnosed by measuring the wave as a response waveform and comparing the response waveform with preset comparison data.

このような道床状態評価方法によれば、道床の掘り起しを行うことなく、作業効率がよく低コストを図ることができ、作業員の省力化及び安全性の確保も実現することが可能となる。 According to such a roadbed condition evaluation method, it is possible to achieve high work efficiency and low cost without digging up the roadbed, and it is possible to realize labor saving and safety assurance of workers. Become.

特開平11−37978号公報Japanese Unexamined Patent Publication No. 11-37778

特許文献1に記載された道床状態評価方法では、まくらぎ間の道床表面には、一般的に新品のバラストが補充されていることから、列車荷重を支持するまくらぎ下の道床状態とは異なると考えられ、特許文献1に記載された測定方法によると、まくらぎ下の道床状態を正確に測定できない可能性があった。 The trackbed condition evaluation method described in Patent Document 1 is different from the trackbed condition under the sleepers that supports the train load because the trackbed surface between the sleepers is generally replenished with new ballast. According to the measuring method described in Patent Document 1, there is a possibility that the state of the trackbed under the sleepers cannot be accurately measured.

また、道床の経年劣化による細粒分の増加に関する評価は、粒度試験を実施して行うことが一般的であり、現地で定量的に行うことが難しいという問題もあった。 In addition, the evaluation of the increase in fine particles due to aged deterioration of the trackbed is generally performed by conducting a particle size test, and there is also a problem that it is difficult to quantitatively perform it locally.

従って、本発明は上記課題を解決するために成されたものであって、道床が経年劣化して細粒分が増加した状態の評価を、粒度試験を実施しなくても現地で定量的に行うことができる道床状態評価方法を提供することを目的とする。 Therefore, the present invention has been made to solve the above problems, and the evaluation of the state where the track bed has deteriorated over time and the fine grain content has increased can be quantitatively evaluated in the field without conducting a particle size test. It is an object of the present invention to provide a method for evaluating a track bed condition that can be performed.

上記課題を解決する本発明に係る道床状態評価方法は、加速度計を備える試験用管体を道床内に打ち込む管体打込み工程と、前記道床の表面に衝撃を加える衝撃付与工程と、前記衝撃による荷重波形及び前記道床内の加速度波形を測定する測定工程と、前記荷重波形及び前記加速度波形から弾性波速度を算出する弾性波速度算出工程と、前記弾性波速度から前記道床の細粒分含有率を求める細粒分含有率算出工程と、前記細粒分含有率と所定の閾値とを比較する道床健全度評価工程とを備えることを特徴とする。 The roadbed condition evaluation method according to the present invention for solving the above problems includes a pipe body driving step of driving a test tube body equipped with an accelerometer into the trackbed, an impact applying step of applying an impact to the surface of the trackbed, and the impact. A measurement step of measuring the load waveform and the acceleration waveform in the track bed, an elastic wave velocity calculation step of calculating the elastic wave velocity from the load waveform and the acceleration waveform, and a fine particle content of the track bed from the elastic wave velocity. It is characterized by including a step of calculating the fine grain content to obtain the above, and a step of evaluating the soundness of the trackbed by comparing the fine grain content with a predetermined threshold value.

また、本発明に係る道床状態評価方法において、前記測定工程は、前記荷重波形及び前記加速度波形のピークの10%となる時間の差分を求める時間差分算出工程と、前記衝撃を載荷した載荷位置と前記加速度計の埋設位置の直線距離を求める直線距離算出工程とを有し、前記弾性波速度算出工程は、前記時間差分と前記直線距離より前記弾性波速度を求めると好適である。 Further, in the roadbed condition evaluation method according to the present invention, the measurement step includes a time difference calculation step of obtaining a time difference of 10% of the peak of the load waveform and the acceleration waveform, and a loading position on which the impact is loaded. It is preferable to have a linear distance calculation step of obtaining the linear distance of the buried position of the accelerometer, and to obtain the elastic wave velocity from the time difference and the linear distance in the elastic wave velocity calculation step.

また、本発明に係る道床状態評価方法において、前記道床健全度評価工程は、前記細粒分含有率が8%以上の場合には、道床交換の対象であることを判定する判定工程を備えると好適である。 Further, in the roadbed condition evaluation method according to the present invention, the roadbed soundness evaluation step includes a determination step of determining that the roadbed is a target for roadbed replacement when the fine grain content is 8% or more. It is suitable.

この発明によれば、道床が経年劣化によって細粒分が増加した状態の評価を、粒度試験を実施することなく、現地で定量的に行うことができる According to the present invention, it is possible to quantitatively evaluate a state in which the track bed has increased fine particles due to aged deterioration without conducting a particle size test.

本発明の実施形態に係る道床状態評価方法のフロー図。The flow chart of the roadbed state evaluation method which concerns on embodiment of this invention. 本発明の実施形態に係る道床状態評価方法の概要図。The schematic diagram of the roadbed state evaluation method which concerns on embodiment of this invention. 本発明の実施形態に係る道床状態評価方法に用いられる試験用管体の概略図。The schematic diagram of the test tube body used for the roadbed condition evaluation method which concerns on embodiment of this invention. 入力応答波を示すグラフ。Graph showing input response wave. 弾性波速度と細粒分比率の関係を示すグラフ。A graph showing the relationship between elastic wave velocity and fine grain ratio. バラストの細粒分含有率とまくらぎ変位の関係を示すグラフ。The graph which shows the relationship between the fine grain content of ballast and the displacement of sleepers.

この発明の、道床状態評価方法の一実施形態を、図面を参照しながら説明する。 An embodiment of the trackbed condition evaluation method of the present invention will be described with reference to the drawings.

図1は、本発明の実施形態に係る道床状態評価方法のフロー図であり、図2は、本発明の実施形態に係る道床状態評価方法の概要図であり、図3は、本発明の実施形態に係る道床状態評価方法に用いられる試験用管体の概略図であり、図4は、入力応答波を示すグラフであり、図5は、弾性波速度と細粒分比率の関係を示すグラフであり、図6は、バラストの細粒分含有率とまくらぎ変位の関係を示すグラフである。 FIG. 1 is a flow chart of a track bed condition evaluation method according to an embodiment of the present invention, FIG. 2 is a schematic diagram of a track bed condition evaluation method according to an embodiment of the present invention, and FIG. 3 is an embodiment of the present invention. FIG. 4 is a schematic view of a test tube used in a method for evaluating a track bed condition according to a morphology, FIG. 4 is a graph showing an input response wave, and FIG. 5 is a graph showing a relationship between elastic wave velocity and fine particle ratio. FIG. 6 is a graph showing the relationship between the fine grain content of the ballast and the displacement of the sleepers.

図1に示すように、本実施形態に係る道床状態評価方法は、道床の表面とまくらぎの底面とが面一となるように、道床を掘り起こす掘り起し工程(S101)と、加速度計を備える試験用管体を道床内に打ち込む管体打込み工程(S102)と、道床の表面に衝撃を加える衝撃付与工程(S103)と、衝撃による荷重波形及び道床内の加速度波形を測定する測定工程(S104)と、荷重波形及び加速度波形から弾性波速度を算出する弾性波速度算出工程(S105)と、弾性波速度から道床の細粒分含有率を求める細粒分含有率算出工程(S106)と、細粒分含有率と所定の閾値とを比較する道床健全度評価工程(S107)とを備えている。 As shown in FIG. 1, the trackbed condition evaluation method according to the present embodiment includes a digging step (S101) for digging up the trackbed and an accelerometer so that the surface of the trackbed and the bottom surface of the pillow are flush with each other. A tube driving step (S102) for driving a test tube into the track bed, an impact applying step (S103) for applying an impact to the surface of the track bed, and a measuring step (S104) for measuring the load waveform due to the impact and the acceleration waveform in the track bed. ), An elastic wave velocity calculation step (S105) for calculating the elastic wave velocity from the load waveform and the acceleration waveform, and a fine particle content rate calculation step (S106) for obtaining the fine particle content of the trackbed from the elastic wave velocity. It is provided with a roadbed soundness evaluation step (S107) for comparing the fine grain content with a predetermined threshold value.

掘り起し工程(S101)は、図2に示すように、道床10に埋め込まれて載置されているまくらぎ12の底面と道床表面11とが面一となるように道床10を掘り起こす。lこの掘り起し工程(S101)によって後述する衝撃付与工程によって道床表面に衝撃を加えた際に、道床下の細粒分の状態を的確に判定することが可能となる。 In the digging step (S101), as shown in FIG. 2, the trackbed 10 is dug up so that the bottom surface of the sleepers 12 embedded and placed in the trackbed 10 and the trackbed surface 11 are flush with each other. l When an impact is applied to the trackbed surface by the impact applying step described later in this digging step (S101), the state of the fine particles under the trackbed can be accurately determined.

管体打込み工程(S102)は、加速度計21を備える試験用管体20を道床10内に打込む。試験用管体20は、図3に示すように、所定の長さLの有底筒状の管体22と、管体22の底面に取り付けられた筺体23とを備えており、該筺体23内に加速度計21が取り付けられている。なお、加速度計21は筺体23の上面に取り付けられているので、道床表面11から加速度計21までの直線距離hは、道床10に打ち込まれた管体22の長さHを測ることで知ることができる。 In the tube driving step (S102), the test tube body 20 including the accelerometer 21 is driven into the track bed 10. As shown in FIG. 3, the test tube body 20 includes a bottomed tubular tube body 22 having a predetermined length L and a housing body 23 attached to the bottom surface of the tube body 22, and the housing body 23 is provided. An accelerometer 21 is installed inside. Since the accelerometer 21 is attached to the upper surface of the housing 23, the linear distance h from the trackbed surface 11 to the accelerometer 21 can be known by measuring the length H of the pipe body 22 driven into the trackbed 10. Can be done.

衝撃付与工程(S103)は、道床表面11にインパルスハンマ30等によって衝撃を加える。また、測定工程(S104)は、図3に示すように、インパルスハンマ30は、分析処理機31を介して計算機32に接続されているので、図4に示すように荷重波形Wを測定することができる。また、加速度計21は、増幅器33を介して同様に計算機32に接続されているので、図4に示すように加速度波形Wを測定することができる。なお、図4に示すように、荷重波形W及び加速度波形Wは、立ち上がり時間t及びtを決定する立ち上がり時間決定工程によって算出される。立ち上がり時間t及びtは種々の算出方法で決定することが可能であるが、例えば、1波形目のピーク値V及びVのそれぞれの10%となる位置を立ち上がり時間と定義すると好適である。なお、本実施形態に係る道床状態決定方法では、JIS規格C0161に則って、立ち上がり時間をピーク値の10〜90%から最小値となる10%の値を選択して決定した。 In the impact applying step (S103), an impact is applied to the trackbed surface 11 by an impulse hammer 30 or the like. Furthermore, the measuring step (S104), as shown in FIG. 3, an impulse hammer 30, so through the analysis processor 31 is connected to the computer 32, measures the load waveform W A 4 be able to. Further, accelerometer 21, because it is connected to the computer 32 in the same manner via the amplifier 33, it is possible to measure the acceleration waveform W B as shown in FIG. As shown in FIG. 4, the load waveform W A and the acceleration waveform W B is calculated by the rise time determination step of determining the rise time t A and t B. The rise time t A and t B can be determined by various calculation methods. For example, it is preferable to define the position at which 10% of the peak values VA and V B of the first waveform are obtained as the rise time. Is. In the method for determining the roadbed condition according to the present embodiment, the rise time was determined by selecting a value of 10%, which is the minimum value, from 10 to 90% of the peak value, in accordance with JIS standard C0161.

また、測定工程(S104)は、上述した立ち上がり時間t及びtの時間差分ΔTを求める時間差分算出工程及び、上述した管体打込み工程(S102)で試験用管体20を道床10に打ち込んだ長さを用いて衝撃を載荷する道床表面11から加速度計21の埋設位置の直線距離hを求める直線距離算出工程とを有している。 Further, in the measurement step (S104), the test tube body 20 is driven into the track bed 10 in the time difference calculation step for obtaining the time difference ΔT of the rise time t A and t B described above and the tube body driving step (S102) described above. It has a linear distance calculation step of obtaining the linear distance h of the buried position of the accelerometer 21 from the track bed surface 11 on which the impact is loaded using the length.

弾性波速度算出工程(S105)は、上述した時間差分と直線距離から道床10内を伝播する弾性波速度を算出する。具体的には、弾性波速度νは、ν=h/ΔTによって算出することができる。 In the elastic wave velocity calculation step (S105), the elastic wave velocity propagating in the track bed 10 is calculated from the above-mentioned time difference and the linear distance. Specifically, the elastic wave velocity ν can be calculated by ν = h / ΔT.

細粒分含有率算出工程(S106)は、道床10内の細粒分の割合を弾性波速度νとの関係から算出する。具体的には、道床10の細粒分含有率Fと道床10を伝播する弾性波速度νとは、図5に示すような線形関係があることが知られており、当該線形関係に従って、弾性波速度算出工程(S105)で算出した弾性波速度νから道床10の細粒分含有率Fを算出することができる。なお、図5に示した線形関係は、道床10内の細粒分の割合を変えて実施した試験結果より求められる。 In the fine grain content calculation step (S106), the ratio of fine grains in the track bed 10 is calculated from the relationship with the elastic wave velocity ν. Specifically, the elastic wave velocity ν propagating the fine fraction content F C and the track bed 10 of the track bed 10 is known that there is a linear relationship as shown in FIG. 5, according to the linear relationship, it is possible to calculate the fine fraction content F C of the track bed 10 from the elastic wave velocity ν calculated in seismic velocity calculation step (S105). The linear relationship shown in FIG. 5 can be obtained from the test results conducted by changing the ratio of the fine particles in the track bed 10.

道床健全度評価工程(S107)は、細粒分含有率算出工程(S106)で算出した細粒分含有率Fと所定の閾値とを比較して道床10の健全度を評価する。具体的には、道床10の細粒分含有率Fは、図6に示すように、道床10内の細粒分含有率Fが大きくなると、載荷回数に対するまくらぎの変位量(沈下量)が大きくなることが室内試験によって確認されており、この室内試験結果によると、細粒分含有率Fが8%を超えるとまくらぎの変位量が大きくなることが確認されている。したがって、本実施形態に係る道床状態評価方法では、細粒分含有率Fが8%以上となった場合には、測定対象となっている道床10は、道床交換の対象であることを判定工程によって判定する。 Ballast soundness evaluation step (S107) compares the fine fraction content was calculated by the fine fraction content rate calculating step (S106) F C with a predetermined threshold value for evaluating the soundness of the track bed 10. Specifically, the fine fraction content F C of the track bed 10, as shown in FIG. 6, the fine fraction content F C in the track bed 10 is increased, the amount of displacement of the sleepers for loading number (subsidence amount) It has been confirmed by laboratory test that increases, this according to the laboratory test results, the amount of displacement of the sleepers the fine fraction content of F C is greater than 8% can increase has been confirmed. Therefore, in the track bed state evaluation method according to the present embodiment, the determination that when the fine fraction content of F C becomes 8% or more, track bed 10 that is the measurement object is the subject of the track bed exchange Judge by process.

以上、説明したように、本実施形態に係る道床状態評価方法によれば、道床10が経年劣化して細粒分が増加した状態の評価を、粒度試験を実施しなくても現地で試験用管体20を道床10内に打ち込むことで、定量的に行うことができ、列車荷重により沈下が生じるまくらぎ下のバラストの道床状態を主体的に評価することができるため、道床の沈下に影響を及ぼす道床状態を適切に評価することができる。 As described above, according to the track bed condition evaluation method according to the present embodiment, the evaluation of the state in which the track bed 10 has deteriorated over time and the fine grain content has increased can be tested on-site without conducting a particle size test. By driving the pipe body 20 into the trackbed 10, it can be performed quantitatively, and the trackbed condition of the ballast under the sleepers, which is caused by the train load, can be independently evaluated, which affects the sinking of the trackbed. The condition of the track bed can be appropriately evaluated.

なお、上述した実施形態において、立ち上がり時間は、1波形目のピーク値の10%と規定して弾性波速度の算出を行ったが、立ち上がり時間はピーク値から算出することなく、種々の算出方法によって算出しても構わない。その様な変更又は改良を加えた形態も本発明の技術的範囲に含まれうることが、特許請求の範囲の記載から明らかである。 In the above-described embodiment, the rise time is defined as 10% of the peak value of the first waveform, and the elastic wave velocity is calculated. However, the rise time is not calculated from the peak value, and various calculation methods are used. It may be calculated by. It is clear from the description of the claims that the form with such changes or improvements may be included in the technical scope of the present invention.

10 道床
11 道床表面
12 まくらぎ
20 試験用管体
21 加速度計
22 管体
23 筺体
30 インパルスハンマ
31 分析処理機
32 計算機
33 増幅器
L 管体長さ
H 打ち込み長さ
h 直線距離
10 Roadbed 11 Roadbed surface 12 Sleepers 20 Test tube 21 Accelerometer 22 Tube 23 Housing 30 Impulse hammer 31 Analytical processor 32 Computer 33 Amplifier L Tube length H Driving length h Straight distance

Claims (3)

加速度計を備える試験用管体を道床内に打ち込む管体打込み工程と、
前記道床の表面に衝撃を加える衝撃付与工程と、
前記衝撃による荷重波形及び前記道床内の加速度波形を測定する測定工程と、
前記荷重波形及び前記加速度波形から弾性波速度を算出する弾性波速度算出工程と、
前記弾性波速度から前記道床の細粒分含有率を求める細粒分含有率算出工程と、
前記細粒分含有率と所定の閾値とを比較する道床健全度評価工程とを備えることを特徴とする道床状態評価方法。
The tube driving process of driving a test tube equipped with an accelerometer into the trackbed,
An impact applying process that applies an impact to the surface of the trackbed
A measurement process for measuring the load waveform due to the impact and the acceleration waveform in the track bed, and
An elastic wave velocity calculation step of calculating an elastic wave velocity from the load waveform and the acceleration waveform, and
A step of calculating the fine grain content of the track bed from the elastic wave velocity, and a step of calculating the fine grain content.
A method for evaluating a roadbed condition, which comprises a roadbed soundness evaluation step for comparing the fine grain content with a predetermined threshold value.
請求項1に記載の道床状態評価方法において、
前記測定工程は、前記荷重波形及び前記加速度波形のピークの10%となる時間の差分を求める時間差分算出工程と、前記衝撃を載荷した載荷位置と前記加速度計の埋設位置の直線距離を求める直線距離算出工程とを有し、
前記弾性波速度算出工程は、前記時間差分と前記直線距離より前記弾性波速度を求めることを特徴とする道床状態評価方法。
In the roadbed condition evaluation method according to claim 1,
The measurement step includes a time difference calculation step for obtaining the difference in time that is 10% of the peak of the load waveform and the acceleration waveform, and a straight line for obtaining the linear distance between the loading position where the impact is loaded and the embedding position of the accelerometer. Has a distance calculation process
The elastic wave velocity calculation step is a method for evaluating a trackbed state, characterized in that the elastic wave velocity is obtained from the time difference and the linear distance.
請求項1又は2に記載の道床状態評価方法において、
前記道床健全度評価工程は、前記細粒分含有率が8%以上の場合には、道床交換の対象であることを判定する判定工程を備えることを特徴とする道床状態評価方法。
In the roadbed condition evaluation method according to claim 1 or 2,
The roadbed condition evaluation method is characterized by comprising a determination step of determining that the roadbed soundness evaluation step is a target of roadbed replacement when the fine grain content is 8% or more.
JP2019062275A 2019-03-28 2019-03-28 Track bed condition evaluation method Pending JP2020159150A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019062275A JP2020159150A (en) 2019-03-28 2019-03-28 Track bed condition evaluation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019062275A JP2020159150A (en) 2019-03-28 2019-03-28 Track bed condition evaluation method

Publications (1)

Publication Number Publication Date
JP2020159150A true JP2020159150A (en) 2020-10-01

Family

ID=72642356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019062275A Pending JP2020159150A (en) 2019-03-28 2019-03-28 Track bed condition evaluation method

Country Status (1)

Country Link
JP (1) JP2020159150A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115791456A (en) * 2023-02-06 2023-03-14 中国铁道科学研究院集团有限公司铁道建筑研究所 Method for evaluating rigidity of railway ballast track

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115791456A (en) * 2023-02-06 2023-03-14 中国铁道科学研究院集团有限公司铁道建筑研究所 Method for evaluating rigidity of railway ballast track

Similar Documents

Publication Publication Date Title
Connolly et al. Benchmarking railway vibrations–Track, vehicle, ground and building effects
Mishra et al. An integrated approach to dynamic analysis of railroad track transitions behavior
Sussman et al. Fundamental nonlinear track load-deflection behavior for condition evaluation
Mishra et al. Investigation of differential movement at railroad bridge approaches through geotechnical instrumentation
Karoumi et al. Monitoring traffic loads and dynamic effects using an instrumented railway bridge
Wheeler et al. Performance assessment of peat rail subgrade before and after mass stabilization
Tutumluer et al. Investigation and mitigation of differential movement at railway transitions for US high speed passenger rail and joint passenger/freight corridors
Stark et al. Evaluation of tie support at transition zones
Lamas-Lopez et al. Impact of train speed on the mechanical behaviours of track-bed materials
JP2020159150A (en) Track bed condition evaluation method
CN104991986A (en) Method for evaluating longitudinal shock resistance of highway bridge support and stretching device
CN109629347B (en) Method for evaluating slurry leakage hazard grade of ballastless track subgrade
Burrow et al. Track stiffness considerations for high speed railway lines
Landgraf Smart data for sustainable Railway Asset Management
JP2013159939A (en) Compaction control method for concrete
CN109610253B (en) Method for evaluating slurry leakage hazard grade of ballastless track subgrade
KR101791866B1 (en) Cavity detection system for detecting cavity occurring in lower part of concrete track for railway
Vorster et al. The effect of axle load on track and foundation resilient deformation under heavy haul conditions
JP5501924B2 (en) Roadbed soundness judgment method, roadbed repair method
Schumacher et al. Detection of vehicles with studded tires using acoustic emission sensors mounted to highway bridges
Sussmann et al. Track structural design for maintenance and rehabilitation with automated track inspection data
Sharpe Trackbed investigation
Sussmann et al. Resilient modulus backcalculation techniques for track
JP2020159151A (en) Track bed condition evaluation method
JP2018009354A (en) Viaduct state monitoring apparatus and viaduct state monitoring method