JP2004205403A - Damage state detection method and device of wheel tread - Google Patents

Damage state detection method and device of wheel tread Download PDF

Info

Publication number
JP2004205403A
JP2004205403A JP2002376448A JP2002376448A JP2004205403A JP 2004205403 A JP2004205403 A JP 2004205403A JP 2002376448 A JP2002376448 A JP 2002376448A JP 2002376448 A JP2002376448 A JP 2002376448A JP 2004205403 A JP2004205403 A JP 2004205403A
Authority
JP
Japan
Prior art keywords
effective value
term effective
damage
short
long
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002376448A
Other languages
Japanese (ja)
Other versions
JP3983165B2 (en
Inventor
Tadashi Watanabe
直史 渡邊
Jun Yamada
山田  純
Akira Endo
亮 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MEITETSU SUMISHO KOGYO KK
Original Assignee
MEITETSU SUMISHO KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MEITETSU SUMISHO KOGYO KK filed Critical MEITETSU SUMISHO KOGYO KK
Priority to JP2002376448A priority Critical patent/JP3983165B2/en
Publication of JP2004205403A publication Critical patent/JP2004205403A/en
Application granted granted Critical
Publication of JP3983165B2 publication Critical patent/JP3983165B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a damage state detection method and a device of a wheel tread capable of automatically detecting accurately flat, exfoliation and heat crack of a wheel tread. <P>SOLUTION: Vibration of a track when a rolling stock is running is detected relative to each wheel by a vibration detection device, and a short-time effective value having a short integration time and a long-time effective value having a long integration time are operated from a detected signal. For example, the integration time of the short-time effective value is 100-300 mm in terms of the moving distance of the wheel tread, and the integration time of the long-time effective value is the perimetric length in terms of the moving distance of the wheel tread. The state of the wheel tread is detected, classified by the damage kind, for example, the independent flat and the heat crack, based on the relative relation between the short-time effective value and the long-time effective value as shown in the graph on figure. Since the heat crack can be discovered early and coped with, the amount of reconditioning of the wheel can be reduced. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、鉄道車両の振動や騒音の原因となる車輪踏面の損傷を精度よく自動検出することができる車輪踏面の損傷状態検出方法及び装置に関するものである。
【0002】
【従来の技術】
【特許文献1】特開2002−107348号公報
【非特許文献1】「車両と機械」、2001年4月号、25〜32頁、平成12年度全国研究発表会論文
【0003】
鉄道車両の車輪がレールと接する車輪踏面には、降雨や急ブレーキなどによる滑走に起因してフラットと呼ばれる損傷が発生することがある。また車輪踏面には、制輪子との摩擦熱に起因する熱亀裂と呼ばれる損傷や、これらが進行して表面層が脱落した剥離と呼ばれる損傷が発生することがある。これらの車輪踏面の損傷は安全性、乗り心地、騒音、軌道保守などさまざまな点で問題となるので、全車両の車輪踏面の損傷状態を把握し、車輪削正などの対策を講ずる必要がある。
【0004】
そこで従来からレールや枕木などの振動加速度を測定し、この振動加速度のピーク値の大小に基づいて車輪踏面の損傷状態を検出する方法が用いられてきた。しかし車輪と軌道は複雑な共振系を構成していることもあり、振動加速度ピーク値の大小と実際の損傷状態とが必ずしも一致しないという問題が残されていた。
【0005】
そこで本発明者は、振動の検出信号を周波数特性補正曲線を用いて周波数軸上で重み付けを行うことにより、振動の検出信号からフラットを正確に検出する方法を開発した。その内容は特許文献1及び非特許文献1に示すとおりである。またこれらの文献には、振動の検出信号の実効値を演算して連続するフラットや剥離を検出する方法も開示されている。ここでは実際の車輪踏面損傷の大きさを考慮して、積分時間を車輪踏面の移動距離に換算して100〜300mmとした実効値を用いている。
【0006】
これらの文献に記載の方法によれば、車輪踏面の大きな損傷や連続した損傷を、従来の加速度ピーク値による方法よりもはるかに精度よく検出することができる。ところが、制輪子との摩擦熱に起因して車輪踏面全周に生じ易い熱亀裂は、個々の検出信号が小さいためにうまく検出することができないという問題があった。このため、熱亀裂の初期段階で発見して車輪削正を行えば削正量もわずかで済むにもかかわらず、熱亀裂から剥離などにまで損傷が進行した後に車輪削正を行うこととなり、削正量が大きく無駄が多くなっていた。また車輪削正に際しては1両またはユニット単位で全車輪の直径を一定範囲に揃える必要があるため、どれか1つの車輪の削正量が大きくなると、その他の正常な踏面の車輪も削らねばならず無駄が大きかった。
【0007】
【発明が解決しようとする課題】
本発明は上記した従来の問題点を解決して、車輪踏面のフラットや剥離を正確に検出することができるのみならず、剥離の前段階の熱亀裂をも他の損傷と区別し、さらには損傷の種類及び程度まで正確に自動検出することができる車輪踏面の損傷状態検出方法及び装置を提供するためになされたものである。
【0008】
【課題を解決するための手段】
上記の課題を解決するためになされた本発明の車輪踏面の損傷状態検出方法は、鉄道の軌道またはその近傍に設置した振動検出装置により、鉄道車両が走行する際の振動を車輪別に検出し、検出信号から積分時間の短い短時間実効値と積分時間の長い長時間実効値とを演算し、これらの短時間実効値と長時間実効値との相対関係に基づいて、車輪踏面の状態を損傷の種類により区別して検出することを特徴とするものである。
【0009】
なお、短時間実効値の積分時間を、車輪踏面の移動距離に換算して100〜300mmとし、長時間実効値の積分時間を、車輪踏面の移動距離に換算して半周〜全周長とすることができる。また、短時間実効値と長時間実効値とを両軸とした平面上を、単独のフラット損傷領域、全周損傷領域、半周損傷領域、熱亀裂領域、正常領域に区画し、検出信号の演算値がどの領域に属するかによって損傷の種類及び程度を識別することができる。さらに、短時間実効値と長時間実効値から得られた損傷の判定値をコンピュータ上の車輪台帳に書き込み、損傷の種類別に取り出し可能とすることができる。
【0010】
また本発明の車輪踏面の損傷状態検出装置は、鉄道車両が走行する際の振動を車輪別に検出するために鉄道の軌道またはその近傍に設置される振動検出装置と、その検出信号から積分時間の短い短時間実効値と積分時間の長い長時間実効値とを演算する手段と、短時間実効値と長時間実効値との相対関係に基づいて損傷の種類及び程度を識別する手段とを備えたことを特徴とするものである。
【0011】
このように、本発明では検出信号の短時間実効値と長時間実効値とを組み合わせることにより、車輪踏面の損傷の種類及び程度を区別して自動検出することができ、熱亀裂を早期に発見して対処することができる。またその結果をコンピュータ上の車輪台帳に書き込み、損傷程度の大きい車輪から順次車輪削正を行うなどの合理的な対策を講ずることが可能となる。
【0012】
【発明の実施の形態】
以下に本発明の好ましい実施形態を説明する。
図1に示すように、鉄道の軌道1またはその近傍に振動検出装置2を設置して、鉄道車両3が走行する際の振動を検出する。軌道1は営業運転用のものをそのまま用い、鉄道車両3がほぼ一定速度で走行する区間を選択することが好ましい。しかし検査用の特別な軌道1を用いても差し支えない。この実施形態では振動検出装置2として片側レールにつき3個の加速度検出器をレールに固定して走行時の振動を検出しているが、走行時の振動を検出できるものであれば、下記のような各種の振動検出装置2を用いることができる。
【0013】
すなわち、振動検出装置2としては加速度検出器のほか、振動速度検出器や変位検出器を用いることもできる。加速度、速度、変位は微分または積分により相互に変換できるものであるから、どの検出手段2を用いても実質的に等価な検出信号を取り出すことができる。このほか、軌道1またはその近傍に車号検出器4や車輪検出器5を設置し、振動検出装置2により検出された振動の検出信号がどの車両のどの車輪によるものかを特定できるようにしておく。図1の実施形態では4個の車輪検出器5が配置され、車輪の移動につれて信号を取り出す振動検出装置2を順次切り替えている。なお、営業運転における鉄道車両3の走行時刻は別途把握することができるため、車号検出器4は省略することもできる。車号検出器4としては例えば電波式のものを、また車輪検出器5としては例えば光電式または磁気式のものを使用することができる。
【0014】
振動検出装置2による検出信号は図2に示すようにアナログフィルタ回路でノイズを除去されたうえディジタル信号に変換され、測定装置6に入力される。これと平行して車号検出器4及び車輪検出器5からの信号も測定装置6に入力され、振動検出装置2の検出信号を各車輪ごとの信号に分離するとともに、3個の振動検出装置2の検出信号を合成して車輪1周分の信号とする。
【0015】
このようにして得られた検出信号である振動加速度波形は、例えば図3に示すとおりである。また、図3中のA,B,Cに対応する実際の車輪踏面の損傷状態を,熱亀裂とともに図4に示す。図3の例は、説明のために同一車輪の3箇所にフラットや剥離などの損傷が生じている状態を示している。従来の加速度ピーク値を用いた検出方法ではこの波形をそのまま使用しているが、本発明では図2に示す測定装置6の実効値演算回路7によって、検出信号から積分時間の短い短時間実効値と、積分時間の長い長時間実効値とを演算する。
【0016】
ここで実効値とは、検出値である波形Xの二乗平均の平方根を意味するが、特に積分時間をTとして、数1で定義される実効値(rms値)を用いることが好ましい。これは振動加速度信号を時間幅Tを考慮して評価した値を意味するものである。
【0017】
【数1】

Figure 2004205403
【0018】
なお、上記の説明では、振動検出装置2による検出信号をノイズ除去及びディジタル変換しただけで短時間実効値と長時間実効値とを演算したが、周波数特性補正を行ったうえで短時間実効値と長時間実効値を演算してもよい。この周波数特性補正は、低域周波数を強調することにより振動検出装置2による検出信号の大きさを車輪損傷の程度に合致させるものである。しかしその詳細は特許文献1に示されており、本発明の要部ではないので、説明を省略する。
【0019】
この実施形態では、短時間実効値の積分時間Tを車輪踏面の移動距離に換算して100〜300mmに相当する時間とした。この積分時間Tは、実際の車輪のフラットや剥離等の損傷を周方向の長さを考慮してもっとも適切に検出できるように、経験的に決定した結果である。例えば図3の波形から実効値演算回路7によって演算された短時間実効値の波形は図5のようになる。しかし、実際の車輪には図4に示したような大きな損傷のほか、熱亀裂が発生することは前記したとおりである。図5に示されるような短時間実効値の波形では、熱亀裂は明確に現れない。
【0020】
そこで本発明では、測定装置6の実効値演算回路7などの演算手段によって、検出信号から積分時間の長い長時間実効値をも同時に演算する。ここでは、長時間実効値の積分時間Tを車輪踏面の移動距離に換算して全周長に相当する時間とした。しかし全周長としたのは便宜的なものであり、前記した短時間実効値の積分時間Tよりも十分に長い時間であればよい。例えば、車輪踏面の移動距離に換算して半周長に相当する時間とすることも可能である。
【0021】
熱亀裂は制輪子との摩擦熱に起因して微細な亀裂が生じたものであるが、フラットとは異なり車輪踏面の全周にわたり発生する傾向がある。このため、熱亀裂のある車輪においては、短時間実効値としては明確な信号を取り出せないが、積分時間を長くした長時間実効値を演算すると、比較的大きな信号となる。しかし短時間実効値の波形として明確に現れるフラットや剥離等を持つ車輪においても長時間実効値は大きくなるため、演算された長時間実効値のみからは損傷の種類や範囲を明確に把握することができない。
【0022】
そこで本発明では、短時間実効値と長時間実効値との相対関係を利用することによって、各種の損傷を識別する。具体的には、図6に示すように短時間実効値と長時間実効値とを両軸とする平面上に、個々の車輪の短時間実効値の最大値と長時間実効値とをプロットする。なお、長時間実効値の積分時間Tを車輪踏面の全周長に相当する時間とした場合には、車輪毎に長時間実効値は単一となり、半周長に相当する時間とした場合には、車輪毎に長時間実効値の最大値を選択する。
【0023】
本発明者は実際の営業運転車両について多数のデータを採取した結果、損傷状態とこの平面上のプロット位置との間には明確な関係が存在することを見出した。すなわち、単独のフラットのある車輪の場合には、単独のフラットの位置で短時間実効値は大きなピークを描くため短時間実効値の最大値は大きくなるが、長時間実効値は損傷のないその他の部分と平均されるために比較的小さくなる。この結果、単独のフラットの場合には短時間実効値が強めに表れ、図6のグラフに示される平面上の直線mと直線nとの間に位置することとなる。
【0024】
これに対して直線mと直線lとの間に位置する複数のフラットまたは広範囲にわたる損傷領域は、短時間実効値の最大値に比べて長時間実効値が強めに表れる領域である。このように、全ての検出値は図6のグラフに示される平面上の2直線l・n間に位置する。そして直線lに近いほど損傷の分布が均一であり、直線nに近いほど損傷は局部的である傾向を持つ。なお図6のグラフの目盛から明らかなように、直線mの勾配は1ではないので、ここでいう強めとは短時間実効値と長時間実効値との大小を意味するものではない。
【0025】
図6に、全周損傷領域、半周損傷領域、熱亀裂領域、単フラット領域、正常領域に区画した例を示す。なお、直線lは勾配が1の直線であり、理論上この直線lよりも左側にデータが位置することはない。また直線m,nの勾配は多数の実験データに基づいて決定されたものである。
【0026】
原点に近い正常領域は、短時間実効値、長時間実効値ともに小さい領域であり、車輪踏面の損傷がほとんどないことを意味している。これに対して熱亀裂のある車輪の場合には、車輪の全周にわたるどの位置でも短時間実効値は小さいため、短時間実効値の最大値はあまり大きくはならないが、熱亀裂は広い範囲に分布するため全周などの長い範囲を積分した長時間実効値は大きくなる。このため、熱亀裂領域は、図6のグラフに示される平面上の直線mよりも左側で、正常領域よりも上側に位置する。このような手法により、従来は検出不可能であった熱亀裂を正確に検出することが可能となった。
【0027】
その上方の半周損傷領域は、熱亀裂領域よりも長時間実効値が大きい領域であり、更にその上方は短時間実効値、長時間実効値ともに大きい全周損傷領域である。ここで半周損傷領域とか全周損傷領域とかの名称は損傷の範囲が比較的狭いか広いかを意味するもので、必ずしも損傷が車輪踏面の半周または全周に及ぶという意味ではない。熱亀裂や複数のフラットから進行した剥離は上記の領域に属するため、従来法では判別不可能であったこれらの損傷を正確に判別することが可能となった。なお、実際の車輪に生ずる損傷の程度は連続的であるから、各領域の境界線は適宜設定すればよい。図7に、実測データをプロットした例を示す。
【0028】
このようにして、本発明によれば短時間実効値と長時間実効値との相対関係に基づいて、車輪踏面の損傷の種類及び程度を区別して検出することができる。図6のグラフは本発明の内容をビジュアルに表示したものであり、測定装置6あるいは通信回線8を介して接続された管理装置9の画面にこのグラフを表示することができる。さらにこのグラフに編成単位で検出値を表示することにより、その傾き・大きさなどから車輪踏面の損傷状態をより鮮明に容易に把握することができる。車輪削正は1両または数両のユニット単位で損傷の一番深い車輪から順番に実施する必要があるため、編成単位で損傷状態を把握することは作業効率の向上につながる。ただし損傷の判別は短時間実効値と長時間実効値との相対関係をコンピュータで演算することにより行うことができ、画面に表示されたグラフを見て人が判断することは必須ではない。
【0029】
また上記の説明では、短時間実効値と長時間実効値とを両軸とする平面上を直線l,m,nにより区画したが必ずしも直線で区画する必要はなく、適宜の曲線を用いて区画してもよい。また片対数グラフや両対数グラフを用いることもできる。本発明では短時間実効値と長時間実効値との相対関係をコンピュータ内部で演算することにより損傷の種類及び程度を求めることができるので、図6に示したグラフの外観自体は、特に重要なものではない。
【0030】
上記のようにして検出された損傷の種類及び程度を実際の車輪管理に適用するために、短時間実効値と長時間実効値から得られた損傷の種類及び短時間実効値の評価による段階的判定値をコンピュータ上の車輪台帳に書き込み、損傷の種類別、損傷の程度別、あるいは車両別に取り出し可能とすることが好ましい。これによって車両状態の監視を行い、損傷の程度の大きい順や損傷の早期発見により車輪の削正計画を立てるなどの車輪管理が合理的に行なえるようになる。
【0031】
【発明の効果】
以上に説明したように本発明によれば、車輪踏面のフラットや剥離を正確に検出することができるのみならず、剥離の前段階の熱亀裂をも正確に自動検出することができる。損傷の種類を判定することにより車両状態を監視することができ、車輪削正量を削減することが可能となり、車輪の延命につながる。このように本発明は、車両状態の監視及び車輪の合理的管理を行なううえで、有益である。
【図面の簡単な説明】
【図1】本発明に用いられる検出システムの説明図である。
【図2】本発明における検出信号の処理手順を示すブロック図である。
【図3】振動加速度波形の一例を示すグラフである。
【図4】実際の車輪踏面の損傷状態の説明図である。
【図5】短時間実効値の波形を示すグラフである。
【図6】短時間実効値と長時間実効値とから損傷を判別するためのグラフである。
【図7】実際のデータをプロットしたグラフである。
【符号の説明】
1 軌道
2 振動検出装置
3 鉄道車両
4 車号検出器
5 車輪検出器
6 測定装置
7 実効値演算回路
8 通信回線
9 管理装置[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method and an apparatus for detecting a damaged state of a wheel tread, which can automatically and accurately detect damage to a wheel tread that causes vibration and noise of a railway vehicle.
[0002]
[Prior art]
[Patent Document 1] Japanese Patent Application Laid-Open No. 2002-107348 [Non-Patent Document 1] “Vehicles and Machines”, April 2001, pages 25 to 32, papers of the 2000 national research presentation.
Damage called flat may occur on a wheel tread where a wheel of a railroad vehicle contacts a rail due to a slide caused by rainfall or sudden braking. In addition, damages called thermal cracks caused by frictional heat with the brake shoe and damages called peeling, in which the surface layer falls off due to the progress of these, may occur on the wheel treads. Since damage to these wheel treads poses various problems such as safety, ride comfort, noise, track maintenance, etc. .
[0004]
Therefore, conventionally, a method has been used in which vibration acceleration of a rail, a sleeper, or the like is measured, and a damage state of a wheel tread is detected based on the magnitude of the peak value of the vibration acceleration. However, since the wheels and the trajectory constitute a complicated resonance system, there remains a problem that the magnitude of the vibration acceleration peak value does not always match the actual damage state.
[0005]
Therefore, the present inventors have developed a method of accurately detecting a flat from a vibration detection signal by weighting the vibration detection signal on the frequency axis using a frequency characteristic correction curve. The contents are as shown in Patent Document 1 and Non-Patent Document 1. These documents also disclose a method of calculating an effective value of a vibration detection signal to detect continuous flat and peeling. Here, in consideration of the actual magnitude of the damage to the wheel tread, an effective value is used in which the integration time is converted to the travel distance of the wheel tread and is 100 to 300 mm.
[0006]
According to the methods described in these documents, large damage or continuous damage to the wheel tread can be detected with much higher accuracy than the conventional method using the acceleration peak value. However, there has been a problem that thermal cracks that easily occur on the entire circumference of the wheel tread surface due to frictional heat with the brake shoe cannot be detected properly because the individual detection signals are small. For this reason, even if it is found at the initial stage of thermal cracking and wheel grinding is performed, the amount of grinding will be small, but wheel grinding will be performed after damage progresses from thermal cracking to peeling etc. The amount of cutting was large and waste was increasing. In addition, when rectifying wheels, it is necessary to adjust the diameter of all wheels to a certain range in units of one car or in units, so if the rectification amount of any one wheel increases, the wheels of other normal treads must also be polished. Waste was great.
[0007]
[Problems to be solved by the invention]
The present invention solves the above-mentioned conventional problems, and can not only accurately detect flatness and peeling of the wheel tread surface, but also distinguish a thermal crack in a stage before peeling from other damages, and furthermore, The present invention has been made to provide a method and an apparatus for detecting a damage state of a wheel tread surface, which can automatically and automatically detect the type and degree of damage.
[0008]
[Means for Solving the Problems]
The method for detecting a damaged state of a wheel tread of the present invention made in order to solve the above-mentioned problem detects a vibration when a railroad vehicle travels for each wheel by a vibration detection device installed on or near a railway track, Calculate the short-term effective value with a short integration time and the long-term effective value with a long integration time from the detection signal, and damage the condition of the wheel tread based on the relative relationship between these short-term and long-term effective values. The detection is performed by distinguishing according to the type.
[0009]
In addition, the integration time of the short-term effective value is converted into a travel distance of the wheel treads of 100 to 300 mm, and the integration time of the long-term effective value is converted into the travel distance of the wheel treads to be half to full circumference. be able to. In addition, the plane on which both the short-term effective value and the long-term effective value are used as axes is divided into a single flat damage area, a full circumference damage area, a half circumference damage area, a thermal crack area, and a normal area, and calculates a detection signal. The type and degree of damage can be identified depending on which region the value belongs to. Further, the damage judgment value obtained from the short-term effective value and the long-term effective value can be written in a wheel ledger on a computer, and can be taken out for each type of damage.
[0010]
Further, the damage detection device for wheel treads of the present invention is a vibration detection device installed on or near a railroad track to detect vibrations when a railway vehicle travels for each wheel, and an integration time based on a detection signal. Means for calculating a short short-term effective value and a long-term effective value with a long integration time, and means for identifying the type and degree of damage based on the relative relationship between the short-term effective value and the long-term effective value It is characterized by the following.
[0011]
As described above, in the present invention, by combining the short-term effective value and the long-term effective value of the detection signal, it is possible to automatically detect the type and degree of damage to the wheel tread and automatically detect the thermal crack at an early stage. Can be dealt with. In addition, it is possible to take a rational measure such as writing the result in a wheel ledger on a computer and sequentially performing wheel correction from a wheel having a large degree of damage.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described.
As shown in FIG. 1, a vibration detection device 2 is installed on or near a railroad track 1 to detect vibration when a railway vehicle 3 travels. It is preferable to use the track 1 for business operation as it is, and select a section in which the railway vehicle 3 travels at a substantially constant speed. However, a special track 1 for inspection may be used. In this embodiment, three acceleration detectors are fixed to the rails on one rail as the vibration detection device 2 to detect the vibration during traveling. However, if the vibration can be detected during traveling, Various types of vibration detection devices 2 can be used.
[0013]
That is, as the vibration detection device 2, a vibration speed detector or a displacement detector can be used in addition to the acceleration detector. Since acceleration, velocity, and displacement can be mutually converted by differentiation or integration, a substantially equivalent detection signal can be obtained using any of the detection means 2. In addition, a vehicle number detector 4 and a wheel detector 5 are installed on or near the track 1 so that the detection signal of the vibration detected by the vibration detecting device 2 can be specified by which wheel of which vehicle. deep. In the embodiment shown in FIG. 1, four wheel detectors 5 are arranged, and the vibration detectors 2 that take out signals as the wheels move are sequentially switched. In addition, since the traveling time of the railway vehicle 3 in the commercial operation can be separately grasped, the vehicle number detector 4 can be omitted. For example, the vehicle type detector 4 may be a radio wave type, and the wheel detector 5 may be a photoelectric type or a magnetic type.
[0014]
As shown in FIG. 2, the detection signal from the vibration detecting device 2 is converted into a digital signal after noise is removed by an analog filter circuit, and is input to the measuring device 6. In parallel with this, signals from the vehicle number detector 4 and the wheel detector 5 are also input to the measuring device 6, which separates the detection signal of the vibration detecting device 2 into signals for each wheel and three vibration detecting devices. The two detection signals are combined into a signal for one rotation of the wheel.
[0015]
The vibration acceleration waveform which is the detection signal thus obtained is as shown in FIG. 3, for example. FIG. 4 shows the actual damage state of the wheel tread corresponding to A, B, and C in FIG. 3 together with a thermal crack. The example of FIG. 3 shows a state where damage such as flatness or peeling has occurred at three places of the same wheel for the sake of explanation. In the conventional detection method using the acceleration peak value, this waveform is used as it is. However, in the present invention, the effective value calculation circuit 7 of the measuring device 6 shown in FIG. And a long-term effective value with a long integration time are calculated.
[0016]
Here, the effective value means the square root of the root mean square of the waveform X, which is the detected value. In particular, it is preferable to use the effective value (rms value) defined by the equation (1), where T is the integration time. This means a value obtained by evaluating the vibration acceleration signal in consideration of the time width T.
[0017]
(Equation 1)
Figure 2004205403
[0018]
In the above description, the short-term effective value and the long-term effective value are calculated only by noise removal and digital conversion of the detection signal by the vibration detection device 2. However, the short-time effective value is calculated after the frequency characteristics are corrected. And the long-term effective value may be calculated. In this frequency characteristic correction, the magnitude of the detection signal from the vibration detecting device 2 is made to match the degree of wheel damage by emphasizing the low frequency band. However, the details are disclosed in Patent Document 1 and are not a main part of the present invention, and therefore, description thereof is omitted.
[0019]
In this embodiment, the integration time T of the short-term effective value is converted to the travel distance of the wheel tread, and is set to a time corresponding to 100 to 300 mm. The integration time T is a result determined empirically so that damage such as actual wheel flatness or peeling can be most appropriately detected in consideration of the circumferential length. For example, the waveform of the short-term effective value calculated by the effective value calculating circuit 7 from the waveform of FIG. 3 is as shown in FIG. However, as described above, in addition to the large damage as shown in FIG. 4, thermal cracks occur in an actual wheel. In the waveform of the short-time effective value as shown in FIG. 5, the thermal crack does not clearly appear.
[0020]
Therefore, in the present invention, a long-term effective value having a long integration time is also simultaneously calculated from the detection signal by the calculating means such as the effective value calculating circuit 7 of the measuring device 6. Here, the integration time T of the long-term effective value is converted to the moving distance of the wheel tread, and is set to a time corresponding to the entire circumference. However, the entire circumference is a matter of convenience, and may be any time that is sufficiently longer than the integration time T of the short-term effective value. For example, it is also possible to set a time corresponding to a half circumference in terms of a moving distance of the wheel tread.
[0021]
A thermal crack is a fine crack generated due to frictional heat with a brake shoe, but unlike a flat crack, tends to occur over the entire circumference of a wheel tread. For this reason, a clear signal cannot be extracted as a short-time effective value from a wheel having a thermal crack, but a relatively large signal is obtained by calculating a long-term effective value with a longer integration time. However, the long-term effective value is large even for wheels with flat or peeling that clearly appear as a short-term effective value waveform, so it is necessary to clearly understand the type and range of damage from only the calculated long-term effective value. Can not.
[0022]
Therefore, in the present invention, various types of damage are identified by using the relative relationship between the short-term effective value and the long-term effective value. Specifically, as shown in FIG. 6, the maximum value of the short-term effective value and the long-term effective value of each wheel are plotted on a plane having both the short-term effective value and the long-term effective value as axes. . When the integration time T of the long-term effective value is a time corresponding to the entire circumference of the wheel tread, the long-time effective value is single for each wheel, and when the time is equivalent to a half circumference, The maximum value of the long-term effective value is selected for each wheel.
[0023]
The inventor of the present invention has collected a large number of data on actual commercial vehicles, and has found that there is a clear relationship between the damage state and the plot position on this plane. In other words, in the case of a wheel with a single flat, the maximum value of the short-term effective value is large because the short-term effective value draws a large peak at the position of the single flat, but the long-term effective value is not damaged. Is relatively small because it is averaged with As a result, in the case of a single flat, the short-time effective value appears stronger and is located between the straight line m and the straight line n on the plane shown in the graph of FIG.
[0024]
On the other hand, a plurality of flat or extensive damage areas located between the straight line m and the straight line 1 are areas where the long-term effective value appears more strongly than the maximum value of the short-time effective value. As described above, all the detected values are located between two straight lines l and n on the plane shown in the graph of FIG. The closer to the straight line l, the more uniform the distribution of damage, and the closer to the straight line n, the more the damage tends to be localized. As can be seen from the scale of the graph of FIG. 6, the gradient of the straight line m is not 1, and the strengthening here does not mean the magnitude of the short-term effective value and the long-term effective value.
[0025]
FIG. 6 shows an example in which the area is divided into a full-circumference area, a semi-circumference area, a thermal crack area, a single flat area, and a normal area. Note that the straight line 1 is a straight line having a gradient of 1, and data is not theoretically located on the left side of the straight line l. The gradients of the straight lines m and n are determined based on a large number of experimental data.
[0026]
The normal region near the origin is a region where both the short-term effective value and the long-term effective value are small, which means that there is almost no damage to the wheel tread. On the other hand, in the case of a wheel with a heat crack, the maximum value of the short-term effective value is not so large because the short-time effective value is small at any position over the entire circumference of the wheel, but the heat crack is in a wide range. Due to the distribution, the long-term effective value obtained by integrating a long range such as the entire circumference becomes large. Therefore, the thermal crack region is located on the left side of the straight line m on the plane shown in the graph of FIG. 6 and above the normal region. With such a method, it has become possible to accurately detect a thermal crack that could not be detected conventionally.
[0027]
The semi-circumferential damage region above this is a region where the long-term effective value is larger than the thermal crack region, and further above it is a full-circumferential damage region where both the short-term effective value and the long-term effective value are large. Here, the names of the semi-circumferential damage area and the full-circumferential damage area indicate whether the range of the damage is relatively narrow or wide, and does not necessarily mean that the damage covers a half circumference or the entire circumference of the wheel tread. Since thermal cracks and peeling that progressed from a plurality of flats belong to the above-mentioned region, it has become possible to accurately determine these damages that could not be determined by the conventional method. Note that the degree of damage to the actual wheels is continuous, so that the boundaries of the respective regions may be set as appropriate. FIG. 7 shows an example in which the measured data is plotted.
[0028]
In this manner, according to the present invention, the type and degree of damage to the wheel tread can be detected separately based on the relative relationship between the short-term effective value and the long-term effective value. The graph in FIG. 6 is a visual representation of the contents of the present invention, and can be displayed on the screen of the measuring device 6 or the management device 9 connected via the communication line 8. Further, by displaying the detected value in the unit of knitting in this graph, the damage state of the wheel tread can be more clearly and easily grasped from the inclination and size thereof. It is necessary to carry out wheel sharpening in the order of one or several units in order from the wheel with the deepest damage, and ascertaining the damage state in the knitting unit leads to an improvement in work efficiency. However, the damage can be determined by calculating the relative relationship between the short-term effective value and the long-term effective value by a computer, and it is not essential for a person to determine the damage by looking at the graph displayed on the screen.
[0029]
In the above description, the plane having both the short-term effective value and the long-term effective value on both axes is defined by the straight lines l, m, and n. However, it is not always necessary to define the straight line, but by using an appropriate curve. May be. In addition, a semi-log graph or a log-log graph can be used. In the present invention, the type and degree of damage can be obtained by calculating the relative relationship between the short-term effective value and the long-term effective value inside the computer. Therefore, the appearance itself of the graph shown in FIG. 6 is particularly important. Not something.
[0030]
In order to apply the type and degree of damage detected as described above to actual wheel management, step-by-step evaluation of the type of damage and short-term effective value obtained from the short-term effective value and long-term effective value It is preferable that the judgment value is written in a wheel ledger on a computer so that it can be taken out by type of damage, by degree of damage, or by vehicle. As a result, the condition of the vehicle is monitored, and wheel management such as planning a wheel correction plan in the order of the degree of damage or early detection of damage can be performed rationally.
[0031]
【The invention's effect】
As described above, according to the present invention, not only flatness and peeling of the wheel tread can be accurately detected, but also thermal cracks at the stage before peeling can be accurately and automatically detected. By judging the type of damage, the condition of the vehicle can be monitored, the amount of wheel correction can be reduced, and the life of the wheel can be extended. As described above, the present invention is useful for monitoring the condition of the vehicle and for rational management of the wheels.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of a detection system used in the present invention.
FIG. 2 is a block diagram illustrating a processing procedure of a detection signal according to the present invention.
FIG. 3 is a graph showing an example of a vibration acceleration waveform.
FIG. 4 is an explanatory diagram of an actual damaged state of a wheel tread.
FIG. 5 is a graph showing a waveform of a short-term effective value.
FIG. 6 is a graph for determining damage from a short-term effective value and a long-term effective value.
FIG. 7 is a graph in which actual data is plotted.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Track 2 Vibration detection device 3 Railway car 4 Vehicle number detector 5 Wheel detector 6 Measurement device 7 Effective value calculation circuit 8 Communication line 9 Management device

Claims (5)

鉄道の軌道またはその近傍に設置した振動検出装置により、鉄道車両が走行する際の振動を車輪別に検出し、検出信号から積分時間の短い短時間実効値と積分時間の長い長時間実効値とを演算し、これらの短時間実効値と長時間実効値との相対関係に基づいて、車輪踏面の状態を損傷の種類により区別して検出することを特徴とする車輪踏面の損傷状態検出方法。Vibration detectors installed on or near the railroad track detect vibrations when the railcar travels on each wheel, and determine from the detection signal a short-term effective value with a short integration time and a long-term effective value with a long integration time. A method for detecting a damaged state of a wheel tread, wherein the method calculates and detects a state of a wheel tread based on a relative relationship between the short-term effective value and the long-term effective value according to a type of damage. 短時間実効値の積分時間を、車輪踏面の移動距離に換算して100〜300mmとし、長時間実効値の積分時間を、車輪踏面の移動距離に換算して半周〜全周長とした請求項1記載の車輪踏面の損傷状態検出方法。The integral time of the short-term effective value is converted to a travel distance of the wheel tread and is 100 to 300 mm, and the integral time of the long-term effective value is converted to the travel distance of the wheel tread and is defined as half to full circumference. The method for detecting a damaged state of a wheel tread according to claim 1. 短時間実効値と長時間実効値とを両軸とした平面上を、単独のフラット損傷領域、全周損傷領域、半周損傷領域、熱亀裂領域、正常領域に区画し、検出信号の演算値がどの領域に属するかによって損傷の種類及び程度を識別する請求項1または2記載の車輪踏面の損傷状態検出方法。The plane with both short-term effective value and long-term effective value on both axes is divided into a single flat damage area, full circumference damage area, half circumference damage area, thermal crack area, and normal area. The method according to claim 1 or 2, wherein the type and degree of damage are identified according to which area the area belongs to. 短時間実効値と長時間実効値から得られた損傷の判定値をコンピュータ上の車輪台帳に書き込み、損傷の種類別に取り出し可能とした請求項1〜3のいずれかに記載の車輪踏面の損傷状態検出方法。The damage condition of the wheel tread according to any one of claims 1 to 3, wherein the damage judgment value obtained from the short-term effective value and the long-term effective value is written in a wheel ledger on a computer, and can be taken out for each type of damage. Detection method. 鉄道車両が走行する際の振動を車輪別に検出するために鉄道の軌道またはその近傍に設置される振動検出装置と、その検出信号から積分時間の短い短時間実効値と積分時間の長い長時間実効値とを演算する手段と、短時間実効値と長時間実効値との相対関係に基づいて損傷の種類及び程度を識別する手段とを備えたことを特徴とする車輪踏面の損傷状態検出装置。A vibration detector installed on or near the railroad track to detect the vibration of each railcar when traveling on a wheel basis, and a short-term effective value with a short integration time and a long-term effective value with a long integration time And a means for calculating the value and a means for identifying the type and degree of damage based on the relative relationship between the short-term effective value and the long-term effective value.
JP2002376448A 2002-12-26 2002-12-26 Method and apparatus for detecting damage state of wheel tread Expired - Fee Related JP3983165B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376448A JP3983165B2 (en) 2002-12-26 2002-12-26 Method and apparatus for detecting damage state of wheel tread

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376448A JP3983165B2 (en) 2002-12-26 2002-12-26 Method and apparatus for detecting damage state of wheel tread

Publications (2)

Publication Number Publication Date
JP2004205403A true JP2004205403A (en) 2004-07-22
JP3983165B2 JP3983165B2 (en) 2007-09-26

Family

ID=32813917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376448A Expired - Fee Related JP3983165B2 (en) 2002-12-26 2002-12-26 Method and apparatus for detecting damage state of wheel tread

Country Status (1)

Country Link
JP (1) JP3983165B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531234A (en) * 2006-03-29 2009-09-03 ゼネラル・エレクトリック・カンパニイ Railway wheel repair management
JP2014106164A (en) * 2012-11-29 2014-06-09 Mitsubishi Motors Corp Method and apparatus for inspecting fitting state of connector
JP2014530139A (en) * 2011-09-09 2014-11-17 クノル−ブレムゼ ジステーメ フューア シーネンファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツングKnorr−Bremse Systeme fuer Schienenfahrzeuge GmbH BRAKE CONTROL DEVICE FOR BRAKE SYSTEM FOR RAILWAY VEHICLE, BRAKE SYSTEM, RAILWAY VEHICLE, AND METHOD FOR CARRYING OUT STATUS
JP2014237348A (en) * 2013-06-06 2014-12-18 公益財団法人鉄道総合技術研究所 System and method for determining degree of uneven wear of wheel, and program
CN109398408A (en) * 2018-12-19 2019-03-01 中铁第四勘察设计院集团有限公司 A kind of mounting structure of wheel tread detection zone track circuit
CN110261139A (en) * 2019-06-12 2019-09-20 中国神华能源股份有限公司 Wheel tread flat recognition methods and identification device
JP2020056747A (en) * 2018-10-04 2020-04-09 公益財団法人鉄道総合技術研究所 Method for estimating tread damage of railway vehicle wheel
CN113343919A (en) * 2021-06-30 2021-09-03 中国铁道科学研究院集团有限公司 Method and device for detecting continuous equidistant rubbing damage of steel rail and computer equipment

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106596148B (en) * 2016-12-22 2018-08-03 西南交通大学 Railway axle corrects the acquisition methods and damage tolerance design method of KT figures

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009531234A (en) * 2006-03-29 2009-09-03 ゼネラル・エレクトリック・カンパニイ Railway wheel repair management
JP2014530139A (en) * 2011-09-09 2014-11-17 クノル−ブレムゼ ジステーメ フューア シーネンファールツォイゲ ゲゼルシャフト ミット ベシュレンクテル ハフツングKnorr−Bremse Systeme fuer Schienenfahrzeuge GmbH BRAKE CONTROL DEVICE FOR BRAKE SYSTEM FOR RAILWAY VEHICLE, BRAKE SYSTEM, RAILWAY VEHICLE, AND METHOD FOR CARRYING OUT STATUS
JP2014106164A (en) * 2012-11-29 2014-06-09 Mitsubishi Motors Corp Method and apparatus for inspecting fitting state of connector
JP2014237348A (en) * 2013-06-06 2014-12-18 公益財団法人鉄道総合技術研究所 System and method for determining degree of uneven wear of wheel, and program
JP2020056747A (en) * 2018-10-04 2020-04-09 公益財団法人鉄道総合技術研究所 Method for estimating tread damage of railway vehicle wheel
JP6997694B2 (en) 2018-10-04 2022-01-18 公益財団法人鉄道総合技術研究所 Method for estimating tread damage of wheels for railway vehicles
CN109398408A (en) * 2018-12-19 2019-03-01 中铁第四勘察设计院集团有限公司 A kind of mounting structure of wheel tread detection zone track circuit
CN109398408B (en) * 2018-12-19 2024-01-02 中铁第四勘察设计院集团有限公司 Mounting structure of wheel set tread detection area track circuit
CN110261139A (en) * 2019-06-12 2019-09-20 中国神华能源股份有限公司 Wheel tread flat recognition methods and identification device
CN113343919A (en) * 2021-06-30 2021-09-03 中国铁道科学研究院集团有限公司 Method and device for detecting continuous equidistant rubbing damage of steel rail and computer equipment
CN113343919B (en) * 2021-06-30 2024-03-15 中国铁道科学研究院集团有限公司 Method and device for detecting continuous equidistant rubbing damage of steel rail and computer equipment

Also Published As

Publication number Publication date
JP3983165B2 (en) 2007-09-26

Similar Documents

Publication Publication Date Title
NL2003351C2 (en) Method and instumentation for detection of rail top defects.
CN102501887B (en) Non-contact dynamic detection device and detection method for tire tread defects
JP5778560B2 (en) Tire wear prediction method and tire wear prediction apparatus
CN106018557B (en) A kind of raceway surface recess detection method based on wavelet analysis
CN113276905B (en) Identification method and measurement method for distinguishing track corrugation and wheel polygon abrasion
JP2004205403A (en) Damage state detection method and device of wheel tread
JP6955071B2 (en) Tire wear measuring device using irregularity of tire acceleration signal and tire wear measuring method using it
CN102431576A (en) Fault dynamic detecting and data processing method and system of wheel set
CN111055881A (en) Wheel-rail interface damage evolution monitoring method based on noise signals
CN109855770B (en) Method for detecting temperature based on transverse acceleration power spectrum density of steel rail
GB2383635A (en) Chromatic analysis of measured acoustic signals from a system
Bocz et al. A practical approach to tramway track condition monitoring: vertical track defects detection and identification using time-frequency processing technique
CN111809464B (en) Intelligent polishing control method for steel rail
Shih et al. Dynamic characteristics of a switch and crossing on the West Coast main line in the UK
CN104271428A (en) Method for surveying rail-wheel contact
JP3620790B2 (en) Method and apparatus for detecting damage state of wheel tread
JP2004085273A (en) Detection method of wheel defect and its equipment
JP2001071904A (en) Method and device for detecting state of wheel tread
JP2008120258A (en) Detection system of wheel tread state
CN113343919A (en) Method and device for detecting continuous equidistant rubbing damage of steel rail and computer equipment
JP2927101B2 (en) Flat detection method of wheels for railway vehicles
JP2004258007A (en) Wheel form measuring method
JP2544008B2 (en) Railway laying rail evaluation method
JP2002131042A (en) Noise measure system of rolling sound
CN207439361U (en) A kind of detection of rail cross-section device

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050324

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050325

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070424

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070501

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070703

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070703

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 3983165

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100713

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130713

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees