JPH10131966A - Magnetic bearing device - Google Patents

Magnetic bearing device

Info

Publication number
JPH10131966A
JPH10131966A JP8303904A JP30390496A JPH10131966A JP H10131966 A JPH10131966 A JP H10131966A JP 8303904 A JP8303904 A JP 8303904A JP 30390496 A JP30390496 A JP 30390496A JP H10131966 A JPH10131966 A JP H10131966A
Authority
JP
Japan
Prior art keywords
permanent magnets
magnetic
magnetic bearing
magnetized
ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8303904A
Other languages
Japanese (ja)
Inventor
Kazuki Sato
一樹 佐藤
Matsutaro Miyamoto
松太郎 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Corp
Original Assignee
Ebara Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Corp filed Critical Ebara Corp
Priority to JP8303904A priority Critical patent/JPH10131966A/en
Publication of JPH10131966A publication Critical patent/JPH10131966A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/044Active magnetic bearings
    • F16C32/0474Active magnetic bearings for rotary movement
    • F16C32/0476Active magnetic bearings for rotary movement with active support of one degree of freedom, e.g. axial magnetic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/04Bearings not otherwise provided for using magnetic or electric supporting means
    • F16C32/0406Magnetic bearings
    • F16C32/0408Passive magnetic bearings
    • F16C32/0423Passive magnetic bearings with permanent magnets on both parts repelling each other
    • F16C32/0425Passive magnetic bearings with permanent magnets on both parts repelling each other for radial load mainly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/44Centrifugal pumps
    • F16C2360/45Turbo-molecular pumps

Abstract

PROBLEM TO BE SOLVED: To enhance radial restoring force with simple structure and prevent the generation of demagnetization with the lapse of time by forming the overlapped structure of a plurality of ring-like permanent magnets on both rotating side and fixed side, and piling the radially magnetized permanent magnets in such a way that the magnetized directions are reverse. SOLUTION: A pluraility of ring-like permanent magnets 26, 26, 26 are formed in an axially overlapped state on the fixed side. The respective ring-like permanent magnets are radially magnetized in the magnetic pole mangetizing direction of N-poles and S-poles. Ring-like permanent magnets 25, 25, 25 on the rotating side are also magnetized radially in the magnetic pole magnetizing direction of N-poles and Spoles. The inner peripheral surface of the fixed side permanent magnet and the outer peripheral surface of the rotating side permanent magnet are axially aligned so as to face each other with a void A. The facing magnetic poles in the A are therefore like-poles, so that magnetic repulsive force works, and a rotor receives radial force so as to be supported in a levitated state, thus constituting a radial magnetic bearing.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、受動型の磁気軸受
装置に係り、特に、回転側、静止側ともに複数のリング
状の永久磁石を重ね合わせた構造を有し、回転側及び静
止側の磁極が互いに同極となるように同軸状に配置する
ことで、回転側を半径方向に浮上支持する反発型の磁気
軸受装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a passive type magnetic bearing device, and more particularly, to a passive type magnetic bearing device having a structure in which a plurality of ring-shaped permanent magnets are superimposed on both a rotating side and a stationary side. The present invention relates to a repulsion-type magnetic bearing device in which magnetic poles are coaxially arranged so as to have the same polarity, so that the rotating side floats and is supported in the radial direction.

【0002】[0002]

【従来の技術】永久磁石の反発力を利用したラジアル受
動磁気軸受装置としては、これまでに様々な形式が考え
られている。最も基本的な構成は、軸方向もしくは半径
方向に着磁された1対の永久磁石を同軸状に対向させる
構成である(図6(a)(b)参照)。しかしながら、
この構成では磁石を大きくしていってもあまり大きな半
径方向の復元力(軸受剛性)は得られない。
2. Description of the Related Art Various types of radial passive magnetic bearing devices utilizing the repulsive force of a permanent magnet have been considered. The most basic configuration is a configuration in which a pair of permanent magnets magnetized in the axial or radial direction are coaxially opposed (see FIGS. 6A and 6B). However,
In this configuration, a large restoring force (bearing rigidity) in the radial direction cannot be obtained even if the magnet is enlarged.

【0003】そこで、回転側、静止側ともに、それぞれ
軸方向に着磁したリング状の永久磁石を着磁方向が逆に
なるように薄い非磁性のスペーサを挟んで軸方向に積み
重ねた構造を採用することにより、半径方向の軸受剛性
を大きくする工夫がなされている。即ち、この構造は図
7に示すように、リング状の軸方向に着磁された永久磁
石21,22が非磁性のスペース23を介して同軸状に
積み重ねられている。個々の永久磁石21,22の着磁
方向は、軸方向であり、積み重ねられた隣接するリング
状永久磁石の着磁方向が互いに反対方向となるように配
列されている。そして、固定側永久磁石22の列に対し
て、回転側永久磁石21の列の磁極極性が互いに対向す
るように同軸状に配置される。即ち、固定側永久磁石2
2の列のN極は回転側永久磁石21の列のN極に対向
し、同様に固定側永久磁石22の列のS極は回転側永久
磁石21の列のS極に対向する。従って、回転側と固定
側の空隙Aを介して、同極の磁極間に互いに反発力が生
じ、回転側は半径方向に浮上支持力を受ける。図7に示
す構成の受動型磁気軸受は、複数のリング状永久磁石が
積み重ねて構成されているので、図6(a)(b)に示
す磁気軸受装置と比較して、大きな軸受剛性が得られ
る。
Therefore, a structure is adopted in which ring-shaped permanent magnets that are magnetized in the axial direction on both the rotating side and the stationary side are stacked in the axial direction with a thin non-magnetic spacer interposed therebetween so that the magnetizing directions are reversed. By doing so, an attempt is made to increase the bearing rigidity in the radial direction. That is, in this structure, as shown in FIG. 7, ring-shaped axially magnetized permanent magnets 21 and 22 are stacked coaxially via a non-magnetic space 23. The magnetization directions of the individual permanent magnets 21 and 22 are axial directions, and are arranged such that the magnetization directions of the stacked adjacent ring-shaped permanent magnets are opposite to each other. Then, the magnetic pole polarities of the row of the rotating side permanent magnets 21 are arranged coaxially with the row of the fixed side permanent magnets 22 so as to face each other. That is, the fixed-side permanent magnet 2
The N poles in the second row oppose the N poles in the row of the rotating permanent magnets 21, and similarly, the S poles in the row of the fixed permanent magnets 22 face the S poles in the row of the rotating permanent magnets 21. Therefore, a repulsive force is generated between the magnetic poles of the same polarity via the gap A on the rotating side and the fixed side, and the rotating side receives a floating supporting force in the radial direction. Since the passive magnetic bearing having the configuration shown in FIG. 7 is configured by stacking a plurality of ring-shaped permanent magnets, a large bearing rigidity is obtained as compared with the magnetic bearing device shown in FIGS. Can be

【0004】また、永久磁石と非磁性スペーサが接する
面をテーパ形状にしてより大きな半径方向復元力を得る
ための工夫もなされている。これは、図8に示す構造の
受動型磁気軸受であり、リング状の永久磁石21A,2
2A及び非磁性のスペーサ23Aにそれぞれ図示するよ
うなテーパを設けたものである。このテーパは、回転側
及び固定側の双方共に両者間の空隙部Aに対して拡大す
るように設けられている。個々のリング状永久磁石21
A,22Aの着磁方向は、それぞれ軸方向であるため、
空隙Aに向けた非磁性の拡大部により、磁束の流れが良
くなり、図6の構造と比較して磁気抵抗が小さく(パー
ミアンス係数が大きく)なる。これにより磁気軸受剛性
が大きくなる。
[0004] In addition, a device has been devised for obtaining a larger radial restoring force by making the surface of the permanent magnet and the non-magnetic spacer in contact with each other a tapered shape. This is a passive magnetic bearing having the structure shown in FIG.
2A and the non-magnetic spacer 23A are each provided with a taper as shown. This taper is provided so as to expand with respect to the gap A between both the rotating side and the fixed side. Individual ring-shaped permanent magnet 21
Since the magnetization directions of A and 22A are axial directions,
Due to the non-magnetic enlarged portion toward the gap A, the flow of magnetic flux is improved, and the magnetic resistance is reduced (permeance coefficient is increased) as compared with the structure of FIG. This increases the magnetic bearing rigidity.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、上記図
7に示した磁気軸受装置は、非磁性スペーサ23が薄い
ほうが、大きな半径方向復元力を得ることが出来るが、
この場合には2つの永久磁石の極が接近し、お互いに逆
磁界を掛け合うことになる。この結果、非常にパーミア
ンスの低い(磁気抵抗の高い)状態で永久磁石を使用す
ることになり、永久磁石の能力が十分に発揮されないば
かりか、この状態で温度が上昇すれば時間とともに減磁
が進行し、永久磁石の特性が劣化していくことになる。
However, in the magnetic bearing device shown in FIG. 7, the larger the non-magnetic spacer 23, the larger the radial restoring force can be obtained.
In this case, the poles of the two permanent magnets come close to each other and mutually apply opposite magnetic fields. As a result, the permanent magnet is used in a state of extremely low permeance (high magnetic reluctance). Not only is the performance of the permanent magnet insufficient, but if the temperature rises in this state, demagnetization will occur over time. As the process proceeds, the characteristics of the permanent magnet deteriorate.

【0006】又、図8に示した磁気軸受装置の場合に
は、この傾向は若干緩和されるが、テーパ形状の永久磁
石を作ることはコストの上昇を招き、又、加工精度の面
からも問題が多い。
In the case of the magnetic bearing device shown in FIG. 8, this tendency is slightly alleviated. However, the production of the tapered permanent magnet causes an increase in cost and also from the viewpoint of machining accuracy. There are many problems.

【0007】本発明は上述した事情に鑑みて為されたも
ので、より簡単な構造で、半径方向復元力が大きく、且
つ経時的に減磁などが発生しにくい受動型磁気軸受装置
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and provides a passive type magnetic bearing device having a simpler structure, a large radial restoring force, and hardly causing demagnetization over time. The purpose is to:

【0008】[0008]

【課題を解決するための手段】本発明の磁気軸受装置
は、回転側、静止側ともにリング状の永久磁石を複数枚
重ね合わせた構造を有し、半径方向に前記永久磁石の生
成する磁気力で回転軸を支持する受動型の磁気軸受装置
において、それぞれ半径方向に着磁したリング状の永久
磁石を着磁方向が逆になるように積み重ねたことを特徴
とする。
The magnetic bearing device of the present invention has a structure in which a plurality of ring-shaped permanent magnets are stacked on both the rotating side and the stationary side, and the magnetic force generated by the permanent magnets in the radial direction. In the passive type magnetic bearing device supporting the rotating shaft, ring-shaped permanent magnets, each magnetized in the radial direction, are stacked so that the magnetization directions are reversed.

【0009】上述した本発明の構成によれば、リング状
永久磁石が半径方向に着磁されており、且つ複数枚重ね
合わされた構造を有しているので、コンパクトな構造
で、パーミアンス係数が高く(磁気抵抗が低く)とれ、
半径方向に高い密度の磁力線を形成することができる。
これにより、軸方向に着磁された従来のリング磁石を重
ね合わせた構造の受動型磁気軸受と比較して、高い半径
方向復元力が得られると共に、経時的な安定性が向上す
る。
According to the configuration of the present invention described above, the ring-shaped permanent magnet is magnetized in the radial direction and has a structure in which a plurality of ring-shaped permanent magnets are superposed, so that the structure is compact and the permeance coefficient is high. (Low magnetic resistance)
Magnetic lines of high density can be formed in the radial direction.
As a result, as compared with a passive magnetic bearing having a structure in which conventional ring magnets magnetized in the axial direction are overlapped with each other, a higher radial restoring force is obtained and stability over time is improved.

【0010】又、本発明の回転機械装置は、上述した磁
気軸受装置を回転機械の回転軸の軸方向の離れた位置に
少なくとも2組配置したことを特徴とする。
[0010] Further, the rotary machine device according to the present invention is characterized in that at least two sets of the above-described magnetic bearing device are arranged at positions separated in the axial direction of the rotary shaft of the rotary machine.

【0011】上述したように、本発明の磁気軸受装置
は、コンパクトな構造で且つ復元力が高い。従って、こ
の磁気軸受装置を回転軸方向に2組備えることで、コン
パクトで経時的変化の少ない磁気軸受で、回転軸が非接
触支持された回転機械装置が得られる。
As described above, the magnetic bearing device of the present invention has a compact structure and high restoring force. Therefore, by providing two sets of this magnetic bearing device in the direction of the rotating shaft, a rotating mechanical device in which the rotating shaft is supported in a non-contact manner by a compact magnetic bearing with little change over time can be obtained.

【0012】[0012]

【発明の実施の形態】以下、本発明の実施の形態につい
て図面を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図1は、本発明の一実施形態の磁気軸受の
回転軸に沿った断面構成を示す。固定側には、複数のリ
ング状永久磁石26,26,26が非磁性のスペーサ2
3を介して軸方向に重ね合わせて構成されている。それ
ぞれのリング状永久磁石26,26,26は、図示する
ようにN極、S極の磁極の磁化方向が半径方向に着磁さ
れている。
FIG. 1 shows a sectional configuration along a rotation axis of a magnetic bearing according to an embodiment of the present invention. On the fixed side, a plurality of ring-shaped permanent magnets 26
It is configured to be overlapped in the axial direction via 3. Each of the ring-shaped permanent magnets 26, 26, 26 is magnetized such that the magnetization directions of the N-pole and S-pole magnetic poles are radial.

【0014】尚、永久磁石26,26,26は図示しな
い円筒状内周面を有する固定子のその内周部に固着され
ており、回転子を磁気力で浮上支持するラジアル磁気軸
受17の固定側を構成している。
The permanent magnets 26, 26, 26 are fixed to the inner peripheral portion of a stator (not shown) having a cylindrical inner peripheral surface, and fix the radial magnetic bearing 17 for floatingly supporting the rotor by magnetic force. Make up side.

【0015】回転側にも、リング状永久磁石25,2
5,25が非磁性のスペーサ10を介して軸方向に重ね
合わせて構成されている。それぞれのリング状永久磁石
25,25,25も、図示するように、N極、S極の磁
極の磁化方向が半径方向に着磁されている。尚、回転側
永久磁石25,25,25は図示しない円筒状回転子の
外周部に固着されており、回転子を磁気力で反発浮上す
るラジアル磁気軸受17のターゲット側を構成している
On the rotating side, ring-shaped permanent magnets 25 and 2 are also provided.
5 and 25 are configured to overlap in the axial direction via a non-magnetic spacer 10. As shown in the drawing, the ring-shaped permanent magnets 25, 25, 25 are also magnetized in the radial direction with the magnetization directions of the N pole and the S pole. The rotating permanent magnets 25, 25, 25 are fixed to an outer peripheral portion of a cylindrical rotor (not shown), and constitute a target side of a radial magnetic bearing 17 that repels and floats the rotor by magnetic force.

【0016】固定側永久磁石26,26,26の内周面
と、回転側永久磁石25,25,25の外周面とは、空
隙Aを隔てて互いに対面するように軸方向に位置合わせ
されている。従って、図示するように空隙Aにおいて、
それぞれの対面する磁極が同極であるため、磁気的な反
発力が働き、回転子が半径方向力を受けて浮上支持さ
れ、ラジアル磁気軸受を構成する。
The inner peripheral surfaces of the fixed permanent magnets 26, 26, 26 and the outer peripheral surfaces of the rotating permanent magnets 25, 25, 25 are axially aligned so as to face each other with a gap A therebetween. I have. Therefore, as shown in the gap A,
Since the facing magnetic poles are the same, a magnetic repulsive force acts, and the rotor receives a radial force to be levitated and supported, thereby constituting a radial magnetic bearing.

【0017】図2は、半径方向着磁磁気軸受と軸方向着
磁磁気軸受との半径方向復元力の相違を示すグラフであ
る。図中、縦軸は半径方向復元力を示し、横軸は回転軸
中心からの変位を示し、又、実線は半径方向着磁磁気軸
受の半径方向復元力を示し、点線は軸方向着磁磁気軸受
の半径方向復元力を示す。これは図1および図6に示す
リング状永久磁石を軸方向に重ね合わせた構造の磁気軸
受で、その寸法、形状及び磁化力を同一とし、着磁方向
のみを半径方向と軸方向とに相違させて比較したもので
ある。図示するように、コンピュータシミュレーション
の結果では、半径方向着磁磁気軸受の半径方向復元力
は、軸方向着磁磁気軸受の約1.33倍となる。
FIG. 2 is a graph showing the difference in the radial restoring force between the radial magnetized magnetic bearing and the axial magnetized magnetic bearing. In the figure, the vertical axis shows the radial restoring force, the horizontal axis shows the displacement from the center of the rotating shaft, the solid line shows the radial restoring force of the radial magnetized magnetic bearing, and the dotted line shows the axial magnetized magnetism. 3 shows the radial restoring force of the bearing. This is a magnetic bearing with a structure in which the ring-shaped permanent magnets shown in FIGS. 1 and 6 are superposed in the axial direction. The dimensions, shape and magnetizing force are the same, and only the magnetization direction is different between the radial direction and the axial direction. This is a comparison. As shown in the figure, the results of the computer simulation show that the radial restoring force of the radial magnetized magnetic bearing is about 1.33 times that of the axial magnetized magnetic bearing.

【0018】図3は、半径方向着磁磁気軸受と軸方向着
磁磁気軸受のパーミアンス係数を比較したものである。
パーミアンス係数は、磁石の磁極から見た磁気抵抗の逆
数であり、この係数が大きいということは、同じ磁化力
に対して形成される磁束(磁力線)の量が大きくなるこ
とを意味する。図中、横軸は軸方向位置を示したもので
縦軸はパーミアンス係数を示したものである。図中の実
線は半径方向着磁磁気軸受のパーミアンス係数を示し、
点線は軸方向着磁磁気軸受のパーミアンス係数を示す。
この比較は、図2と同様に全く同じ形状、寸法のリング
状永久磁石を複数枚重ね合わせた構造の磁気軸受につい
て、磁化力を同一として着磁方向を半径方向と軸方向と
に相違させて比較したものである。図から明らかなよう
に、半径方向着磁磁気軸受のパーミアンス係数は、軸方
向着磁磁気軸受のパーミアンス係数と比較してかなり大
きくなることが分かる。
FIG. 3 compares the permeance coefficients of the radially magnetized magnetic bearing and the axially magnetized magnetic bearing.
The permeance coefficient is the reciprocal of the magnetic resistance as viewed from the magnetic pole of the magnet, and a large coefficient means that the amount of magnetic flux (line of magnetic force) formed for the same magnetizing force increases. In the figure, the horizontal axis indicates the axial position, and the vertical axis indicates the permeance coefficient. The solid line in the figure indicates the permeance coefficient of the radial magnetized magnetic bearing,
The dotted line shows the permeance coefficient of the axially magnetized magnetic bearing.
In this comparison, as in FIG. 2, for a magnetic bearing having a structure in which a plurality of ring-shaped permanent magnets having exactly the same shape and dimensions are stacked, the magnetization direction is different between the radial direction and the axial direction with the same magnetizing force. It is a comparison. As is clear from the figure, the permeance coefficient of the radially magnetized magnetic bearing is considerably larger than the permeance coefficient of the axially magnetized magnetic bearing.

【0019】図4は、半径方向着磁磁気軸受と軸方向着
磁磁気軸受との磁束分布の解析結果を示す。(a)は軸
方向着磁磁気軸受の磁束分布を示し、(b)は半径方向
着磁磁気軸受の磁束分布を示す。どちらも同一の形状、
構造の永久磁石を複数枚軸方向に重ね合わせたものであ
り、磁化力を同一として相違するのは着磁方向のみであ
る。これらの図を比較すると、軸方向着磁磁気軸受に比
べて半径方向着磁磁気軸受は磁束分布がはるかに密にな
っており、永久磁石の能力を有効に使用できていること
が分かる。
FIG. 4 shows an analysis result of the magnetic flux distribution between the radially magnetized magnetic bearing and the axially magnetized magnetic bearing. (A) shows the magnetic flux distribution of the axial magnetized magnetic bearing, and (b) shows the magnetic flux distribution of the radial magnetized magnetic bearing. Both have the same shape,
A plurality of permanent magnets having a structure are overlapped in the axial direction, and the only difference is the magnetization direction with the same magnetizing force. Comparing these figures, it can be seen that the magnetic flux distribution of the radial magnetized magnetic bearing is much denser than that of the axial magnetized magnetic bearing, and the ability of the permanent magnet can be used effectively.

【0020】図5は、本発明の磁気軸受装置を搭載した
回転機械を示す。この回転機械は、本発明の受動型ラジ
アル磁気軸受装置をターボ分子ポンプに適用した一例で
ある。羽根車6を円板5を介して固着した主軸4を、本
発明の2組のラジアル受動型磁気軸受17a,17bで
支持しつつモータ13により回転駆動するものである。
即ち、固定子3は、底板1と筒状部2を有し、回転子7
は主軸4とこれに固着された円板部及び羽根車6を備え
ている。主軸4はその上部と下部の2ヶ所に、それぞれ
半径方向受動磁気軸受17a,17bで半径方向に支持
されている。
FIG. 5 shows a rotary machine equipped with the magnetic bearing device of the present invention. This rotating machine is an example in which the passive radial magnetic bearing device of the present invention is applied to a turbo molecular pump. The main shaft 4 to which the impeller 6 is fixed via the disk 5 is rotated by a motor 13 while being supported by two sets of radial passive magnetic bearings 17a and 17b of the present invention.
That is, the stator 3 has the bottom plate 1 and the cylindrical portion 2 and the rotor 7
Has a main shaft 4, a disk portion fixed to the main shaft 4, and an impeller 6. The main shaft 4 is radially supported by two radially passive magnetic bearings 17a and 17b at its upper and lower portions, respectively.

【0021】固定子側にはリング状永久磁石25が複数
枚スペーサを介して重ね合わされた構造を備え、これら
に対向する位置に回転側のリング状永久磁石25をそれ
ぞれ軸方向に複数枚重ねて配置している。これらの永久
磁石25,26はそれぞれ図1に示すように半径方向に
着磁されている。従って、この回転機械ではコンパクト
で且つ強い半径方向復元力を有する磁気軸受17a,1
7bで、羽根車6を備えた主軸4が半径方向に支持され
る。
The stator has a structure in which a plurality of ring-shaped permanent magnets 25 are overlapped with a spacer interposed therebetween, and a plurality of rotating-side ring-shaped permanent magnets 25 are stacked in the axial direction at positions opposed to these. Have been placed. These permanent magnets 25 and 26 are respectively magnetized in the radial direction as shown in FIG. Therefore, in this rotary machine, the magnetic bearings 17a, 1 which are compact and have a strong radial restoring force.
At 7b, the main shaft 4 with the impeller 6 is supported in the radial direction.

【0022】尚、軸方向には主軸4は、能動型磁気軸受
14で支持されている。主軸4には磁性材のスラスト板
10が固着され、固定子側にはスラスト板10を挟むよ
うに軸方向に磁気吸引力を発生する電磁石11がそれぞ
れ離隔して配置されている。底板1には変位センサ14
aが配置され、主軸4の軸方向変位を検出して、電磁石
11の励磁を制御することにより、主軸4の浮上位置を
制御する。モータ13は、固定子側に固定された電磁石
11と主軸4側に固着された磁性材8とから構成され、
主軸4の回転駆動はモータ13によってなされる。
The main shaft 4 is supported by an active magnetic bearing 14 in the axial direction. A thrust plate 10 made of a magnetic material is fixed to the main shaft 4, and electromagnets 11 that generate a magnetic attractive force in the axial direction are arranged on the stator side so as to sandwich the thrust plate 10. A displacement sensor 14 is provided on the bottom plate 1.
a is disposed to detect the axial displacement of the main shaft 4 and control the excitation of the electromagnet 11 to control the floating position of the main shaft 4. The motor 13 includes an electromagnet 11 fixed to the stator and a magnetic material 8 fixed to the main shaft 4.
The rotation of the main shaft 4 is performed by a motor 13.

【0023】尚、上述した実施形態においては、リング
状永久磁石が複数枚重ね合わされて、外周側に配置され
たものを固定側として、内周側に配置されたものを回転
側としたが、その逆に内周側を固定側とし、外周側を回
転側としても勿論よい。
In the above-described embodiment, a plurality of ring-shaped permanent magnets are superimposed and arranged on the outer peripheral side as the fixed side, while the one arranged on the inner peripheral side is the rotating side. Conversely, the inner side may be the fixed side and the outer side may be the rotating side.

【0024】[0024]

【発明の効果】以上のように回転側、固定側ともそれぞ
れ半径方向に着磁したリング状永久磁石を、着磁方向が
逆になるように軸方向に積み重ねた構造を採用すること
により、永久磁石から見たパーミアンス係数を大きくす
ることができる。これにより、コンパクトな構造で半径
方向の軸受剛性を大きくすることが出来るだけでなく、
磁気特性的にも安定した、即ち、経年変化が少なく、使
用環境の温度が上昇しても減磁することが少ない磁気軸
受装置を提供することが出来る。更にこの磁気軸受装置
は構造が簡単であるため、その製造も容易である。
As described above, by adopting a structure in which ring-shaped permanent magnets magnetized in the radial direction on both the rotating side and the fixed side are stacked in the axial direction so that the magnetizing directions are reversed, the permanent The permeance coefficient viewed from the magnet can be increased. As a result, not only can the bearing rigidity in the radial direction be increased with a compact structure,
It is possible to provide a magnetic bearing device that is stable in magnetic properties, that is, has little change over time and is less likely to be demagnetized even when the temperature of the use environment increases. Further, since the magnetic bearing device has a simple structure, its manufacture is also easy.

【0025】また、この磁気軸受装置を少なくとも2つ
組み合わせて回転機械の回転軸支持に使用することによ
り、コンパクトで経時特性の優れた磁気軸受装置を備え
た回転機械を提供することが出来る。
By using at least two of these magnetic bearing devices in combination for supporting the rotating shaft of a rotating machine, a rotating machine having a compact magnetic bearing device with excellent aging characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施形態の磁気軸受装置の説明図。FIG. 1 is an explanatory view of a magnetic bearing device according to an embodiment of the present invention.

【図2】半径方向着磁磁気軸受と軸方向着磁磁気軸受の
半径方向復元力を比較したグラフ。
FIG. 2 is a graph comparing the radial restoring force of a radially magnetized magnetic bearing and an axially magnetized magnetic bearing.

【図3】半径方向着磁磁気軸受と軸方向着磁磁気軸受の
パーミアンス係数を比較したグラフ。
FIG. 3 is a graph comparing a permeance coefficient between a radially magnetized magnetic bearing and an axially magnetized magnetic bearing.

【図4】半径方向着磁磁気軸受と軸方向着磁磁気軸受の
磁束分布を比較した図。
FIG. 4 is a diagram comparing magnetic flux distributions of a radially magnetized magnetic bearing and an axially magnetized magnetic bearing.

【図5】本発明の磁気軸受装置を搭載した回転機械の一
例を示す断面図。
FIG. 5 is a cross-sectional view showing an example of a rotating machine equipped with the magnetic bearing device of the present invention.

【図6】従来の一対の永久磁石から構成される半径方向
磁気軸受の説明図であり、(a)は軸方向着磁型を示
し、(b)は半径方向着磁型を示す。
6A and 6B are explanatory views of a conventional radial magnetic bearing composed of a pair of permanent magnets, wherein FIG. 6A shows an axial magnetization type and FIG. 6B shows a radial magnetization type.

【図7】従来の磁気軸受装置の説明図。FIG. 7 is an explanatory view of a conventional magnetic bearing device.

【図8】図7の磁気軸受装置の変形例を示す説明図。FIG. 8 is an explanatory view showing a modification of the magnetic bearing device of FIG. 7;

【符号の説明】[Explanation of symbols]

17 磁気軸受 23 非磁性スペーサ 25,26 リング状永久磁石 A 空隙 17 Magnetic bearing 23 Non-magnetic spacer 25, 26 Ring-shaped permanent magnet A Air gap

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 回転側、静止側ともにリング状の永久磁
石を複数枚重ね合わせた構造を有し、半径方向に前記永
久磁石の生成する磁気力で回転軸を支持する受動型の磁
気軸受装置において、それぞれ半径方向に着磁したリン
グ状の永久磁石を着磁方向が逆になるように積み重ねた
ことを特徴とする磁気軸受装置。
1. A passive magnetic bearing device having a structure in which a plurality of ring-shaped permanent magnets are superposed on both a rotating side and a stationary side, and supporting a rotating shaft by a magnetic force generated by the permanent magnets in a radial direction. 2. The magnetic bearing device according to claim 1, wherein ring-shaped permanent magnets, each magnetized in the radial direction, are stacked so that the magnetization directions are reversed.
【請求項2】 前記請求項1記載の磁気軸受装置を、回
転軸の軸方向の離れた位置に少なくとも2組配置したこ
とを特徴とする回転機械装置。
2. A rotary machine device comprising at least two sets of the magnetic bearing device according to claim 1 arranged at positions separated from each other in the axial direction of a rotary shaft.
JP8303904A 1996-10-30 1996-10-30 Magnetic bearing device Pending JPH10131966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8303904A JPH10131966A (en) 1996-10-30 1996-10-30 Magnetic bearing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8303904A JPH10131966A (en) 1996-10-30 1996-10-30 Magnetic bearing device

Publications (1)

Publication Number Publication Date
JPH10131966A true JPH10131966A (en) 1998-05-22

Family

ID=17926674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8303904A Pending JPH10131966A (en) 1996-10-30 1996-10-30 Magnetic bearing device

Country Status (1)

Country Link
JP (1) JPH10131966A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040009157A (en) * 2002-07-22 2004-01-31 삼성전기주식회사 Motor having thrust magnetic bearing
CN102052404A (en) * 2011-01-21 2011-05-11 北京前沿科学研究所 Totally-enclosed magnetic circuit structure for magnetic suspension bearing
CN102518665A (en) * 2011-12-24 2012-06-27 李泽 Magnetic suspension bearing
JP2013145054A (en) * 2013-02-15 2013-07-25 Vacuum Products Kk Bearing device for rotating part and pump using the same
JP2014121098A (en) * 2012-12-12 2014-06-30 Tokyo Institute Of Technology Bearingless motor, rotary machine and non-contact magnetic force support pump
CN104235182A (en) * 2013-06-21 2014-12-24 张玉宝 Magnetic bearing
CN104295603A (en) * 2013-07-15 2015-01-21 卓向东 Permanent magnet thrust bearing and vertical magnetic levitation motor
CN104930056A (en) * 2014-03-18 2015-09-23 卓向东 Magnetic suspension bearing with radial and axial suspension functions
CN108361280A (en) * 2018-05-03 2018-08-03 南京高明环保科技有限公司 Permanent magnetism magnetic suspension bearing
CN115306215A (en) * 2022-07-15 2022-11-08 广东名门锁业有限公司 Magnetic suction type shielding structure and handle with same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040009157A (en) * 2002-07-22 2004-01-31 삼성전기주식회사 Motor having thrust magnetic bearing
CN102052404A (en) * 2011-01-21 2011-05-11 北京前沿科学研究所 Totally-enclosed magnetic circuit structure for magnetic suspension bearing
CN102518665A (en) * 2011-12-24 2012-06-27 李泽 Magnetic suspension bearing
JP2014121098A (en) * 2012-12-12 2014-06-30 Tokyo Institute Of Technology Bearingless motor, rotary machine and non-contact magnetic force support pump
JP2013145054A (en) * 2013-02-15 2013-07-25 Vacuum Products Kk Bearing device for rotating part and pump using the same
CN104235182A (en) * 2013-06-21 2014-12-24 张玉宝 Magnetic bearing
CN104295603A (en) * 2013-07-15 2015-01-21 卓向东 Permanent magnet thrust bearing and vertical magnetic levitation motor
CN104930056A (en) * 2014-03-18 2015-09-23 卓向东 Magnetic suspension bearing with radial and axial suspension functions
CN108361280A (en) * 2018-05-03 2018-08-03 南京高明环保科技有限公司 Permanent magnetism magnetic suspension bearing
CN115306215A (en) * 2022-07-15 2022-11-08 广东名门锁业有限公司 Magnetic suction type shielding structure and handle with same

Similar Documents

Publication Publication Date Title
US6172438B1 (en) Two-phase permanent-magnet electric rotating machine
US4918345A (en) Magnetic bearing for active centering of a body movable relative to a static body with respect to at least one axis
JP5074350B2 (en) Magnetic bearing
EP0130541A1 (en) Flywheel apparatus
JPH04219496A (en) Vacuum pump for clean molecular vacuum
KR20050004286A (en) Rotary electric motor having a plurality of skewed stator poles and/or rotor poles
US6727629B1 (en) Rotary electric motor having a plurality of shifted stator poles and/or rotor poles
JPH10131966A (en) Magnetic bearing device
US4714854A (en) Electric motor with a multipolar permanent magnet rotor
JPH08178011A (en) Flywheel device
JP3850195B2 (en) Magnetic levitation motor
WO2014007851A1 (en) Active magnetic bearing assembly and arrangement of magnets therefor
KR20010062764A (en) Magnetic bearing apparatus
MXPA04012144A (en) Rotary electric motor having a plurality of shifted stator poles and/or rotor poles.
JP4466262B2 (en) Rotor structure of axial gap motor
JPH11325075A (en) Magnetic bearing
JPS6146683B2 (en)
JPH09303395A (en) Magnetic bearing device
JPH0942289A (en) Hybrid magnetic/wheel-gas-bearing
JP2013106417A (en) Rotor and motor
JPH11341734A (en) Disk type motor
US20050253473A1 (en) Alternative magnetic bearing
JPH08242569A (en) Commutatorless motor
JPH01103146A (en) Motor
KR20020046895A (en) A magnetic bearing and a motor using the magnetic bearing

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20040730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040810

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20041207