JP2542227Y2 - Magnetic fluid bearing - Google Patents

Magnetic fluid bearing

Info

Publication number
JP2542227Y2
JP2542227Y2 JP9765890U JP9765890U JP2542227Y2 JP 2542227 Y2 JP2542227 Y2 JP 2542227Y2 JP 9765890 U JP9765890 U JP 9765890U JP 9765890 U JP9765890 U JP 9765890U JP 2542227 Y2 JP2542227 Y2 JP 2542227Y2
Authority
JP
Japan
Prior art keywords
magnetic
flange
magnetic fluid
fluid bearing
permanent magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP9765890U
Other languages
Japanese (ja)
Other versions
JPH0454322U (en
Inventor
直樹 堀
Original Assignee
エヌオーケー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エヌオーケー株式会社 filed Critical エヌオーケー株式会社
Priority to JP9765890U priority Critical patent/JP2542227Y2/en
Publication of JPH0454322U publication Critical patent/JPH0454322U/ja
Application granted granted Critical
Publication of JP2542227Y2 publication Critical patent/JP2542227Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/04Sliding-contact bearings for exclusively rotary movement for axial load only
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0629Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion
    • F16C32/0633Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being retained in a gap
    • F16C32/0637Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a liquid cushion, e.g. oil cushion the liquid being retained in a gap by a magnetic field, e.g. ferrofluid bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/06Sliding surface mainly made of metal
    • F16C33/10Construction relative to lubrication
    • F16C33/1025Construction relative to lubrication with liquid, e.g. oil, as lubricant
    • F16C33/103Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing
    • F16C33/1035Construction relative to lubrication with liquid, e.g. oil, as lubricant retained in or near the bearing by a magnetic field acting on a magnetic liquid

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、磁性流体を潤滑剤として用いたすべり軸受
タイプの磁性流体軸受に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial application field) The present invention relates to a plain bearing type magnetic fluid bearing using a magnetic fluid as a lubricant.

(従来の技術) 従来の磁性流体軸受としては、たとえば、第5図に示
すようなものがある。この磁性流体軸受は、軸方向に単
極着磁された永久磁石である円盤状の鍔100を固着した
非磁性材または磁性材の軸101と、前記鍔100の外周面及
び両端面と微小間隙aを介して配置した非磁性材のハウ
ジング102と、前記微小間隙aに介在させた磁性流体103
とにより構成されたものである。ここで、微小間隙aに
は永久磁石である鍔100の端面100aに近づくほど磁場が
大きくなるような磁場の勾配があるため、この磁場勾配
によって磁性流体103が鍔100側に引き付けられることに
より磁気(浮揚力)が作用し、軸101が支えられる。
(Prior Art) Conventional magnetic fluid bearings include, for example, those shown in FIG. This magnetic fluid bearing has a shaft 101 made of a non-magnetic material or a magnetic material to which a disk-shaped flange 100, which is a permanent magnet that is unipolarly magnetized in the axial direction, is fixed. and a magnetic fluid 103 interposed in the small gap a.
It is comprised by these. Here, the micro gap a has a magnetic field gradient such that the magnetic field becomes larger as it approaches the end face 100a of the flange 100, which is a permanent magnet, and the magnetic fluid 103 is attracted to the flange 100 by the magnetic field gradient. (Lifting force) acts, and the shaft 101 is supported.

(考案が解決しようとする課題) しかし、上記した従来の技術による磁性流体軸受は以
下の如き問題点を有している。即ち、永久磁石である
鍔100が軸方向に単極着磁されているため軸方向の平均
磁場勾配は大きいが、半径方向及び円周方向の平均磁場
勾配は小さく、鍔100の端部付近のみが半径方向の磁場
勾配が大きくなる。従って、磁気的圧力が余り大きくな
らず、負荷容量が小さいという問題がある。また、永
久磁石である鍔100が軸方向に単極着磁されているため
外部への漏洩磁束が多く、外部に磁気的外乱を与えると
いう問題点がある。
(Problems to be Solved by the Invention) However, the above-described conventional magnetic fluid bearing has the following problems. That is, since the flange 100, which is a permanent magnet, is unipolarly magnetized in the axial direction, the average magnetic field gradient in the axial direction is large, but the average magnetic field gradient in the radial and circumferential directions is small, and only near the end of the flange 100. Increases the magnetic field gradient in the radial direction. Therefore, there is a problem that the magnetic pressure does not become too large and the load capacity is small. In addition, since the collar 100, which is a permanent magnet, is unipolarly magnetized in the axial direction, there is a problem that a large amount of magnetic flux leaks to the outside and a magnetic disturbance is given to the outside.

この考案は上記課題を解決するためのもので、軸の鍔
の半径方向及び円周方向にも大きな平均磁場勾配を形成
できるとともに、外部への漏洩磁束の少ない磁性流体軸
受を提供することを目的としている。
This invention is intended to solve the above-mentioned problem, and has an object to provide a magnetic fluid bearing which can form a large average magnetic field gradient also in a radial direction and a circumferential direction of a flange of a shaft and has a small leakage magnetic flux to the outside. And

(課題を解決するための手段) 上記目的を達成するためこの考案は、永久磁石である
円盤状の鍔を有する軸と、該鍔の外周面及び両端面と微
小間隙を介して配置した非磁性材のハウジングと、前記
微小間隙に介在させた磁性流体とから成る磁性流体軸受
において、前記鍔が半径方向及び円周方向の隣り合う磁
極が互いに異極となるように軸方向に多極着磁した永久
磁石であることを特徴とする。
(Means for Solving the Problems) In order to achieve the above object, the present invention is directed to a shaft having a disk-shaped flange which is a permanent magnet, and a non-magnetic shaft arranged with a minute gap between the outer peripheral surface and both end surfaces of the flange. In a magnetic fluid bearing composed of a housing made of a material and a magnetic fluid interposed in the minute gap, multi-pole magnetization is performed in the axial direction such that the magnetic poles adjacent to each other in the radial direction and the circumferential direction have different polarities. Characterized in that it is a permanent magnet.

また、非磁性材である円盤状の鍔を有する軸と、該鍔
の外周面及び両端面と微小間隙を介して配置した永久磁
石のハウジングと、前記微小間隙に介在させた磁性流体
とから成る磁性流体軸受において、前記ハウジングが半
径方向及び円周方向の隣り合う磁極が互いに異極となる
ように前記鍔の両端面に対向する面に軸方向に多極着磁
した永久磁石であることを特徴とする。
Further, the shaft includes a shaft having a disk-shaped flange which is a non-magnetic material, a housing of a permanent magnet arranged with a minute gap between the outer peripheral surface and both end surfaces of the flange, and a magnetic fluid interposed in the minute gap. In the magnetic fluid bearing, the housing may be a permanent magnet multi-polarized in an axial direction on a surface facing both end surfaces of the flange so that adjacent magnetic poles in a radial direction and a circumferential direction are different from each other. Features.

(作用) 上記構成に基づくこの考案は、軸の鍔又はハウジング
として半径方向及び円周方向の隣り合う磁極が互いに異
極となる様に軸方向に多極着磁した永久磁石を用いる
と、鍔の外周又はハウジングの内周には軸方向の磁場勾
配に加えて半径方向及び円周方向にも大きな磁場勾配が
形成されるため、発生する磁気的圧力が大きくなる。従
って、負荷容量が大きくなる。
(Effect) The present invention based on the above configuration is characterized in that, when a permanent magnet magnetized in the axial direction is used as a shaft flange or housing so that adjacent magnetic poles in the radial direction and the circumferential direction are different from each other, a flange is formed. Since a large magnetic field gradient is formed in the radial direction and the circumferential direction in addition to the magnetic field gradient in the axial direction on the outer circumference of the housing or the inner circumference of the housing, the generated magnetic pressure increases. Therefore, the load capacity increases.

また、永久磁石からなる鍔又はハウジングは、隣り合
う磁極が互いに異極となるように多極着磁されているた
め、主磁束が隣り合う異極間を流れ、外部への漏洩磁束
が少なくなる。
In addition, the flange or housing made of a permanent magnet is multipolar magnetized so that adjacent magnetic poles are different from each other, so that the main magnetic flux flows between the adjacent different poles, and the leakage magnetic flux to the outside is reduced. .

(実施例) 次に、この考案を添付図面に基づいて説明する。(Example) Next, this invention is demonstrated based on an accompanying drawing.

第1図,第2図は第一実施例を示している。 1 and 2 show a first embodiment.

図において、1は軸で、この軸1は永久磁石である円
盤状の鍔2を備えている。また、鍔2の外周面3及び両
端面4は、非磁性材のハウジング5の環状溝6に対して
それぞれ微小間隙Aを介して配置されており、その微小
間隙Aには磁性流体7を介在させてある。
In the figure, reference numeral 1 denotes a shaft, and the shaft 1 has a disk-shaped flange 2 which is a permanent magnet. Further, the outer peripheral surface 3 and both end surfaces 4 of the flange 2 are arranged with a small gap A with respect to the annular groove 6 of the housing 5 made of a non-magnetic material, and a magnetic fluid 7 is interposed in the small gap A. Let me do it.

そして、鍔2は半径方向及び円周方向の隣り合う磁極
が互いに異極となるように軸方向に多極着磁されてい
る。すなわち、対となるN極とS極が軸方向となるよう
に着磁され、かつ、半径方向及び円周方向の隣り合う磁
極が互いに異極となるように着磁されている。この鍔2
は図示実施例では単一のものに着磁しているが、対とな
るN極とS極が軸方向となるように着磁され、かつ円周
方向の隣り合う磁極が互いに異極となるように軸方向に
多極着磁された環状永久磁石の径の異なるもの(図示せ
ず)を複数個用意し、これらを半径方向に隣り合う磁極
が異極となるように密接配列して鍔を構成してもよい。
The flange 2 is multipolarly magnetized in the axial direction such that adjacent magnetic poles in the radial direction and the circumferential direction have different polarities. That is, the magnetic poles are magnetized so that the paired north and south poles are in the axial direction, and the magnetic poles adjacent to each other in the radial direction and the circumferential direction are different in polarity. This Tsuba 2
Is magnetized to a single one in the illustrated embodiment, but is magnetized so that the paired north and south poles are in the axial direction, and the adjacent magnetic poles in the circumferential direction are different from each other. A plurality of ring-shaped permanent magnets (not shown) having multi-polarized magnets in the axial direction having different diameters are prepared, and these are arranged closely so that magnetic poles adjacent in the radial direction have different poles. May be configured.

このように、半径方向及び円周方向の隣り合う磁極が
互いに異極となるように、軸方向に多極着磁された鍔2
を用いているため、軸方向の磁場勾配に加えて半径方向
及び円周方向にも大きな磁場勾配が形成される。従っ
て、磁性流体7によってハウジング5に作用する磁気的
圧力が大きくなり、軸1を支える負荷容量が大きくな
る。また多極着磁された永久磁石によって鍔2を構成し
ているので、主磁束が隣り合う異極間を流れる。従っ
て、外部への漏洩磁束が少なく、磁気的外乱を防止でき
るという効果も得られる。
As described above, the flange 2 is multipolarly magnetized in the axial direction so that the magnetic poles adjacent in the radial direction and the circumferential direction are different from each other.
Is used, a large magnetic field gradient is formed in the radial direction and the circumferential direction in addition to the axial magnetic field gradient. Therefore, the magnetic pressure acting on the housing 5 by the magnetic fluid 7 increases, and the load capacity supporting the shaft 1 increases. In addition, since the flange 2 is constituted by the multi-polarized permanent magnets, the main magnetic flux flows between adjacent different poles. Therefore, an effect is obtained that the leakage magnetic flux to the outside is small and magnetic disturbance can be prevented.

次に、第3図,第4図に本考案の第二実施例を示す。
この実施例では、非磁性材から成る鍔2の両端面4及び
外周面3と微小間隙Aを介して対向するハウジング5の
環状溝6の両端面6aを、半径方向及び円周方向の隣り合
う磁極が互いに異極となるように、軸方向に多極着磁し
た永久磁石によって構成している。その他は第一実施例
と同様に構成してある。この永久磁石から成るハウジン
グ5は図示の例では単一のものを用いているが、第一実
施例と同様にして径の異なる複数個の環状の永久磁石を
密接して配列することにより構成しても良い。また、必
ずしもハウジング5全体が永久磁石である必要は無く、
非磁性材から成る鍔2の両端面4と対向する部分のみを
軸方向に多極着磁した永久磁石とし、他の外側の部分は
非磁性材または磁性材により構成しても良い。この第二
実施例の作用効果については、第一実施例と同様(磁性
流体7による磁気的圧力が鍔2に作用する点は異なる)
であるので説明を省略する。
Next, FIGS. 3 and 4 show a second embodiment of the present invention.
In this embodiment, both end surfaces 6a of an annular groove 6 of a housing 5 which are opposed to both end surfaces 4 and an outer peripheral surface 3 of a flange 2 made of a non-magnetic material via a small gap A are adjacent to each other in a radial direction and a circumferential direction. The magnetic poles are constituted by permanent magnets that are multipolar magnetized in the axial direction so that the magnetic poles are different from each other. The rest is configured similarly to the first embodiment. Although a single housing 5 made of this permanent magnet is used in the illustrated example, it is constituted by closely arranging a plurality of annular permanent magnets having different diameters as in the first embodiment. May be. Also, the entire housing 5 does not necessarily need to be a permanent magnet,
Only the portion facing the both end surfaces 4 of the flange 2 made of a non-magnetic material may be a permanent magnet multi-polarized in the axial direction, and the other outer portion may be made of a non-magnetic material or a magnetic material. The operation and effect of the second embodiment are the same as those of the first embodiment (except that the magnetic pressure by the magnetic fluid 7 acts on the flange 2).
Therefore, the description is omitted.

以上の第一,第二実施例では、いずれも半径方向の隣
り合う磁極の列が半径方向に放射状である永久磁石を用
いたが、必ずしも放射状である必要はなく、円周方向に
捩れていても良く、(図示せず)、また蛇行していても
良い(図示せず)。
In each of the first and second embodiments described above, the permanent magnets in which the rows of magnetic poles adjacent in the radial direction are radial in the radial direction are used. However, the permanent magnets are not necessarily radial, and are twisted in the circumferential direction. (Not shown) or meandering (not shown).

また以上の第一,第二実施例では半径方向に5極,円
周方向に24極となるように多極着磁された永久磁石を用
いたが、磁極の数はこれに限定されるものではない。
In the first and second embodiments described above, the permanent magnets are multipolar magnetized so that the number of poles is 5 in the radial direction and 24 in the circumferential direction. However, the number of magnetic poles is not limited to this. is not.

(考案の効果) この考案は以上のように構成したものであるから、軸
方向の磁場勾配に加えて半径方向および円周方向にも大
きな磁場勾配が形成され、発生する磁気的圧力が大きく
なるため負荷容量が大きくなる。また、主磁束が隣り合
う異極間を流れるため外部への漏洩磁束が少なくなり、
磁気的外乱を防止できる。
(Effects of the Invention) Since the invention is configured as described above, a large magnetic field gradient is formed in the radial and circumferential directions in addition to the axial magnetic field gradient, and the generated magnetic pressure increases. Therefore, the load capacity increases. In addition, since the main magnetic flux flows between adjacent different poles, the leakage magnetic flux to the outside decreases,
Magnetic disturbance can be prevented.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本考案に係る磁性流体軸受の第一実施例を示す
断面図、第2図は第1図のA′−A′線における断面
図、第3図は本考案に係る磁性流体軸受の第二実施例を
示す断面図、第4図は第2図のB−B線における断面
図、第5図は従来の磁束流体軸受を示す断面図である。 符号の説明 1……軸、2……鍔 3……鍔の外周面、4……鍔の両端面 5……ハウジング、6……環状溝 6a……環状溝の両端面、7……磁性流体 A……微小間隙
1 is a sectional view showing a first embodiment of a magnetic fluid bearing according to the present invention, FIG. 2 is a sectional view taken along line A'-A 'of FIG. 1, and FIG. 3 is a magnetic fluid bearing according to the present invention. FIG. 4 is a sectional view taken along the line BB of FIG. 2, and FIG. 5 is a sectional view showing a conventional magnetic flux bearing. DESCRIPTION OF SYMBOLS 1... Shaft 2... Flange 3... Outer periphery of flange 4. Both ends of flange 5. Housing 6... Annular groove 6 a. Fluid A: minute gap

Claims (2)

(57)【実用新案登録請求の範囲】(57) [Scope of request for utility model registration] 【請求項1】永久磁石である円盤状の鍔を有する軸と、
該鍔の外周面及び両端面と微小間隙を介して配置した非
磁性材のハウジングと、前記微小間隙に介在させた磁性
流体とから成る磁性流体軸受において、 前記鍔が半径方向及び円周方向の隣り合う磁極が互いに
異極となるように軸方向に多極着磁した永久磁石である
ことを特徴とする磁性流体軸受。
A shaft having a disk-shaped flange which is a permanent magnet;
In a magnetic fluid bearing comprising a housing made of a non-magnetic material and a magnetic fluid interposed in the minute gap with the outer peripheral surface and both end surfaces of the flange interposed therebetween with a minute gap, the flange has a radial direction and a circumferential direction. A magnetic fluid bearing, wherein the magnetic fluid bearing is a permanent magnet which is magnetized in the axial direction so that adjacent magnetic poles are different from each other.
【請求項2】非磁性材である円盤状の鍔を有する軸と、
該鍔の外周面及び両端面と微小間隙を介して配置した永
久磁石のハウジングと、前記微小間隙に介在させた磁性
流体とから成る磁性流体軸受において、 前記ハウジングが半径方向及び円周方向の隣り合う磁極
が互いに異極となるように前記鍔の両端面に対向する面
に軸方向に多極着磁した永久磁石であることを特徴とす
る磁性流体軸受。
2. A shaft having a disk-shaped flange made of a non-magnetic material,
In a magnetic fluid bearing comprising a housing of a permanent magnet disposed with a minute gap between the outer peripheral surface and both end surfaces of the flange, and a magnetic fluid interposed in the minute gap, the housing is adjacent in a radial direction and a circumferential direction. A magnetic fluid bearing, wherein the magnetic fluid bearing is a permanent magnet that is multipolarly magnetized in the axial direction on a surface facing both end surfaces of the flange so that matching magnetic poles are different from each other.
JP9765890U 1990-09-18 1990-09-18 Magnetic fluid bearing Expired - Lifetime JP2542227Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9765890U JP2542227Y2 (en) 1990-09-18 1990-09-18 Magnetic fluid bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9765890U JP2542227Y2 (en) 1990-09-18 1990-09-18 Magnetic fluid bearing

Publications (2)

Publication Number Publication Date
JPH0454322U JPH0454322U (en) 1992-05-11
JP2542227Y2 true JP2542227Y2 (en) 1997-07-23

Family

ID=31838222

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9765890U Expired - Lifetime JP2542227Y2 (en) 1990-09-18 1990-09-18 Magnetic fluid bearing

Country Status (1)

Country Link
JP (1) JP2542227Y2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101957201B1 (en) * 2018-02-05 2019-03-13 주식회사 하이드로넷 Apparatus for generating fluid driving force

Also Published As

Publication number Publication date
JPH0454322U (en) 1992-05-11

Similar Documents

Publication Publication Date Title
EP0012556B1 (en) Magnetic liquid shaft seal
CA2151687A1 (en) Hybrid magnetic/foil gas bearings
JPH11325075A (en) Magnetic bearing
JP2542227Y2 (en) Magnetic fluid bearing
JPS6146683B2 (en)
JPH10131966A (en) Magnetic bearing device
JPH0245047B2 (en)
JPH08232955A (en) Magnetic bearing
JPH0942289A (en) Hybrid magnetic/wheel-gas-bearing
JPH07736Y2 (en) Magnetic fluid bearing
JP2606502Y2 (en) Magnetic fluid bearing
JPS6211218B2 (en)
JP2520416Y2 (en) Spindle motor
JPH0518495Y2 (en)
JPH0534337Y2 (en)
JP2601386Y2 (en) Magnetic fluid bearing
JP2000161359A (en) Supporting structure of rotary member
JPH051692Y2 (en)
JP2597618Y2 (en) Magnetic fluid sealing device
JPH0624578Y2 (en) Magnetic bearing device
JPS62221855A (en) Dc brushless motor
JP2557479Y2 (en) Magnetic bearing device
JPH0518496Y2 (en)
JPS5888222A (en) Yoke for magnetic bearing
JP2599459Y2 (en) Magnetic fluid bearing

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term